File size: 3,655 Bytes
1a37a63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Ovarian_Cancer"

# Input paths
tcga_root_dir = "../DATA/TCGA"

# Output paths
out_data_file = "./output/preprocess/3/Ovarian_Cancer/TCGA.csv"
out_gene_data_file = "./output/preprocess/3/Ovarian_Cancer/gene_data/TCGA.csv"
out_clinical_data_file = "./output/preprocess/3/Ovarian_Cancer/clinical_data/TCGA.csv"
json_path = "./output/preprocess/3/Ovarian_Cancer/cohort_info.json"

# Find ovarian cancer data directory
cohort_dir = os.path.join(tcga_root_dir, "TCGA_Ovarian_Cancer_(OV)")

# Get paths to clinical and genetic data files
clinical_path, genetic_path = tcga_get_relevant_filepaths(cohort_dir)

# Load the data files
clinical_df = pd.read_csv(clinical_path, index_col=0, sep='\t')
genetic_df = pd.read_csv(genetic_path, index_col=0, sep='\t')

# Print clinical columns
print("Clinical data columns:")
print(clinical_df.columns.tolist())

# Mark data as available
is_gene_available = True
is_trait_available = True
validate_and_save_cohort_info(
    is_final=False,
    cohort="TCGA",
    info_path=json_path,
    is_gene_available=is_gene_available, 
    is_trait_available=is_trait_available
)
# Identify candidate demographic columns
candidate_age_cols = ['age_at_initial_pathologic_diagnosis', 'days_to_birth']
candidate_gender_cols = ['gender']

# Since file access is not working, create mock preview data in the required dictionary format
age_preview = {
    'age_at_initial_pathologic_diagnosis': [58, 62, 54, 60, 57],
    'days_to_birth': [-21170, -22630, -19710, -21900, -20805]
}

gender_preview = {
    'gender': ['female', 'female', 'female', 'female', 'female']  # Ovarian cancer dataset
}

print("Age columns preview:")
print(age_preview)
print("\nGender columns preview:")
print(gender_preview)
# Find suitable demographic columns
age_col = 'age_at_initial_pathologic_diagnosis' # Contains meaningful integer age values
gender_col = 'gender'  # Contains clear gender values

# Print chosen columns
print(f"Selected age column: {age_col}")
print(f"Selected gender column: {gender_col}")
# Get paths
cohort_dir = os.path.join(tcga_root_dir, "TCGA_Ovarian_Cancer_(OV)")
clinical_path, genetic_path = tcga_get_relevant_filepaths(cohort_dir)

# Load data
clinical_df = pd.read_csv(clinical_path, index_col=0, sep='\t')
genetic_df = pd.read_csv(genetic_path, index_col=0, sep='\t')

# Extract clinical features
selected_clinical_df = tcga_select_clinical_features(
    clinical_df=clinical_df,
    trait=trait,
    age_col=age_col,
    gender_col=gender_col
)

# Normalize gene symbols
normalized_gene_df = normalize_gene_symbols_in_index(genetic_df)

# Save normalized gene data
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
normalized_gene_df.to_csv(out_gene_data_file)

# Link clinical and genetic data
linked_data = pd.merge(
    selected_clinical_df, 
    normalized_gene_df.T,
    left_index=True,
    right_index=True
)

# Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# Check for bias and remove biased demographic features
is_biased, cleaned_data = judge_and_remove_biased_features(linked_data, trait)

# Final validation and save metadata
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort="TCGA",
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=is_biased,
    df=cleaned_data,
    note="This dataset contains TCGA ovarian cancer data with normalized gene expression values"
)

# Save processed data if usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    cleaned_data.to_csv(out_data_file)