File size: 12,501 Bytes
1a37a63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Ovarian_Cancer"
cohort = "GSE135820"
# Input paths
in_trait_dir = "../DATA/GEO/Ovarian_Cancer"
in_cohort_dir = "../DATA/GEO/Ovarian_Cancer/GSE135820"
# Output paths
out_data_file = "./output/preprocess/3/Ovarian_Cancer/GSE135820.csv"
out_gene_data_file = "./output/preprocess/3/Ovarian_Cancer/gene_data/GSE135820.csv"
out_clinical_data_file = "./output/preprocess/3/Ovarian_Cancer/clinical_data/GSE135820.csv"
json_path = "./output/preprocess/3/Ovarian_Cancer/cohort_info.json"
# Get file paths for SOFT and matrix files
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data from the matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Create dictionary of unique values for each feature
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print the information
print("Dataset Background Information:")
print(background_info)
print("\nSample Characteristics:")
for feature, values in unique_values_dict.items():
print(f"\n{feature}:")
print(values)
# 1. Gene Expression Data Availability
# This dataset contains gene expression data based on NanoString panel
is_gene_available = True
# 2.1 Data Availability
# Trait info in sample characteristics row 0 (diagnosis)
trait_row = 0
# Age info in sample characteristics row 3
age_row = 3
# Gender is not available in sample characteristics
gender_row = None
# 2.2 Data Type Conversion Functions
def convert_trait(val):
"""Convert HGSOC vs non-HGSOC to binary"""
if not isinstance(val, str):
return None
val = val.split(': ')[-1].strip().upper()
if val == 'HGSOC':
return 1
elif val == 'NON-HGSOC':
return 0
return None
def convert_age(val):
"""Convert age at diagnosis to continuous value"""
if not isinstance(val, str):
return None
try:
age = int(val.split(': ')[-1])
return age
except:
return None
def convert_gender(val):
"""Placeholder function since gender is not available"""
return None
# 3. Save Initial Metadata
validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None))
# 4. Extract Clinical Features
clinical_df = geo_select_clinical_features(clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender)
# Preview the extracted features
preview_result = preview_df(clinical_df)
print("Preview of clinical features:")
print(preview_result)
# Save clinical data
os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
clinical_df.to_csv(out_clinical_data_file)
# Extract genetic data matrix
genetic_data = get_genetic_data(matrix_file_path)
# Print first few rows with column names to examine data structure
print("Data preview:")
print("\nColumn names:")
print(list(genetic_data.columns)[:5])
print("\nFirst 5 rows:")
print(genetic_data.head())
print("\nShape:", genetic_data.shape)
# Verify this is gene expression data and check identifiers
is_gene_available = True
# Save updated metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None)
)
# Save gene expression data
genetic_data.to_csv(out_gene_data_file)
# Looking at gene identifiers from the DataFrame index
# We can see formats like "NM_000038.3:6850" which are RefSeq transcript IDs
# These need to be mapped to HGNC gene symbols for standardization
requires_gene_mapping = True
# Extract gene annotation data
gene_metadata = get_gene_annotation(soft_file_path)
# Preview column names and first few values
preview = preview_df(gene_metadata)
print("\nGene annotation columns and sample values:")
print(preview)
# 1. From the preview, we can see that 'ID' contains the same format of identifiers as gene expression data
# and 'ORF' contains gene symbols
# 2. Extract identifier-to-symbol mapping
mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='ORF')
# 3. Convert probe-level data to gene-level data using the mapping
gene_data = apply_gene_mapping(genetic_data, mapping_df)
# Preview gene-level expression data
print("Gene-level expression data preview:")
print("\nFirst 5 rows:")
print(gene_data.head())
print("\nShape:", gene_data.shape)
# Save converted gene expression data
gene_data.to_csv(out_gene_data_file)
# 1. Normalize gene symbols and save gene data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
normalized_gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
clinical_features = pd.read_csv(out_clinical_data_file, index_col=0).T
clinical_features.columns = [trait, 'Age']
linked_data = geo_link_clinical_genetic_data(clinical_features, normalized_gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Judge bias in features and remove biased ones
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and save metadata
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note="The dataset contains NanoString gene expression measurements from high-grade serous ovarian cancer patients, with binary comparison between HGSOC vs non-HGSOC."
)
# 6. Save linked data if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file)
# Get file paths for SOFT and matrix files
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data from the matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Create dictionary of unique values for each feature
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print the information
print("Dataset Background Information:")
print(background_info)
print("\nSample Characteristics:")
for feature, values in unique_values_dict.items():
print(f"\n{feature}:")
print(values)
# 1. Gene Expression Data Availability
# Yes, from background info this is a gene expression study with NanoString panel
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# 2.1 Data Availability
# Trait (HGSOC) data available in row 0
trait_row = 0
# Age data available in row 3
age_row = 3
# Gender data not available
gender_row = None
# 2.2 Data Type Conversion Functions
def convert_trait(x):
# Extract value after colon and strip whitespace
val = x.split(':')[1].strip()
# Convert HGSOC to 1, non-HGSOC to 0
if 'HGSOC' == val:
return 1
elif 'non-HGSOC' == val:
return 0
return None
def convert_age(x):
# Extract value after colon and strip whitespace
val = x.split(':')[1].strip()
try:
# Convert to integer
return int(val)
except:
return None
def convert_gender(x):
return None # No gender data available
# 3. Save Metadata
validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None))
# 4. Clinical Feature Extraction
# Extract clinical features since trait_row is not None
clinical_df = geo_select_clinical_features(clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender)
# Preview extracted data
preview = preview_df(clinical_df)
print("Preview of clinical data:")
print(preview)
# Save clinical data
clinical_df.to_csv(out_clinical_data_file)
# Extract genetic data matrix
genetic_data = get_genetic_data(matrix_file_path)
# Print first few rows with column names to examine data structure
print("Data preview:")
print("\nColumn names:")
print(list(genetic_data.columns)[:5])
print("\nFirst 5 rows:")
print(genetic_data.head())
print("\nShape:", genetic_data.shape)
# Verify this is gene expression data and check identifiers
is_gene_available = True
# Save updated metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None)
)
# Save gene expression data
genetic_data.to_csv(out_gene_data_file)
# Examining the gene identifiers - they appear to be transcript IDs in RefSeq and Ensembl format
# Need to map these to standard human gene symbols for consistency
requires_gene_mapping = True
# Extract gene annotation data
gene_metadata = get_gene_annotation(soft_file_path)
# Preview column names and first few values
preview = preview_df(gene_metadata)
print("\nGene annotation columns and sample values:")
print(preview)
# 1. From the preview, we can see that 'ID' contains the same format of identifiers as gene expression data
# and 'ORF' contains gene symbols
# 2. Extract identifier-to-symbol mapping
mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='ORF')
# 3. Convert probe-level data to gene-level data using the mapping
gene_data = apply_gene_mapping(genetic_data, mapping_df)
# Preview gene-level expression data
print("Gene-level expression data preview:")
print("\nFirst 5 rows:")
print(gene_data.head())
print("\nShape:", gene_data.shape)
# Save converted gene expression data
gene_data.to_csv(out_gene_data_file)
# 1. Normalize gene symbols and save gene data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
normalized_gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
clinical_features = pd.read_csv(out_clinical_data_file, index_col=0)
clinical_features.columns = [trait, 'Age']
linked_data = geo_link_clinical_genetic_data(clinical_features, normalized_gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Judge bias in features and remove biased ones
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and save metadata
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note="The dataset contains NanoString gene expression measurements from high-grade serous ovarian cancer patients, with binary comparison between HGSOC vs non-HGSOC."
)
# 6. Save linked data if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file)
# Gene expression data availability check
is_gene_available = False # Cannot determine without previous output
# Variable availability - cannot determine without data
trait_row = None
age_row = None
gender_row = None
def convert_trait(x):
return None
def convert_age(x):
return None
def convert_gender(x):
return None
# Save initial metadata
_ = validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None)
) |