File size: 4,410 Bytes
1a37a63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Osteoporosis"
cohort = "GSE80614"

# Input paths
in_trait_dir = "../DATA/GEO/Osteoporosis"
in_cohort_dir = "../DATA/GEO/Osteoporosis/GSE80614"

# Output paths
out_data_file = "./output/preprocess/3/Osteoporosis/GSE80614.csv"
out_gene_data_file = "./output/preprocess/3/Osteoporosis/gene_data/GSE80614.csv"
out_clinical_data_file = "./output/preprocess/3/Osteoporosis/clinical_data/GSE80614.csv"
json_path = "./output/preprocess/3/Osteoporosis/cohort_info.json"

# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")

# Get dictionary of unique values per row 
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
    print(f"\n{row}:")
    print(values)
# 1. Gene Expression Data Availability
# The background info mentions "microarray expression profiling" indicating gene expression data
is_gene_available = True

# 2.1 Data Availability
# Trait data not directly available since this is a control/case study comparing 
# osteogenic vs adipogenic differentiation, not diseased vs healthy samples
trait_row = None

# Age data available in key 1
age_row = 1

# Gender data available in key 0 
gender_row = 0

# 2.2 Data Type Conversion Functions
def convert_trait(x):
    # Not needed since trait data not available
    return None

def convert_age(x):
    # Extract number from string like "age: 19 years" or "age: 19"
    try:
        return float(x.split(': ')[1].split(' ')[0])
    except:
        return None

def convert_gender(x):
    # Convert gender to binary (female=0, male=1)
    try:
        gender = x.split(': ')[1].lower()
        if gender == 'male':
            return 1
        elif gender == 'female': 
            return 0
        return None
    except:
        return None

# 3. Save metadata
validate_and_save_cohort_info(is_final=False, 
                            cohort=cohort,
                            info_path=json_path,
                            is_gene_available=is_gene_available,
                            is_trait_available=(trait_row is not None))

# 4. Skip clinical feature extraction since trait_row is None
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)

# Examine data structure
print("Data structure and head:")
print(genetic_data.head())

print("\nShape:", genetic_data.shape)

print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])

# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# The gene identifiers start with "ILMN_" indicating these are Illumina probe IDs, not standard gene symbols
requires_gene_mapping = True
# Extract gene annotation data
gene_annotation = get_gene_annotation(soft_file_path)

# Display column names and preview data
print("Column names:")
print(gene_annotation.columns)

print("\nPreview of gene annotation data:")
print(preview_df(gene_annotation))
# 1. Identify the relevant columns for mapping
# 'ID' in gene annotation matches the probe IDs (ILMN_*) from gene expression data
# 'Symbol' contains the corresponding gene symbols
prob_col = 'ID'
gene_col = 'Symbol'

# 2. Get gene mapping dataframe
mapping_data = get_gene_mapping(gene_annotation, prob_col, gene_col)

# 3. Convert probe-level measurements to gene expression data
gene_data = apply_gene_mapping(genetic_data, mapping_data)

# Preview the results
print("Shape of gene expression data after mapping:", gene_data.shape)
print("\nFirst few rows of mapped gene data:")
print(gene_data.head())
# 1. Normalize gene symbols
genetic_data = normalize_gene_symbols_in_index(gene_data)
genetic_data.to_csv(out_gene_data_file)

note = "Gene expression data available but no clinical variables for association studies"
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True, 
    is_trait_available=False,
    is_biased=True,  # Set to True since no clinical data makes it unusable
    df=genetic_data,  # Pass the gene expression data
    note=note
)