File size: 6,006 Bytes
1a37a63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Ovarian_Cancer"
cohort = "GSE201525"

# Input paths
in_trait_dir = "../DATA/GEO/Ovarian_Cancer"
in_cohort_dir = "../DATA/GEO/Ovarian_Cancer/GSE201525"

# Output paths
out_data_file = "./output/preprocess/3/Ovarian_Cancer/GSE201525.csv"
out_gene_data_file = "./output/preprocess/3/Ovarian_Cancer/gene_data/GSE201525.csv"
out_clinical_data_file = "./output/preprocess/3/Ovarian_Cancer/clinical_data/GSE201525.csv"
json_path = "./output/preprocess/3/Ovarian_Cancer/cohort_info.json"

# Get file paths for SOFT and matrix files
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data from the matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)

# Create dictionary of unique values for each feature
unique_values_dict = get_unique_values_by_row(clinical_data)

# Print the information
print("Dataset Background Information:")
print(background_info)
print("\nSample Characteristics:")
for feature, values in unique_values_dict.items():
    print(f"\n{feature}:")
    print(values)
# 1. Gene Expression Data Availability
# From the background info, this appears to be a gene expression dataset studying interferon effects
is_gene_available = True

# 2. Variable Availability and Data Type Conversion
# 2.1 Data Availability 
# All samples are ovarian cancer - trait info can be inferred from study design
trait_row = 0  # Treatment info row can be used to identify samples
age_row = None  # No age info available
gender_row = None  # No gender info available

# 2.2 Data Type Conversion Functions
def convert_trait(value):
    if not isinstance(value, str):
        return None
    value = value.split(": ")[-1].lower()
    # All samples are cancer cases
    return 1

def convert_age(value):
    # Not needed since age data unavailable
    return None

def convert_gender(value):
    # Not needed since gender data unavailable 
    return None

# 3. Save Metadata
is_usable = validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=True  # All samples are cancer cases
)

# 4. Clinical Feature Extraction
# Extract clinical features (trait data) since trait_row is available
selected_clinical_df = geo_select_clinical_features(
    clinical_df=clinical_data,
    trait=trait,
    trait_row=trait_row,
    convert_trait=convert_trait,
    age_row=age_row,
    convert_age=convert_age,
    gender_row=gender_row,
    convert_gender=convert_gender
)

# Preview the processed clinical data
preview_dict = preview_df(selected_clinical_df)
print("\nPreview of processed clinical data:")
print(preview_dict)

# Save clinical data
selected_clinical_df.to_csv(out_clinical_data_file)
# Extract genetic data matrix
genetic_data = get_genetic_data(matrix_file_path)

# Print first few rows with column names to examine data structure
print("Data preview:")
print("\nColumn names:")
print(list(genetic_data.columns)[:5])
print("\nFirst 5 rows:")
print(genetic_data.head())
print("\nShape:", genetic_data.shape)

# Verify this is gene expression data and check identifiers
is_gene_available = True

# Save updated metadata
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path, 
    is_gene_available=is_gene_available,
    is_trait_available=(trait_row is not None)
)

# Save gene expression data 
genetic_data.to_csv(out_gene_data_file)
# Looking at the gene identifiers in the index, they are numerical IDs (1,2,3,4,5)
# These are not standard human gene symbols and will need to be mapped
requires_gene_mapping = True
# Extract gene annotation data
gene_metadata = get_gene_annotation(soft_file_path) 

# Preview column names and first few values
preview = preview_df(gene_metadata)
print("\nGene annotation columns and sample values:")
print(preview)
# Extract mapping between probe IDs and gene symbols from annotation data
mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='GENE_SYMBOL')

# Convert probe-level data to gene-level data
gene_data = apply_gene_mapping(genetic_data, mapping_data)

# Preview the gene data
print("Gene expression data preview:")
print("\nFirst 5 genes:")
print(gene_data.head())
print("\nShape:", gene_data.shape)
# 1. Normalize gene symbols and save gene data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
normalized_gene_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data
clinical_features = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(clinical_features, normalized_gene_data)

# Debug print to check data structure
print("Linked data preview:")
print(linked_data.head())
print("\nColumns:", linked_data.columns)

# 3. Transpose data to get samples as rows and genes/features as columns
linked_data = linked_data.T

# Debug print after transpose
print("\nAfter transpose:")
print(linked_data.head())
print("\nColumns:", linked_data.columns[:5], "...", len(linked_data.columns), "total columns")
print(f"\nTrait values:\n{linked_data[trait].value_counts()}")

# 4. Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# 5. Judge bias in features and remove biased ones
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 6. Final validation and save metadata
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=True,
    is_biased=trait_biased,
    df=linked_data,
    note="Gene expression data from ovarian cancer studying interferon treatment effects."
)

# 7. Save linked data if usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)