File size: 5,662 Bytes
1a37a63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Osteoporosis"
cohort = "GSE20881"

# Input paths
in_trait_dir = "../DATA/GEO/Osteoporosis"
in_cohort_dir = "../DATA/GEO/Osteoporosis/GSE20881"

# Output paths
out_data_file = "./output/preprocess/3/Osteoporosis/GSE20881.csv"
out_gene_data_file = "./output/preprocess/3/Osteoporosis/gene_data/GSE20881.csv"
out_clinical_data_file = "./output/preprocess/3/Osteoporosis/clinical_data/GSE20881.csv"
json_path = "./output/preprocess/3/Osteoporosis/cohort_info.json"

# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")

# Get dictionary of unique values per row 
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
    print(f"\n{row}:")
    print(values)
# 1. Gene Expression Data Availability  
is_gene_available = True  # Based on background info, this is a gene expression study of intestinal biopsies

# 2.1 Data Availability
trait_row = 58  # disease field with 'healthy' vs 'crohns disease'
age_row = 2  # birth date field
gender_row = None  # No gender data

# 2.2 Data Type Conversion Functions
def convert_trait(value):
    """Convert trait values to binary: 0 for healthy control, 1 for disease case"""
    if not isinstance(value, str):
        return None
    value = value.split(': ')[-1].lower()
    if 'healthy' in value:
        return 0
    elif 'crohns disease' in value:
        return 1
    return None

def convert_age(value):
    """Convert birth date to age using procedure date as reference"""
    from datetime import datetime
    if not isinstance(value, str) or ': ' not in value:
        return None
    try:
        birth_date = datetime.strptime(value.split(': ')[1], '%m/%d/%y')
        # Use 2005 as reference year since procedures were in 2004-2005
        ref_date = datetime(2005, 1, 1)
        age = ref_date.year - birth_date.year
        # Adjust age if birthday hasn't occurred yet
        if ref_date.month < birth_date.month or (ref_date.month == birth_date.month and ref_date.day < birth_date.day):
            age -= 1
        return age
    except:
        return None

convert_gender = None  # No gender data

# 3. Save Initial Metadata
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=(trait_row is not None)
)

# 4. Clinical Feature Extraction
clinical_features = geo_select_clinical_features(
    clinical_df=clinical_data,
    trait=trait,
    trait_row=trait_row,
    convert_trait=convert_trait,
    age_row=age_row,
    convert_age=convert_age,
    gender_row=gender_row,
    convert_gender=convert_gender
)

# Preview and save clinical features
print(preview_df(clinical_features))
clinical_features.to_csv(out_clinical_data_file)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)

# Examine data structure
print("Data structure and head:")
print(genetic_data.head())

print("\nShape:", genetic_data.shape)

print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])

# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# The row IDs are just numbers (1, 2, 3, etc) and not recognizable gene symbols
# So they need to be mapped to proper human gene symbols
requires_gene_mapping = True
# Extract gene annotation data
gene_annotation = get_gene_annotation(soft_file_path)

# Display column names and preview data
print("Column names:")
print(gene_annotation.columns)

print("\nPreview of gene annotation data:")
print(preview_df(gene_annotation))
# 1. From the preview, we can see 'ID' column in gene annotation maps to row IDs in expression data,
#    and 'GENE_SYMBOL' column contains the gene symbols

# 2. Create gene mapping dataframe
mapping_data = get_gene_mapping(gene_annotation, 'ID', 'GENE_SYMBOL')

# 3. Apply mapping to convert probe data to gene expression
gene_data = apply_gene_mapping(genetic_data, mapping_data)

# Print info about the mapping and conversion
print("\nShape after mapping to gene symbols:", gene_data.shape)
print("\nFirst few gene symbols:", list(gene_data.index)[:10])
# Reload clinical data that was processed earlier
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)

# 1. Normalize gene symbols
genetic_data = normalize_gene_symbols_in_index(gene_data)
genetic_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)

# 3. Handle missing values systematically  
linked_data = handle_missing_values(linked_data, trait)

# 4. Check for bias in trait and demographic features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Final validation and information saving
note = "Contains gene expression data with metabolic rate (inferred from multicentric occurrence-free survival days) measurements"
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort, 
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=trait_biased,
    df=linked_data,
    note=note
)

# 6. Save linked data only if usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)