File size: 6,447 Bytes
1a37a63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Ovarian_Cancer"
cohort = "GSE132342"

# Input paths
in_trait_dir = "../DATA/GEO/Ovarian_Cancer"
in_cohort_dir = "../DATA/GEO/Ovarian_Cancer/GSE132342"

# Output paths
out_data_file = "./output/preprocess/3/Ovarian_Cancer/GSE132342.csv"
out_gene_data_file = "./output/preprocess/3/Ovarian_Cancer/gene_data/GSE132342.csv"
out_clinical_data_file = "./output/preprocess/3/Ovarian_Cancer/clinical_data/GSE132342.csv"
json_path = "./output/preprocess/3/Ovarian_Cancer/cohort_info.json"

# Get file paths for SOFT and matrix files
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data from the matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)

# Create dictionary of unique values for each feature
unique_values_dict = get_unique_values_by_row(clinical_data)

# Print the information
print("Dataset Background Information:")
print(background_info)
print("\nSample Characteristics:")
for feature, values in unique_values_dict.items():
    print(f"\n{feature}:")
    print(values)
# 1. Gene Expression Data Availability
# Based on series summary mentioning "Expression of 276 genes" and discussion of gene expression signature,
# this dataset contains gene expression data
is_gene_available = True

# 2. Variable Availability and Data Type Conversion
# 2.1 Data Availability
trait_row = 0  # "diagnosis: High-grade serous ovarian cancer (HGSOC)"
age_row = 8  # "age: q1", "age: q2" etc.
gender_row = 1  # "Sex: Female" - but all female so not useful
gender_row = None  # Set to None since constant

# 2.2 Data Type Conversion Functions
def convert_trait(x):
    # Binary: 1 for HGSOC, 0 for others
    if not x:
        return None
    val = x.split(": ")[1].strip().lower()
    if "high-grade serous ovarian cancer" in val or "hgsoc" in val:
        return 1
    return 0

def convert_age(x):
    # Convert quartile groups to estimated continuous values
    if not x:
        return None
    val = x.split(": ")[1].strip().lower()
    # Map quartiles to approximate ages based on typical ovarian cancer age distribution
    age_map = {
        'q1': 45,  # Representing ~40-50 years
        'q2': 55,  # Representing ~50-60 years
        'q3': 65,  # Representing ~60-70 years
        'q4': 75   # Representing ~70-80 years
    }
    return age_map.get(val)

def convert_gender(x):
    # Not needed since gender is constant (all female)
    pass

# 3. Save Metadata 
# Run initial validation (trait data is available since trait_row is not None)
is_usable = validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=True
)

# 4. Clinical Feature Extraction
if is_usable and 'clinical_data' in locals():
    clinical_df = geo_select_clinical_features(
        clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age
    )

    # Preview the processed clinical data
    print("Preview of processed clinical data:")
    print(preview_df(clinical_df))

    # Save clinical data
    clinical_df.to_csv(out_clinical_data_file)
# Extract genetic data matrix
genetic_data = get_genetic_data(matrix_file_path)

# Print first few rows with column names to examine data structure
print("Data preview:")
print("\nColumn names:")
print(list(genetic_data.columns)[:5])
print("\nFirst 5 rows:")
print(genetic_data.head())
print("\nShape:", genetic_data.shape)

# Verify this is gene expression data and check identifiers
is_gene_available = True

# Save updated metadata
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path, 
    is_gene_available=is_gene_available,
    is_trait_available=(trait_row is not None)
)

# Save gene expression data 
genetic_data.to_csv(out_gene_data_file)
# The identifiers appear to be NCBI RefSeq Transcript IDs (NM_* format) and some Ensembl Transcript IDs (ENST*)
# These need to be mapped to standard human gene symbols for analysis
requires_gene_mapping = True
# Extract gene annotation data
gene_metadata = get_gene_annotation(soft_file_path) 

# Preview column names and first few values
preview = preview_df(gene_metadata)
print("\nGene annotation columns and sample values:")
print(preview)
# 1. Identify columns: 'ID' matches gene expression indices, 'ORF' contains gene symbols
prob_col = 'ID'
gene_col = 'ORF'

# 2. Get mapping between probe IDs and gene symbols
mapping_df = get_gene_mapping(gene_metadata, prob_col, gene_col)

# 3. Apply the mapping to convert probe measurements to gene expression values
gene_data = apply_gene_mapping(genetic_data, mapping_df)

# Preview the mapped gene expression data
print("\nMapped gene expression data preview:")
print("\nShape:", gene_data.shape)
print("\nFirst few genes and samples:")
print(gene_data.head())
# 1. Normalize gene symbols and save gene data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
normalized_gene_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data  
# Use correct clinical features from Step 2 rather than reading from file
clinical_df = geo_select_clinical_features(
    clinical_data,
    trait=trait,
    trait_row=4,  # Using status row for survival outcome
    convert_trait=lambda x: int(x.split(": ")[1]) if x else None,  # Convert status 0/1 directly 
    age_row=age_row,
    convert_age=convert_age
)
linked_data = geo_link_clinical_genetic_data(clinical_df, normalized_gene_data)

# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# 4. Judge bias in features and remove biased ones
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Final validation and save metadata
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available, 
    is_trait_available=True,
    is_biased=trait_biased,
    df=linked_data,
    note="Gene expression study of HGSOC patients using vital status (0/1) as outcome measure."
)

# 6. Save linked data if usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)