File size: 6,591 Bytes
1a37a63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Ovarian_Cancer"
cohort = "GSE146553"

# Input paths
in_trait_dir = "../DATA/GEO/Ovarian_Cancer"
in_cohort_dir = "../DATA/GEO/Ovarian_Cancer/GSE146553"

# Output paths
out_data_file = "./output/preprocess/3/Ovarian_Cancer/GSE146553.csv"
out_gene_data_file = "./output/preprocess/3/Ovarian_Cancer/gene_data/GSE146553.csv"
out_clinical_data_file = "./output/preprocess/3/Ovarian_Cancer/clinical_data/GSE146553.csv"
json_path = "./output/preprocess/3/Ovarian_Cancer/cohort_info.json"

# Get file paths for SOFT and matrix files
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data from the matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)

# Create dictionary of unique values for each feature
unique_values_dict = get_unique_values_by_row(clinical_data)

# Print the information
print("Dataset Background Information:")
print(background_info)
print("\nSample Characteristics:")
for feature, values in unique_values_dict.items():
    print(f"\n{feature}:")
    print(values)
# 1. Gene Expression Data Availability
# From the background info, this dataset contains Affymetrix gene expression data
is_gene_available = True

# 2. Variable Availability and Data Type Conversion
# 2.1 Data Availability 
# Trait (cancer status) can be inferred from tissue type in row 4
trait_row = 4

# Age is available in row 2
age_row = 2 

# Gender is available in row 5 but shows only one value 'female'
# Constant feature is not useful, so set to None
gender_row = None

# 2.2 Data Type Conversion
def convert_trait(value):
    if not isinstance(value, str):
        return None
    # Extract value after colon
    val = value.split(': ')[-1].lower()
    # Normal tissue = 0, tumor tissue = 1
    if 'normal' in val:
        return 0
    elif 'cancer' in val or 'tumor' in val:
        return 1
    else:
        return None

def convert_age(value):
    if not isinstance(value, str):
        return None
    try:
        # Extract numeric value after colon
        age = float(value.split(': ')[-1])
        return age
    except:
        return None

def convert_gender(value):
    # Not used since gender is constant
    pass

# 3. Save Metadata 
# Initial filtering - only checking data availability
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=(trait_row is not None)
)

# 4. Clinical Feature Extraction
# Since trait_row is not None, extract clinical features
clinical_df = geo_select_clinical_features(
    clinical_data,
    trait=trait,
    trait_row=trait_row,
    convert_trait=convert_trait,
    age_row=age_row,
    convert_age=convert_age
)

# Preview the extracted features
print("Preview of clinical features:")
print(preview_df(clinical_df))

# Save clinical data
clinical_df.to_csv(out_clinical_data_file)
# Extract genetic data matrix
genetic_data = get_genetic_data(matrix_file_path)

# Print first few rows with column names to examine data structure
print("Data preview:")
print("\nColumn names:")
print(list(genetic_data.columns)[:5])
print("\nFirst 5 rows:")
print(genetic_data.head())
print("\nShape:", genetic_data.shape)

# Verify this is gene expression data and check identifiers
is_gene_available = True

# Save updated metadata
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path, 
    is_gene_available=is_gene_available,
    is_trait_available=(trait_row is not None)
)

# Save gene expression data 
genetic_data.to_csv(out_gene_data_file)
# The row IDs are numerical Illumina BeadChip identifiers (like 7896736, 7896738), not gene symbols
# These need to be mapped to proper human gene symbols for analysis
requires_gene_mapping = True
# Extract gene annotation data
gene_metadata = get_gene_annotation(soft_file_path) 

# Preview column names and first few values
preview = preview_df(gene_metadata)
print("\nGene annotation columns and sample values:")
print(preview)
# 1. From preview, we can see 'ID' column contains probe IDs matching those in gene expression data,
# and 'gene_assignment' column contains gene symbols in format "RefSeq // SYMBOL // Description"

# 2. Extract probe-gene pairs from gene annotation data
def extract_gene_symbol(text):
    if not isinstance(text, str):
        return None
    # Split by // and extract the second field which contains the gene symbol
    fields = text.split('//')
    if len(fields) >= 2:
        return fields[1].strip()
    return None

# Copy gene_metadata and add parsed gene symbols column
gene_metadata_with_symbols = gene_metadata.copy()
gene_metadata_with_symbols['Gene'] = gene_metadata_with_symbols['gene_assignment'].apply(extract_gene_symbol)

# Get mapping between probe IDs and gene symbols
mapping_df = get_gene_mapping(gene_metadata_with_symbols, prob_col='ID', gene_col='Gene')

# 3. Convert probe-level data to gene expression using many-to-many mapping
gene_data = apply_gene_mapping(genetic_data, mapping_df)

# Preview the results
print("\nShape before mapping:", genetic_data.shape)
print("Shape after mapping:", gene_data.shape)
print("\nFirst few gene symbols:")
print(list(gene_data.index)[:10])

# Save gene expression data after mapping
gene_data.to_csv(out_gene_data_file)
# 1. Normalize gene symbols and save gene data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
normalized_gene_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data  
clinical_features = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(clinical_features, normalized_gene_data)

# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# 4. Judge bias in features and remove biased ones
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Final validation and save metadata
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available, 
    is_trait_available=True,
    is_biased=trait_biased,
    df=linked_data,
    note="Gene expression data from melanoma patients receiving PD-1 immunotherapy, with long-term benefit as outcome."
)

# 6. Save linked data if usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)