File size: 4,573 Bytes
1a37a63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Osteoporosis"
cohort = "GSE62589"

# Input paths
in_trait_dir = "../DATA/GEO/Osteoporosis"
in_cohort_dir = "../DATA/GEO/Osteoporosis/GSE62589"

# Output paths
out_data_file = "./output/preprocess/3/Osteoporosis/GSE62589.csv"
out_gene_data_file = "./output/preprocess/3/Osteoporosis/gene_data/GSE62589.csv"
out_clinical_data_file = "./output/preprocess/3/Osteoporosis/clinical_data/GSE62589.csv"
json_path = "./output/preprocess/3/Osteoporosis/cohort_info.json"

# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")

# Get dictionary of unique values per row 
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
    print(f"\n{row}:")
    print(values)
# Gene expression data availability check
# This is a SuperSeries and we don't have clear information about data type
is_gene_available = False

# Variable availability check
# Trait row: Not directly available in characteristics, can't be inferred
trait_row = None 

# Age row: Not available in characteristics
age_row = None

# Gender row: Available in row 2, but all female so not useful
gender_row = None

# Type conversion functions
def convert_trait(x):
    """Convert trait status to binary"""
    if x is None:
        return None
    x = str(x).lower()
    if ':' in x:
        x = x.split(':')[1].strip()
    if 'osteoporosis' in x:
        return 1
    elif 'control' in x or 'normal' in x:
        return 0
    return None

def convert_age(x):
    """Convert age to float"""
    if x is None:
        return None
    try:
        if ':' in x:
            x = x.split(':')[1].strip()
        return float(x)
    except:
        return None

def convert_gender(x):
    """Convert gender to binary"""
    if x is None:
        return None
    x = str(x).lower()
    if ':' in x:
        x = x.split(':')[1].strip()
    if 'female' in x:
        return 0
    elif 'male' in x:
        return 1
    return None

# Save metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False, 
                            cohort=cohort,
                            info_path=json_path,
                            is_gene_available=is_gene_available,
                            is_trait_available=is_trait_available)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)

# Examine data structure
print("Data structure and head:")
print(genetic_data.head())

print("\nShape:", genetic_data.shape)

print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])

# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# The row IDs appear to be probe IDs (numeric identifiers) rather than human gene symbols
# These will need to be mapped to standard gene symbols for analysis
requires_gene_mapping = True
# Extract gene annotation data
gene_annotation = get_gene_annotation(soft_file_path)

# Display column names and preview data
print("Column names:")
print(gene_annotation.columns)

print("\nPreview of gene annotation data:")
print(preview_df(gene_annotation))
# From examining previous outputs, we see:
# - Gene expression data uses numeric IDs in the 'ID' column
# - Gene annotation has 'ID' column with matching IDs and 'gene_assignment' with gene symbols

# Get gene mapping between probe IDs and gene symbols
gene_mapping = get_gene_mapping(gene_annotation, 'ID', 'gene_assignment')

# Apply mapping to convert probe-level data to gene-level expression
gene_data = apply_gene_mapping(genetic_data, gene_mapping)

# Preview results
print("\nShape of gene expression data after mapping:", gene_data.shape)
print("\nFirst few rows of mapped gene expression data:")
print(gene_data.head())
# Create minimal dummy DataFrame
dummy_df = pd.DataFrame({trait: [0]})  # One row with trait value
is_biased = True  # Mark as biased/unusable

note = "This is a SuperSeries without clear data type information. No clinical trait data available."
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=False,
    is_trait_available=False,
    is_biased=is_biased,
    df=dummy_df,
    note=note
)