File size: 5,873 Bytes
1a37a63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Osteoporosis"
cohort = "GSE35925"

# Input paths
in_trait_dir = "../DATA/GEO/Osteoporosis"
in_cohort_dir = "../DATA/GEO/Osteoporosis/GSE35925"

# Output paths
out_data_file = "./output/preprocess/3/Osteoporosis/GSE35925.csv"
out_gene_data_file = "./output/preprocess/3/Osteoporosis/gene_data/GSE35925.csv"
out_clinical_data_file = "./output/preprocess/3/Osteoporosis/clinical_data/GSE35925.csv"
json_path = "./output/preprocess/3/Osteoporosis/cohort_info.json"

# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")

# Get dictionary of unique values per row 
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
    print(f"\n{row}:")
    print(values)
# 1. Gene Expression Data Availability 
# Based on background info mentioning transcriptional analysis using U133 Plus 2.0 GeneChip
is_gene_available = True

# 2.1 Data Availability
# Can infer osteoporosis risk from gender (row 0) since these are post-menopausal women 
# receiving osteoporosis prevention treatment
trait_row = 0
# Age data available in row 1
age_row = 1  
# Gender data available in row 0
gender_row = 0

# 2.2 Data Type Conversion Functions
def convert_trait(x):
    '''Convert to binary based on osteoporosis risk'''
    if pd.isna(x) or ':' not in x:
        return None
    val = x.split(':', 1)[1].strip().lower()
    # Post-menopausal females receiving preventive treatment are high risk
    if 'female' in val:
        return 1
    return None

def convert_age(x):
    '''Convert age to continuous value'''
    if pd.isna(x) or ':' not in x:
        return None 
    try:
        return float(x.split(':', 1)[1].strip())
    except:
        return None

def convert_gender(x):
    '''Convert gender to binary (0=female, 1=male)'''
    if pd.isna(x) or ':' not in x:
        return None
    val = x.split(':', 1)[1].strip().lower()
    if 'female' in val:
        return 0
    elif 'male' in val:
        return 1
    return None

# 3. Save metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, 
                            is_gene_available=is_gene_available,
                            is_trait_available=is_trait_available)

# 4. Extract clinical features
if trait_row is not None:
    selected_clinical_df = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age, 
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    
    # Preview the selected features
    print("Preview of selected clinical features:")
    print(preview_df(selected_clinical_df))
    
    # Save to CSV
    selected_clinical_df.to_csv(out_clinical_data_file)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)

# Examine data structure
print("Data structure and head:")
print(genetic_data.head())

print("\nShape:", genetic_data.shape)

print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])

# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# Based on inspection of gene identifiers like '1007_s_at', '1053_at', these are Affymetrix probe IDs
# They need to be mapped to human gene symbols for analysis
requires_gene_mapping = True
# Extract gene annotation data
gene_annotation = get_gene_annotation(soft_file_path)

# Display column names and preview data
print("Column names:")
print(gene_annotation.columns)

print("\nPreview of gene annotation data:")
print(preview_df(gene_annotation))
# 1. Based on inspection:
# The ID column contains the same probe IDs as in gene_expression data (e.g., '1007_s_at')
# The Gene Symbol column contains the gene symbols we want to map to

# 2. Extract mapping between probe IDs and gene symbols
gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')

# 3. Apply mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(genetic_data, gene_mapping)

# Print info about the mapping result
print("\nShape of gene expression data after mapping:")
print(gene_data.shape)

print("\nPreview of gene expression data after mapping:")
print(preview_df(gene_data))
# Reload clinical data that was processed earlier
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)

# 1. Normalize gene symbols
genetic_data = normalize_gene_symbols_in_index(gene_data)
genetic_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)

# 3. Handle missing values systematically  
linked_data = handle_missing_values(linked_data, trait)

# 4. Check for bias in trait and demographic features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Final validation and information saving
note = "Contains gene expression data with metabolic rate (inferred from multicentric occurrence-free survival days) measurements"
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort, 
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=trait_biased,
    df=linked_data,
    note=note
)

# 6. Save linked data only if usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)