File size: 5,994 Bytes
0733067
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Parkinsons_Disease"
cohort = "GSE57475"

# Input paths
in_trait_dir = "../DATA/GEO/Parkinsons_Disease"
in_cohort_dir = "../DATA/GEO/Parkinsons_Disease/GSE57475"

# Output paths
out_data_file = "./output/preprocess/3/Parkinsons_Disease/GSE57475.csv"
out_gene_data_file = "./output/preprocess/3/Parkinsons_Disease/gene_data/GSE57475.csv"
out_clinical_data_file = "./output/preprocess/3/Parkinsons_Disease/clinical_data/GSE57475.csv"
json_path = "./output/preprocess/3/Parkinsons_Disease/cohort_info.json"

# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")

# Get dictionary of unique values per row 
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
    print(f"\n{row}:")
    print(values)
# 1. Gene Expression Data Availability
# Based on the background info, this is a gene expression study focusing on SNCA transcripts
is_gene_available = True

# 2.1 Data Availability
# Disease state (trait) is in row 2
trait_row = 2
# Age is in row 0
age_row = 0  
# Gender is in row 1
gender_row = 1

# 2.2 Data Type Conversion Functions
def convert_trait(x: str) -> int:
    """Convert PD status to binary: control=0, PD=1"""
    if not isinstance(x, str):
        return None
    value = x.split(': ')[-1].strip().lower()
    if 'pd' in value or 'parkinson' in value:
        return 1
    elif 'control' in value or 'healthy' in value:
        return 0
    return None

def convert_age(x: str) -> float:
    """Convert age to float"""
    if not isinstance(x, str):
        return None
    try:
        return float(x.split(': ')[-1])
    except:
        return None

def convert_gender(x: str) -> int:
    """Convert gender to binary: F=0, M=1"""
    if not isinstance(x, str):
        return None
    value = x.split(': ')[-1].strip().upper()
    if value == 'F':
        return 0
    elif value == 'M':
        return 1
    return None

# 3. Save Metadata
is_trait_available = trait_row is not None
is_valid = validate_and_save_cohort_info(is_final=False, 
                                        cohort=cohort,
                                        info_path=json_path,
                                        is_gene_available=is_gene_available,
                                        is_trait_available=is_trait_available)

# 4. Clinical Feature Extraction
if trait_row is not None:
    clinical_features = geo_select_clinical_features(clinical_data, 
                                                   trait=trait,
                                                   trait_row=trait_row,
                                                   convert_trait=convert_trait,
                                                   age_row=age_row,
                                                   convert_age=convert_age, 
                                                   gender_row=gender_row,
                                                   convert_gender=convert_gender)
    
    # Preview the data
    preview = preview_df(clinical_features)
    print("Preview of clinical features:")
    print(preview)
    
    # Save to CSV
    clinical_features.to_csv(out_clinical_data_file)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)

# Examine data structure
print("Data structure and head:")
print(genetic_data.head())

print("\nShape:", genetic_data.shape)

print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])

# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# Observing the identifiers - these are Illumina BeadChip probes 
# (ILMN prefix) which need mapping to gene symbols
requires_gene_mapping = True
# Extract gene annotation data
gene_annotation = get_gene_annotation(soft_file_path)

# Display column names and preview data
print("Column names:")
print(gene_annotation.columns)

print("\nPreview of gene annotation data:")
print(preview_df(gene_annotation))
# 1. ID column matches the gene expression data's identifiers (ILMN_...) 
# Symbol column contains the gene symbols
mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="Symbol")

# 2. Convert probe-level measurements to gene expression data
gene_data = apply_gene_mapping(genetic_data, mapping_df)

# Print basic info about the gene expression data
print("\nGene expression data after mapping:")
print("Shape:", gene_data.shape)
print("\nFirst few gene symbols:")
print(list(gene_data.index)[:10])
# Reload clinical data that was processed earlier
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)

# 1. Normalize gene symbols
genetic_data = normalize_gene_symbols_in_index(gene_data)
genetic_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)

# 3. Handle missing values systematically  
linked_data = handle_missing_values(linked_data, trait)

# 4. Check for bias in trait and demographic features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Final validation and information saving
note = "Contains gene expression data with metabolic rate (inferred from multicentric occurrence-free survival days) measurements"
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort, 
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=trait_biased,
    df=linked_data,
    note=note
)

# 6. Save linked data only if usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)