File size: 6,145 Bytes
1a37a63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Ovarian_Cancer"
cohort = "GSE146964"
# Input paths
in_trait_dir = "../DATA/GEO/Ovarian_Cancer"
in_cohort_dir = "../DATA/GEO/Ovarian_Cancer/GSE146964"
# Output paths
out_data_file = "./output/preprocess/3/Ovarian_Cancer/GSE146964.csv"
out_gene_data_file = "./output/preprocess/3/Ovarian_Cancer/gene_data/GSE146964.csv"
out_clinical_data_file = "./output/preprocess/3/Ovarian_Cancer/clinical_data/GSE146964.csv"
json_path = "./output/preprocess/3/Ovarian_Cancer/cohort_info.json"
# Get file paths for SOFT and matrix files
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data from the matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Create dictionary of unique values for each feature
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print the information
print("Dataset Background Information:")
print(background_info)
print("\nSample Characteristics:")
for feature, values in unique_values_dict.items():
print(f"\n{feature}:")
print(values)
# 1. Gene Expression Data Availability
# Yes, this dataset contains microarray mRNA expression data according to the background info
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# 2.1 Data Availability
# Trait: Can infer from multiple fields showing cancer status
trait_row = 3 # 'condition: Malignant' indicates cancer status
# Age is not available in sample characteristics
age_row = None
# Gender is available
gender_row = 1
# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> int:
# Extract value after colon and strip whitespace
if ':' in value:
value = value.split(':')[1].strip()
if value.lower() == 'malignant':
return 1
elif value.lower() == 'benign':
return 0
return None
def convert_age(value: str) -> float:
# Not used but defined to maintain code structure
return None
def convert_gender(value: str) -> int:
if ':' in value:
value = value.split(':')[1].strip()
if value.lower() == 'female':
return 0
elif value.lower() == 'male':
return 1
return None
# 3. Save Metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available)
# 4. Clinical Feature Extraction
if trait_row is not None:
selected_clinical = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the extracted features
print("Preview of selected clinical features:")
print(preview_df(selected_clinical))
# Save clinical data
selected_clinical.to_csv(out_clinical_data_file)
# Extract genetic data matrix
genetic_data = get_genetic_data(matrix_file_path)
# Print first few rows with column names to examine data structure
print("Data preview:")
print("\nColumn names:")
print(list(genetic_data.columns)[:5])
print("\nFirst 5 rows:")
print(genetic_data.head())
print("\nShape:", genetic_data.shape)
# Verify this is gene expression data and check identifiers
is_gene_available = True
# Save updated metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None)
)
# Save gene expression data
genetic_data.to_csv(out_gene_data_file)
# These appear to be Affymetrix probe IDs (AFFX-...) rather than human gene symbols
# They will need to be mapped to gene symbols for biological interpretation
requires_gene_mapping = True
# Extract gene annotation data
gene_metadata = get_gene_annotation(soft_file_path)
# Preview column names and first few values
preview = preview_df(gene_metadata)
print("\nGene annotation columns and sample values:")
print(preview)
# Looking at both the gene annotation and expression data, we can see:
# 1. Gene expression data uses probe IDs as indices (AFFX-...)
# 2. Gene annotation data has 'ID' for probe IDs and 'gene_assignment' for gene symbols
# Extract mapping between probe IDs and gene symbols
mapping_df = get_gene_mapping(gene_metadata, 'ID', 'gene_assignment')
# Apply the mapping to convert probe-level measurements to gene expression
gene_data = apply_gene_mapping(genetic_data, mapping_df)
# Preview the transformed data
print("\nGene expression data preview:")
print("Shape:", gene_data.shape)
print("\nFirst few rows:")
print(gene_data.head())
# Save the processed gene expression data
gene_data.to_csv(out_gene_data_file)
# 1. Normalize gene symbols and save gene data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
normalized_gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
clinical_features = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(clinical_features, normalized_gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Judge bias in features and remove biased ones
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and save metadata
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note="Gene expression data from melanoma patients receiving PD-1 immunotherapy, with long-term benefit as outcome."
)
# 6. Save linked data if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file) |