File size: 8,609 Bytes
1a37a63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Osteoarthritis"
cohort = "GSE98460"
# Input paths
in_trait_dir = "../DATA/GEO/Osteoarthritis"
in_cohort_dir = "../DATA/GEO/Osteoarthritis/GSE98460"
# Output paths
out_data_file = "./output/preprocess/3/Osteoarthritis/GSE98460.csv"
out_gene_data_file = "./output/preprocess/3/Osteoarthritis/gene_data/GSE98460.csv"
out_clinical_data_file = "./output/preprocess/3/Osteoarthritis/clinical_data/GSE98460.csv"
json_path = "./output/preprocess/3/Osteoarthritis/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
print(f"\n{row}:")
print(values)
# 1. Gene Expression Data Availability
is_gene_available = True # RNA microarray data indicated in background info
# 2. Variable Availability and Data Type
# Trait (OA) - can be inferred from diagnosis field
trait_row = 1
def convert_trait(x):
if not x or ':' not in x:
return None
value = x.split(':')[1].strip().lower()
if 'osteoarthritis' in value or 'oa' in value:
return 1
return 0
# Age - available in field 2
age_row = 2
def convert_age(x):
if not x or ':' not in x:
return None
try:
return float(x.split(':')[1].strip().split()[0])
except:
return None
# Gender - available in field 3
gender_row = 3
def convert_gender(x):
if not x or ':' not in x:
return None
value = x.split(':')[1].strip().lower()
if 'female' in value:
return 0
elif 'male' in value:
return 1
return None
# 3. Save metadata
is_trait_available = trait_row is not None
is_usable = validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# 4. Extract clinical features
if trait_row is not None:
selected_clinical = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
print("Preview of selected clinical features:")
print(preview_df(selected_clinical))
selected_clinical.to_csv(out_clinical_data_file)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Examine data structure
print("Data structure and head:")
print(genetic_data.head())
print("\nShape:", genetic_data.shape)
print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])
# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# Examining gene identifiers
# The IDs look like custom platform probe IDs (e.g. 16650001, 16650003)
# These are not standard human gene symbols (which would be like BRCA1, TP53, etc.)
# We will need to map these probe IDs to gene symbols
requires_gene_mapping = True
# Look at more content in SOFT file to find gene annotation section
with gzip.open(soft_file_path, 'rt') as f:
platform_found = False
table_start = False
first_row = None
gene_rows = []
for line in f:
if '!Platform_table_begin' in line:
table_start = True
continue
elif '!Platform_table_end' in line:
break
elif table_start:
if first_row is None:
first_row = line.strip()
else:
gene_rows.append(line.strip())
# Create dataframe from the platform table data
import io
header = first_row.split('\t')
gene_data = '\n'.join(gene_rows)
gene_annotation = pd.read_csv(io.StringIO(gene_data), sep='\t', names=header)
print("Column names:")
print(gene_annotation.columns)
print("\nPreview of gene annotation data:")
print(preview_df(gene_annotation))
# First examine more content in SOFT file to locate gene symbol information
with gzip.open(soft_file_path, 'rt') as f:
found_table = False
header = None
first_five_rows = []
for line in f:
if '!Platform_title' in line:
print("Platform title:", line.strip())
elif '!Platform_organism' in line:
print("Platform organism:", line.strip())
elif '!Platform_table_begin' in line:
found_table = True
continue
elif found_table:
if header is None:
header = line.strip()
print("\nPlatform table header:")
print(header)
elif len(first_five_rows) < 5:
first_five_rows.append(line.strip())
else:
break
print("\nFirst few rows:")
for row in first_five_rows:
print(row)
# Now try using tabs as delimiter to see full column structure
print("\nSplitting first row by tabs to check all fields:")
if first_five_rows:
print(first_five_rows[0].split('\t'))
# Based on examination results, extract complete platform data
platform_data = pd.read_csv(gzip.open(soft_file_path, 'rt'),
sep='\t',
skiprows=lambda x: x == 0 or not found_table,
comment='!')
print("\nFull column names found:")
print(platform_data.columns.tolist())
print("\nPreview of complete annotation data:")
print(preview_df(platform_data))
# Extract gene annotation using library function
gene_annotation = get_gene_annotation(soft_file_path)
# Print available columns to identify correct names
print("Available columns:", gene_annotation.columns.tolist())
# First examine the column names
probe_data = gene_annotation.head()
print("\nFirst few rows:")
print(preview_df(probe_data))
# Create mapping after seeing actual column names
mapping_df = get_gene_mapping(gene_annotation,
prob_col='ID',
gene_col='Gene Title')
# Convert probe-level measurements to gene expression data
gene_data = apply_gene_mapping(genetic_data, mapping_df)
print("\nPreview of gene expression data after mapping:")
print(preview_df(gene_data))
# Load clinical data
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
# Normalize gene symbols and save gene expression data
genetic_data = normalize_gene_symbols_in_index(genetic_data)
genetic_data.to_csv(out_gene_data_file)
# Link clinical and genetic data using library function
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
# Handle missing values systematically
linked_data = handle_missing_values(linked_data, trait)
# Check for bias in trait and demographic features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# Final validation and information saving
note = "This dataset contains cartilage tissue samples from OA patients, with gene expression data and demographic information."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note=note
)
# Save linked data only if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file)
# First examine platform information in SOFT file
print("Examining platform information in SOFT file...")
with gzip.open(soft_file_path, 'rt') as f:
platform_lines = []
capture = False
for line in f:
if line.startswith(('!Platform_title', '!Platform_organism', '!Platform_technology')):
print(line.strip())
elif '!platform_table_begin' in line.lower():
capture = True
continue
elif '!platform_table_end' in line.lower():
break
elif capture:
platform_lines.append(line.strip())
# Now extract complete annotation with pandas
print("\nExtracting complete platform annotation...")
platform_df = pd.read_csv(io.StringIO('\n'.join(platform_lines)), sep='\t')
print("\nFound columns:")
print(platform_df.columns.tolist())
print("\nPreview of annotation data:")
print(preview_df(platform_df)) |