File size: 6,447 Bytes
1a37a63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Ovarian_Cancer"
cohort = "GSE132342"
# Input paths
in_trait_dir = "../DATA/GEO/Ovarian_Cancer"
in_cohort_dir = "../DATA/GEO/Ovarian_Cancer/GSE132342"
# Output paths
out_data_file = "./output/preprocess/3/Ovarian_Cancer/GSE132342.csv"
out_gene_data_file = "./output/preprocess/3/Ovarian_Cancer/gene_data/GSE132342.csv"
out_clinical_data_file = "./output/preprocess/3/Ovarian_Cancer/clinical_data/GSE132342.csv"
json_path = "./output/preprocess/3/Ovarian_Cancer/cohort_info.json"
# Get file paths for SOFT and matrix files
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data from the matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Create dictionary of unique values for each feature
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print the information
print("Dataset Background Information:")
print(background_info)
print("\nSample Characteristics:")
for feature, values in unique_values_dict.items():
print(f"\n{feature}:")
print(values)
# 1. Gene Expression Data Availability
# Based on series summary mentioning "Expression of 276 genes" and discussion of gene expression signature,
# this dataset contains gene expression data
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# 2.1 Data Availability
trait_row = 0 # "diagnosis: High-grade serous ovarian cancer (HGSOC)"
age_row = 8 # "age: q1", "age: q2" etc.
gender_row = 1 # "Sex: Female" - but all female so not useful
gender_row = None # Set to None since constant
# 2.2 Data Type Conversion Functions
def convert_trait(x):
# Binary: 1 for HGSOC, 0 for others
if not x:
return None
val = x.split(": ")[1].strip().lower()
if "high-grade serous ovarian cancer" in val or "hgsoc" in val:
return 1
return 0
def convert_age(x):
# Convert quartile groups to estimated continuous values
if not x:
return None
val = x.split(": ")[1].strip().lower()
# Map quartiles to approximate ages based on typical ovarian cancer age distribution
age_map = {
'q1': 45, # Representing ~40-50 years
'q2': 55, # Representing ~50-60 years
'q3': 65, # Representing ~60-70 years
'q4': 75 # Representing ~70-80 years
}
return age_map.get(val)
def convert_gender(x):
# Not needed since gender is constant (all female)
pass
# 3. Save Metadata
# Run initial validation (trait data is available since trait_row is not None)
is_usable = validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=True
)
# 4. Clinical Feature Extraction
if is_usable and 'clinical_data' in locals():
clinical_df = geo_select_clinical_features(
clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age
)
# Preview the processed clinical data
print("Preview of processed clinical data:")
print(preview_df(clinical_df))
# Save clinical data
clinical_df.to_csv(out_clinical_data_file)
# Extract genetic data matrix
genetic_data = get_genetic_data(matrix_file_path)
# Print first few rows with column names to examine data structure
print("Data preview:")
print("\nColumn names:")
print(list(genetic_data.columns)[:5])
print("\nFirst 5 rows:")
print(genetic_data.head())
print("\nShape:", genetic_data.shape)
# Verify this is gene expression data and check identifiers
is_gene_available = True
# Save updated metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None)
)
# Save gene expression data
genetic_data.to_csv(out_gene_data_file)
# The identifiers appear to be NCBI RefSeq Transcript IDs (NM_* format) and some Ensembl Transcript IDs (ENST*)
# These need to be mapped to standard human gene symbols for analysis
requires_gene_mapping = True
# Extract gene annotation data
gene_metadata = get_gene_annotation(soft_file_path)
# Preview column names and first few values
preview = preview_df(gene_metadata)
print("\nGene annotation columns and sample values:")
print(preview)
# 1. Identify columns: 'ID' matches gene expression indices, 'ORF' contains gene symbols
prob_col = 'ID'
gene_col = 'ORF'
# 2. Get mapping between probe IDs and gene symbols
mapping_df = get_gene_mapping(gene_metadata, prob_col, gene_col)
# 3. Apply the mapping to convert probe measurements to gene expression values
gene_data = apply_gene_mapping(genetic_data, mapping_df)
# Preview the mapped gene expression data
print("\nMapped gene expression data preview:")
print("\nShape:", gene_data.shape)
print("\nFirst few genes and samples:")
print(gene_data.head())
# 1. Normalize gene symbols and save gene data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
normalized_gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
# Use correct clinical features from Step 2 rather than reading from file
clinical_df = geo_select_clinical_features(
clinical_data,
trait=trait,
trait_row=4, # Using status row for survival outcome
convert_trait=lambda x: int(x.split(": ")[1]) if x else None, # Convert status 0/1 directly
age_row=age_row,
convert_age=convert_age
)
linked_data = geo_link_clinical_genetic_data(clinical_df, normalized_gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Judge bias in features and remove biased ones
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and save metadata
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note="Gene expression study of HGSOC patients using vital status (0/1) as outcome measure."
)
# 6. Save linked data if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file) |