File size: 6,591 Bytes
1a37a63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Ovarian_Cancer"
cohort = "GSE146553"
# Input paths
in_trait_dir = "../DATA/GEO/Ovarian_Cancer"
in_cohort_dir = "../DATA/GEO/Ovarian_Cancer/GSE146553"
# Output paths
out_data_file = "./output/preprocess/3/Ovarian_Cancer/GSE146553.csv"
out_gene_data_file = "./output/preprocess/3/Ovarian_Cancer/gene_data/GSE146553.csv"
out_clinical_data_file = "./output/preprocess/3/Ovarian_Cancer/clinical_data/GSE146553.csv"
json_path = "./output/preprocess/3/Ovarian_Cancer/cohort_info.json"
# Get file paths for SOFT and matrix files
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data from the matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Create dictionary of unique values for each feature
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print the information
print("Dataset Background Information:")
print(background_info)
print("\nSample Characteristics:")
for feature, values in unique_values_dict.items():
print(f"\n{feature}:")
print(values)
# 1. Gene Expression Data Availability
# From the background info, this dataset contains Affymetrix gene expression data
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# 2.1 Data Availability
# Trait (cancer status) can be inferred from tissue type in row 4
trait_row = 4
# Age is available in row 2
age_row = 2
# Gender is available in row 5 but shows only one value 'female'
# Constant feature is not useful, so set to None
gender_row = None
# 2.2 Data Type Conversion
def convert_trait(value):
if not isinstance(value, str):
return None
# Extract value after colon
val = value.split(': ')[-1].lower()
# Normal tissue = 0, tumor tissue = 1
if 'normal' in val:
return 0
elif 'cancer' in val or 'tumor' in val:
return 1
else:
return None
def convert_age(value):
if not isinstance(value, str):
return None
try:
# Extract numeric value after colon
age = float(value.split(': ')[-1])
return age
except:
return None
def convert_gender(value):
# Not used since gender is constant
pass
# 3. Save Metadata
# Initial filtering - only checking data availability
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None)
)
# 4. Clinical Feature Extraction
# Since trait_row is not None, extract clinical features
clinical_df = geo_select_clinical_features(
clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age
)
# Preview the extracted features
print("Preview of clinical features:")
print(preview_df(clinical_df))
# Save clinical data
clinical_df.to_csv(out_clinical_data_file)
# Extract genetic data matrix
genetic_data = get_genetic_data(matrix_file_path)
# Print first few rows with column names to examine data structure
print("Data preview:")
print("\nColumn names:")
print(list(genetic_data.columns)[:5])
print("\nFirst 5 rows:")
print(genetic_data.head())
print("\nShape:", genetic_data.shape)
# Verify this is gene expression data and check identifiers
is_gene_available = True
# Save updated metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None)
)
# Save gene expression data
genetic_data.to_csv(out_gene_data_file)
# The row IDs are numerical Illumina BeadChip identifiers (like 7896736, 7896738), not gene symbols
# These need to be mapped to proper human gene symbols for analysis
requires_gene_mapping = True
# Extract gene annotation data
gene_metadata = get_gene_annotation(soft_file_path)
# Preview column names and first few values
preview = preview_df(gene_metadata)
print("\nGene annotation columns and sample values:")
print(preview)
# 1. From preview, we can see 'ID' column contains probe IDs matching those in gene expression data,
# and 'gene_assignment' column contains gene symbols in format "RefSeq // SYMBOL // Description"
# 2. Extract probe-gene pairs from gene annotation data
def extract_gene_symbol(text):
if not isinstance(text, str):
return None
# Split by // and extract the second field which contains the gene symbol
fields = text.split('//')
if len(fields) >= 2:
return fields[1].strip()
return None
# Copy gene_metadata and add parsed gene symbols column
gene_metadata_with_symbols = gene_metadata.copy()
gene_metadata_with_symbols['Gene'] = gene_metadata_with_symbols['gene_assignment'].apply(extract_gene_symbol)
# Get mapping between probe IDs and gene symbols
mapping_df = get_gene_mapping(gene_metadata_with_symbols, prob_col='ID', gene_col='Gene')
# 3. Convert probe-level data to gene expression using many-to-many mapping
gene_data = apply_gene_mapping(genetic_data, mapping_df)
# Preview the results
print("\nShape before mapping:", genetic_data.shape)
print("Shape after mapping:", gene_data.shape)
print("\nFirst few gene symbols:")
print(list(gene_data.index)[:10])
# Save gene expression data after mapping
gene_data.to_csv(out_gene_data_file)
# 1. Normalize gene symbols and save gene data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
normalized_gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
clinical_features = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(clinical_features, normalized_gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Judge bias in features and remove biased ones
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and save metadata
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note="Gene expression data from melanoma patients receiving PD-1 immunotherapy, with long-term benefit as outcome."
)
# 6. Save linked data if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file) |