Liu-Hy commited on
Commit
0733067
·
verified ·
1 Parent(s): 1a37a63

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +3 -0
  2. p3/preprocess/Kidney_Papillary_Cell_Carcinoma/GSE42977.csv +3 -0
  3. p3/preprocess/Parkinsons_Disease/clinical_data/GSE202665.csv +4 -0
  4. p3/preprocess/Parkinsons_Disease/clinical_data/GSE202667.csv +4 -0
  5. p3/preprocess/Parkinsons_Disease/clinical_data/GSE30335.csv +2 -0
  6. p3/preprocess/Parkinsons_Disease/clinical_data/GSE49126.csv +2 -0
  7. p3/preprocess/Parkinsons_Disease/clinical_data/GSE57475.csv +4 -0
  8. p3/preprocess/Parkinsons_Disease/clinical_data/GSE71220.csv +4 -0
  9. p3/preprocess/Parkinsons_Disease/clinical_data/GSE72267.csv +2 -0
  10. p3/preprocess/Parkinsons_Disease/clinical_data/GSE80599.csv +4 -0
  11. p3/preprocess/Parkinsons_Disease/code/GSE101534.py +195 -0
  12. p3/preprocess/Parkinsons_Disease/code/GSE103099.py +180 -0
  13. p3/preprocess/Parkinsons_Disease/code/GSE202665.py +176 -0
  14. p3/preprocess/Parkinsons_Disease/code/GSE202667.py +171 -0
  15. p3/preprocess/Parkinsons_Disease/code/GSE30335.py +155 -0
  16. p3/preprocess/Parkinsons_Disease/code/GSE49126.py +256 -0
  17. p3/preprocess/Parkinsons_Disease/code/GSE57475.py +173 -0
  18. p3/preprocess/Parkinsons_Disease/code/GSE71220.py +168 -0
  19. p3/preprocess/Parkinsons_Disease/code/GSE72267.py +162 -0
  20. p3/preprocess/Parkinsons_Disease/code/GSE80599.py +175 -0
  21. p3/preprocess/Parkinsons_Disease/code/TCGA.py +36 -0
  22. p3/preprocess/Parkinsons_Disease/gene_data/GSE101534.csv +1 -0
  23. p3/preprocess/Parkinsons_Disease/gene_data/GSE49126.csv +0 -0
  24. p3/preprocess/Parkinsons_Disease/gene_data/GSE72267.csv +0 -0
  25. p3/preprocess/Peptic_ulcer_disease/GSE43580.csv +0 -0
  26. p3/preprocess/Peptic_ulcer_disease/GSE60427.csv +0 -0
  27. p3/preprocess/Peptic_ulcer_disease/clinical_data/GSE43580.csv +4 -0
  28. p3/preprocess/Peptic_ulcer_disease/clinical_data/GSE60427.csv +4 -0
  29. p3/preprocess/Peptic_ulcer_disease/code/GSE43580.py +170 -0
  30. p3/preprocess/Peptic_ulcer_disease/code/GSE60427.py +173 -0
  31. p3/preprocess/Peptic_ulcer_disease/code/TCGA.py +107 -0
  32. p3/preprocess/Peptic_ulcer_disease/cohort_info.json +1 -0
  33. p3/preprocess/Peptic_ulcer_disease/gene_data/GSE60427.csv +0 -0
  34. p3/preprocess/Pheochromocytoma_and_Paraganglioma/GSE19987.csv +0 -0
  35. p3/preprocess/Pheochromocytoma_and_Paraganglioma/clinical_data/GSE19422.csv +2 -0
  36. p3/preprocess/Pheochromocytoma_and_Paraganglioma/clinical_data/GSE19987.csv +2 -0
  37. p3/preprocess/Pheochromocytoma_and_Paraganglioma/clinical_data/GSE33371.csv +4 -0
  38. p3/preprocess/Pheochromocytoma_and_Paraganglioma/clinical_data/GSE39716.csv +4 -0
  39. p3/preprocess/Pheochromocytoma_and_Paraganglioma/clinical_data/GSE64957.csv +2 -0
  40. p3/preprocess/Pheochromocytoma_and_Paraganglioma/clinical_data/GSE67066.csv +2 -0
  41. p3/preprocess/Pheochromocytoma_and_Paraganglioma/code/GSE19422.py +159 -0
  42. p3/preprocess/Pheochromocytoma_and_Paraganglioma/code/GSE19987.py +172 -0
  43. p3/preprocess/Pheochromocytoma_and_Paraganglioma/code/GSE33371.py +175 -0
  44. p3/preprocess/Pheochromocytoma_and_Paraganglioma/code/GSE39716.py +173 -0
  45. p3/preprocess/Pheochromocytoma_and_Paraganglioma/code/GSE64957.py +190 -0
  46. p3/preprocess/Pheochromocytoma_and_Paraganglioma/code/GSE67066.py +157 -0
  47. p3/preprocess/Pheochromocytoma_and_Paraganglioma/code/TCGA.py +143 -0
  48. p3/preprocess/Pheochromocytoma_and_Paraganglioma/cohort_info.json +1 -0
  49. p3/preprocess/Pheochromocytoma_and_Paraganglioma/gene_data/GSE19987.csv +0 -0
  50. p3/preprocess/Pheochromocytoma_and_Paraganglioma/gene_data/GSE64957.csv +1 -0
.gitattributes CHANGED
@@ -1877,3 +1877,6 @@ p3/preprocess/Liver_Cancer/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -tex
1877
  p3/preprocess/Liver_cirrhosis/TCGA.csv filter=lfs diff=lfs merge=lfs -text
1878
  p3/preprocess/Liver_cirrhosis/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
1879
  p3/preprocess/Intellectual_Disability/GSE59630.csv filter=lfs diff=lfs merge=lfs -text
 
 
 
 
1877
  p3/preprocess/Liver_cirrhosis/TCGA.csv filter=lfs diff=lfs merge=lfs -text
1878
  p3/preprocess/Liver_cirrhosis/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
1879
  p3/preprocess/Intellectual_Disability/GSE59630.csv filter=lfs diff=lfs merge=lfs -text
1880
+ p3/preprocess/Kidney_Papillary_Cell_Carcinoma/GSE42977.csv filter=lfs diff=lfs merge=lfs -text
1881
+ p3/preprocess/lower_grade_glioma_and_glioblastoma/gene_data/GSE35158.csv filter=lfs diff=lfs merge=lfs -text
1882
+ p3/preprocess/lower_grade_glioma_and_glioblastoma/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
p3/preprocess/Kidney_Papillary_Cell_Carcinoma/GSE42977.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:85fb3027fbcc3d696ce2d922d9c4d22f03e361cdbb3d1175989ec207120ac081
3
+ size 24576678
p3/preprocess/Parkinsons_Disease/clinical_data/GSE202665.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ ,GSM6128044,GSM6128045,GSM6128046,GSM6128047,GSM6128048,GSM6128049,GSM6128050,GSM6128051,GSM6128052,GSM6128053,GSM6128054,GSM6128055,GSM6128056,GSM6128057,GSM6128058,GSM6128059,GSM6128060,GSM6128061,GSM6128062,GSM6128063,GSM6128064,GSM6128065,GSM6128066,GSM6128067,GSM6128068,GSM6128069,GSM6128070,GSM6128071,GSM6128072,GSM6128073,GSM6128074,GSM6128075,GSM6128076,GSM6128077,GSM6128078,GSM6128079,GSM6128080,GSM6128081,GSM6128082,GSM6128083,GSM6128084,GSM6128085,GSM6128086,GSM6128087,GSM6128088,GSM6128089,GSM6128090,GSM6128091,GSM6128092,GSM6128093,GSM6128094,GSM6128095,GSM6128096,GSM6128097,GSM6128098,GSM6128099,GSM6128100,GSM6128101,GSM6128102
2
+ Parkinsons_Disease,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
3
+ Age,53.0,53.0,53.0,53.0,53.0,53.0,57.0,57.0,57.0,57.0,57.0,63.0,63.0,63.0,63.0,63.0,63.0,75.0,75.0,75.0,75.0,75.0,75.0,85.0,85.0,85.0,85.0,85.0,85.0,76.0,76.0,76.0,76.0,76.0,76.0,63.0,63.0,63.0,63.0,63.0,63.0,69.0,69.0,69.0,69.0,69.0,69.0,66.0,66.0,66.0,66.0,66.0,66.0,53.0,53.0,53.0,53.0,53.0,53.0
4
+ Gender,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
p3/preprocess/Parkinsons_Disease/clinical_data/GSE202667.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ ,GSM6128103,GSM6128104,GSM6128105,GSM6128106,GSM6128107,GSM6128108,GSM6128109,GSM6128110,GSM6128111,GSM6128112,GSM6128113,GSM6128114,GSM6128115,GSM6128116,GSM6128117,GSM6128118,GSM6128119,GSM6128120,GSM6128121,GSM6128122,GSM6128123,GSM6128124,GSM6128125,GSM6128126,GSM6128127,GSM6128128,GSM6128129,GSM6128130,GSM6128131,GSM6128132,GSM6128133,GSM6128134,GSM6128135,GSM6128136,GSM6128137,GSM6128138,GSM6128139,GSM6128140,GSM6128141,GSM6128142,GSM6128143,GSM6128144,GSM6128145,GSM6128146,GSM6128147,GSM6128148,GSM6128149,GSM6128150,GSM6128151,GSM6128152,GSM6128153,GSM6128154,GSM6128155,GSM6128156,GSM6128157,GSM6128158,GSM6128159,GSM6128160,GSM6128161,GSM6128162
2
+ Parkinsons_Disease,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
3
+ Age,53.0,53.0,53.0,53.0,53.0,53.0,57.0,57.0,57.0,57.0,57.0,57.0,63.0,63.0,63.0,63.0,63.0,63.0,75.0,75.0,75.0,75.0,75.0,75.0,85.0,85.0,85.0,85.0,85.0,85.0,76.0,76.0,76.0,76.0,76.0,76.0,63.0,63.0,63.0,63.0,63.0,63.0,69.0,69.0,69.0,69.0,69.0,69.0,66.0,66.0,66.0,66.0,66.0,66.0,53.0,53.0,53.0,53.0,53.0,53.0
4
+ Gender,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
p3/preprocess/Parkinsons_Disease/clinical_data/GSE30335.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ,GSM752043,GSM752044,GSM752045,GSM752046,GSM752047,GSM752049,GSM752050,GSM752051,GSM752052,GSM752053,GSM752054,GSM752055,GSM752056,GSM752057,GSM752058,GSM752059,GSM752060,GSM752061,GSM752062,GSM752064,GSM752065,GSM752066,GSM752068,GSM752069,GSM752070,GSM752071,GSM752072,GSM752073,GSM752075,GSM752076,GSM752077,GSM752078,GSM752080,GSM752081,GSM752082,GSM752084,GSM752085,GSM752086,GSM752087,GSM752088
2
+ Parkinsons_Disease,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
p3/preprocess/Parkinsons_Disease/clinical_data/GSE49126.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ,GSM1194062,GSM1194063,GSM1194064,GSM1194065,GSM1194066,GSM1194067,GSM1194068,GSM1194069,GSM1194070,GSM1194071,GSM1194072,GSM1194073,GSM1194074,GSM1194075,GSM1194076,GSM1194077,GSM1194078,GSM1194079,GSM1194080,GSM1194081,GSM1194082,GSM1194083,GSM1194084,GSM1194085,GSM1194086,GSM1194087,GSM1194088,GSM1194089,GSM1194090,GSM1194091,GSM1194092,GSM1194093,GSM1194094,GSM1194095,GSM1194096,GSM1194097,GSM1194098,GSM1194099,GSM1194100,GSM1194101,GSM1194102,GSM1194103,GSM1194104,GSM1194105,GSM1194106,GSM1194107,GSM1194108,GSM1194109,GSM1194110,GSM1194111
2
+ Parkinsons_Disease,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
p3/preprocess/Parkinsons_Disease/clinical_data/GSE57475.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ ,GSM1383302,GSM1383303,GSM1383304,GSM1383305,GSM1383306,GSM1383307,GSM1383308,GSM1383309,GSM1383310,GSM1383311,GSM1383312,GSM1383313,GSM1383314,GSM1383315,GSM1383316,GSM1383317,GSM1383318,GSM1383319,GSM1383320,GSM1383321,GSM1383322,GSM1383323,GSM1383324,GSM1383325,GSM1383326,GSM1383327,GSM1383328,GSM1383329,GSM1383330,GSM1383331,GSM1383332,GSM1383333,GSM1383334,GSM1383335,GSM1383336,GSM1383337,GSM1383338,GSM1383339,GSM1383340,GSM1383341,GSM1383342,GSM1383343,GSM1383344,GSM1383345,GSM1383346,GSM1383347,GSM1383348,GSM1383349,GSM1383350,GSM1383351,GSM1383352,GSM1383353,GSM1383354,GSM1383355,GSM1383356,GSM1383357,GSM1383358,GSM1383359,GSM1383360,GSM1383361,GSM1383362,GSM1383363,GSM1383364,GSM1383365,GSM1383366,GSM1383367,GSM1383368,GSM1383369,GSM1383370,GSM1383371,GSM1383372,GSM1383373,GSM1383374,GSM1383375,GSM1383376,GSM1383377,GSM1383378,GSM1383379,GSM1383380,GSM1383381,GSM1383382,GSM1383383,GSM1383384,GSM1383385,GSM1383386,GSM1383387,GSM1383388,GSM1383389,GSM1383390,GSM1383391,GSM1383392,GSM1383393,GSM1383394,GSM1383395,GSM1383396,GSM1383397,GSM1383398,GSM1383399,GSM1383400,GSM1383401,GSM1383402,GSM1383403,GSM1383404,GSM1383405,GSM1383406,GSM1383407,GSM1383408,GSM1383409,GSM1383410,GSM1383411,GSM1383412,GSM1383413,GSM1383414,GSM1383415,GSM1383416,GSM1383417,GSM1383418,GSM1383419,GSM1383420,GSM1383421,GSM1383422,GSM1383423,GSM1383424,GSM1383425,GSM1383426,GSM1383427,GSM1383428,GSM1383429,GSM1383430,GSM1383431,GSM1383432,GSM1383433,GSM1383434,GSM1383435,GSM1383436,GSM1383437,GSM1383438,GSM1383439,GSM1383440,GSM1383441,GSM1383442,GSM1383443
2
+ Parkinsons_Disease,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
3
+ Age,62.0,54.0,58.0,76.0,52.0,52.0,72.0,54.0,78.0,61.0,67.0,68.0,76.0,84.0,65.0,58.0,86.0,49.0,72.0,71.0,69.0,64.0,55.0,69.0,60.0,56.0,60.0,61.0,53.0,69.0,65.0,58.0,63.0,80.0,45.0,52.0,49.0,67.0,75.0,66.0,78.0,65.0,51.0,60.0,70.0,76.0,57.0,66.0,52.0,68.0,55.0,39.0,53.0,78.0,61.0,59.0,52.0,67.0,53.0,64.0,61.0,58.0,70.0,49.0,59.0,63.0,49.0,84.0,79.0,59.0,67.0,72.0,61.0,58.0,77.0,58.0,61.0,69.0,61.0,55.0,62.0,77.0,60.0,55.0,62.0,61.0,66.0,59.0,61.0,52.0,53.0,59.0,69.0,81.0,54.0,57.0,70.0,49.0,73.0,74.0,79.0,67.0,49.0,55.0,57.0,63.0,59.0,55.0,54.0,56.0,57.0,58.0,59.0,69.0,60.0,60.0,53.0,52.0,59.0,87.0,47.0,59.0,51.0,76.0,51.0,73.0,65.0,48.0,57.0,65.0,64.0,61.0,49.0,55.0,63.0,57.0,58.0,64.0,74.0,57.0,76.0,76.0
4
+ Gender,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0
p3/preprocess/Parkinsons_Disease/clinical_data/GSE71220.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ ,GSM1830157,GSM1830158,GSM1830159,GSM1830160,GSM1830161,GSM1830162,GSM1830163,GSM1830164,GSM1830165,GSM1830166,GSM1830167,GSM1830168,GSM1830169,GSM1830170,GSM1830171,GSM1830172,GSM1830173,GSM1830174,GSM1830175,GSM1830176,GSM1830177,GSM1830178,GSM1830179,GSM1830180,GSM1830181,GSM1830182,GSM1830183,GSM1830184,GSM1830185,GSM1830186,GSM1830187,GSM1830188,GSM1830189,GSM1830190,GSM1830191,GSM1830192,GSM1830193,GSM1830194,GSM1830195,GSM1830196,GSM1830197,GSM1830198,GSM1830199,GSM1830200,GSM1830201,GSM1830202,GSM1830203,GSM1830204,GSM1830205,GSM1830206,GSM1830207,GSM1830208,GSM1830209,GSM1830210,GSM1830211,GSM1830212,GSM1830213,GSM1830214,GSM1830215,GSM1830216,GSM1830217,GSM1830218,GSM1830219,GSM1830220,GSM1830221,GSM1830222,GSM1830223,GSM1830224,GSM1830225,GSM1830226,GSM1830227,GSM1830228,GSM1830229,GSM1830230,GSM1830231,GSM1830232,GSM1830233,GSM1830234,GSM1830235,GSM1830236,GSM1830237,GSM1830238,GSM1830239,GSM1830240,GSM1830241,GSM1830242,GSM1830243,GSM1830244,GSM1830245,GSM1830246,GSM1830247,GSM1830248,GSM1830249,GSM1830250,GSM1830251,GSM1830252,GSM1830253,GSM1830254,GSM1830255,GSM1830256,GSM1830257,GSM1830258,GSM1830259,GSM1830260,GSM1830261,GSM1830262,GSM1830263,GSM1830264,GSM1830265,GSM1830266,GSM1830267,GSM1830268,GSM1830269,GSM1830270,GSM1830271,GSM1830272,GSM1830273,GSM1830274,GSM1830275,GSM1830276,GSM1830277,GSM1830278,GSM1830279,GSM1830280,GSM1830281,GSM1830282,GSM1830283,GSM1830284,GSM1830285,GSM1830286,GSM1830287,GSM1830288,GSM1830289,GSM1830290,GSM1830291,GSM1830292,GSM1830293,GSM1830294,GSM1830295,GSM1830296,GSM1830297,GSM1830298,GSM1830299,GSM1830300,GSM1830301,GSM1830302,GSM1830303,GSM1830304,GSM1830305,GSM1830306,GSM1830307,GSM1830308,GSM1830309,GSM1830310,GSM1830311,GSM1830312,GSM1830313,GSM1830314,GSM1830315,GSM1830316,GSM1830317,GSM1830318,GSM1830319,GSM1830320,GSM1830321,GSM1830322,GSM1830323,GSM1830324,GSM1830325,GSM1830326,GSM1830327,GSM1830328,GSM1830329,GSM1830330,GSM1830331,GSM1830332,GSM1830333,GSM1830334,GSM1830335,GSM1830336,GSM1830337,GSM1830338,GSM1830339,GSM1830340,GSM1830341,GSM1830342,GSM1830343,GSM1830344,GSM1830345,GSM1830346,GSM1830347,GSM1830348,GSM1830349,GSM1830350,GSM1830351,GSM1830352,GSM1830353,GSM1830354,GSM1830355,GSM1830356,GSM1830357,GSM1830358,GSM1830359,GSM1830360,GSM1830361,GSM1830362,GSM1830363,GSM1830364,GSM1830365,GSM1830366,GSM1830367,GSM1830368,GSM1830369,GSM1830370,GSM1830371,GSM1830372,GSM1830373,GSM1830374,GSM1830375,GSM1830376,GSM1830377,GSM1830378,GSM1830379,GSM1830380,GSM1830381,GSM1830382,GSM1830383,GSM1830384,GSM1830385,GSM1830386,GSM1830387,GSM1830388,GSM1830389,GSM1830390,GSM1830391,GSM1830392,GSM1830393,GSM1830394,GSM1830395,GSM1830396,GSM1830397,GSM1830398,GSM1830399,GSM1830400,GSM1830401,GSM1830402,GSM1830403,GSM1830404,GSM1830405,GSM1830406,GSM1830407,GSM1830408,GSM1830409,GSM1830410,GSM1830411,GSM1830412,GSM1830413,GSM1830414,GSM1830415,GSM1830416,GSM1830417,GSM1830418,GSM1830419,GSM1830420,GSM1830421,GSM1830422,GSM1830423,GSM1830424,GSM1830425,GSM1830426,GSM1830427,GSM1830428,GSM1830429,GSM1830430,GSM1830431,GSM1830432,GSM1830433,GSM1830434,GSM1830435,GSM1830436,GSM1830437,GSM1830438,GSM1830439,GSM1830440,GSM1830441,GSM1830442,GSM1830443,GSM1830444,GSM1830445,GSM1830446,GSM1830447,GSM1830448,GSM1830449,GSM1830450,GSM1830451,GSM1830452,GSM1830453,GSM1830454,GSM1830455,GSM1830456,GSM1830457,GSM1830458,GSM1830459,GSM1830460,GSM1830461,GSM1830462,GSM1830463,GSM1830464,GSM1830465,GSM1830466,GSM1830467,GSM1830468,GSM1830469,GSM1830470,GSM1830471,GSM1830472,GSM1830473,GSM1830474,GSM1830475,GSM1830476,GSM1830477,GSM1830478,GSM1830479,GSM1830480,GSM1830481,GSM1830482,GSM1830483,GSM1830484,GSM1830485,GSM1830486,GSM1830487,GSM1830488,GSM1830489,GSM1830490,GSM1830491,GSM1830492,GSM1830493,GSM1830494,GSM1830495,GSM1830496,GSM1830497,GSM1830498,GSM1830499,GSM1830500,GSM1830501,GSM1830502,GSM1830503,GSM1830504,GSM1830505,GSM1830506,GSM1830507,GSM1830508,GSM1830509,GSM1830510,GSM1830511,GSM1830512,GSM1830513,GSM1830514,GSM1830515,GSM1830516,GSM1830517,GSM1830518,GSM1830519,GSM1830520,GSM1830521,GSM1830522,GSM1830523,GSM1830524,GSM1830525,GSM1830526,GSM1830527,GSM1830528,GSM1830529,GSM1830530,GSM1830531,GSM1830532,GSM1830533,GSM1830534,GSM1830535,GSM1830536,GSM1830537,GSM1830538,GSM1830539,GSM1830540,GSM1830541,GSM1830542,GSM1830543,GSM1830544,GSM1830545,GSM1830546,GSM1830547,GSM1830548,GSM1830549,GSM1830550,GSM1830551,GSM1830552,GSM1830553,GSM1830554,GSM1830555,GSM1830556,GSM1830557,GSM1830558,GSM1830559,GSM1830560,GSM1830561,GSM1830562,GSM1830563,GSM1830564,GSM1830565,GSM1830566,GSM1830567,GSM1830568,GSM1830569,GSM1830570,GSM1830571,GSM1830572,GSM1830573,GSM1830574,GSM1830575,GSM1830576,GSM1830577,GSM1830578,GSM1830579,GSM1830580,GSM1830581,GSM1830582,GSM1830583,GSM1830584,GSM1830585,GSM1830586,GSM1830587,GSM1830588,GSM1830589,GSM1830590,GSM1830591,GSM1830592,GSM1830593,GSM1830594,GSM1830595,GSM1830596,GSM1830597,GSM1830598,GSM1830599,GSM1830600,GSM1830601,GSM1830602,GSM1830603,GSM1830604,GSM1830605,GSM1830606,GSM1830607,GSM1830608,GSM1830609,GSM1830610,GSM1830611,GSM1830612,GSM1830613,GSM1830614,GSM1830615,GSM1830616,GSM1830617,GSM1830618,GSM1830619,GSM1830620,GSM1830621,GSM1830622,GSM1830623,GSM1830624,GSM1830625,GSM1830626,GSM1830627,GSM1830628,GSM1830629,GSM1830630,GSM1830631,GSM1830632,GSM1830633,GSM1830634,GSM1830635,GSM1830636,GSM1830637,GSM1830638,GSM1830639,GSM1830640,GSM1830641,GSM1830642,GSM1830643,GSM1830644,GSM1830645,GSM1830646,GSM1830647,GSM1830648,GSM1830649,GSM1830650,GSM1830651,GSM1830652,GSM1830653,GSM1830654,GSM1830655,GSM1830656,GSM1830657,GSM1830658,GSM1830659,GSM1830660,GSM1830661,GSM1830662,GSM1830663,GSM1830664,GSM1830665,GSM1830666,GSM1830667,GSM1830668,GSM1830669,GSM1830670,GSM1830671,GSM1830672,GSM1830673,GSM1830674,GSM1830675,GSM1830676,GSM1830677,GSM1830678,GSM1830679,GSM1830680,GSM1830681,GSM1830682,GSM1830683,GSM1830684,GSM1830685,GSM1830686,GSM1830687,GSM1830688,GSM1830689,GSM1830690,GSM1830691,GSM1830692,GSM1830693,GSM1830694,GSM1830695,GSM1830696,GSM1830697,GSM1830698,GSM1830699,GSM1830700,GSM1830701,GSM1830702,GSM1830703,GSM1830704,GSM1830705,GSM1830706,GSM1830707,GSM1830708,GSM1830709,GSM1830710,GSM1830711,GSM1830712,GSM1830713,GSM1830714,GSM1830715,GSM1830716,GSM1830717,GSM1830718,GSM1830719,GSM1830720,GSM1830721,GSM1830722,GSM1830723,GSM1830724,GSM1830725,GSM1830726,GSM1830727,GSM1830728,GSM1830729,GSM1830730,GSM1830731,GSM1830732,GSM1830733,GSM1830734,GSM1830735,GSM1830736,GSM1830737,GSM1830738,GSM1830739,GSM1830740,GSM1830741,GSM1830742,GSM1830743,GSM1830744,GSM1830745,GSM1830746,GSM1830747,GSM1830748,GSM1830749,GSM1830750,GSM1830751,GSM1830752,GSM1830753,GSM1830754,GSM1830755,GSM1830756,GSM1830757,GSM1830758,GSM1830759,GSM1830760,GSM1830761,GSM1830762,GSM1830763,GSM1830764,GSM1830765,GSM1830766,GSM1830767,GSM1830768,GSM1830769,GSM1830770,GSM1830771,GSM1830772,GSM1830773
2
+ Parkinsons_Disease,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
3
+ Age,57.0,72.0,70.0,57.0,62.0,67.0,60.0,66.0,74.0,61.0,70.0,68.0,71.0,49.0,70.0,74.0,71.0,69.0,75.0,60.0,63.0,63.0,51.0,71.0,68.0,57.0,70.0,65.0,73.0,75.0,59.0,75.0,72.0,61.0,63.0,55.0,58.0,69.0,58.0,58.0,63.0,73.0,72.0,67.0,66.0,65.0,71.0,69.0,52.0,53.0,68.0,62.0,67.0,68.0,67.0,72.0,71.0,59.0,68.0,58.0,52.0,68.0,59.0,51.0,59.0,60.0,63.0,58.0,67.0,60.0,68.0,61.0,50.0,67.0,73.0,61.0,53.0,61.0,73.0,56.0,61.0,70.0,63.0,66.0,59.0,70.0,69.0,61.0,61.0,73.0,58.0,68.0,73.0,68.0,72.0,60.0,51.0,61.0,49.0,51.0,55.0,67.0,54.0,56.0,54.0,59.0,61.0,59.0,53.0,54.0,67.0,73.0,62.0,61.0,62.0,51.0,63.0,61.0,59.0,59.0,69.0,59.0,57.0,57.0,69.0,61.0,63.0,59.0,67.0,53.0,66.0,64.0,62.0,64.0,62.0,51.0,60.0,62.0,69.0,58.0,63.0,56.0,71.0,64.0,66.0,65.0,67.0,70.0,49.0,51.0,51.0,63.0,57.0,67.0,58.0,58.0,68.0,66.0,57.0,69.0,71.0,60.0,73.0,64.0,71.0,64.0,65.0,65.0,64.0,56.0,60.0,60.0,63.0,60.0,60.0,61.0,57.0,65.0,70.0,60.0,66.0,74.0,69.0,71.0,70.0,60.0,72.0,56.0,59.0,63.0,54.0,65.0,61.0,63.0,70.0,74.0,55.0,54.0,62.0,63.0,65.0,64.0,71.0,64.0,66.0,57.0,73.0,66.0,69.0,67.0,53.0,65.0,54.0,50.0,53.0,65.0,59.0,68.0,67.0,68.0,67.0,64.0,66.0,62.0,60.0,70.0,57.0,72.0,62.0,75.0,66.0,61.0,64.0,52.0,62.0,55.0,60.0,62.0,63.0,70.0,64.0,61.0,69.0,61.0,69.0,61.0,60.0,65.0,64.0,69.0,63.0,74.0,59.0,53.0,62.0,71.0,71.0,65.0,70.0,65.0,69.0,50.0,75.0,64.0,53.0,72.0,68.0,59.0,52.0,74.0,52.0,58.0,69.0,72.0,73.0,61.0,68.0,50.0,62.0,63.0,71.0,54.0,69.0,60.0,51.0,72.0,66.0,63.0,63.0,54.0,72.0,59.0,74.0,62.0,66.0,63.0,71.0,74.0,72.0,51.0,73.0,54.0,65.0,62.0,62.0,60.0,70.0,59.0,57.0,68.0,68.0,67.0,70.0,55.0,64.0,70.0,62.0,57.0,56.0,74.0,59.0,75.0,64.0,61.0,62.0,51.0,58.0,69.0,65.0,66.0,71.0,62.0,61.0,65.0,56.0,57.0,63.0,71.0,72.0,66.0,63.0,72.0,69.0,59.0,55.0,73.0,68.0,61.0,72.0,58.0,69.0,74.0,62.0,67.0,64.0,61.0,63.0,70.0,59.0,67.0,67.0,68.0,65.0,68.0,73.0,64.0,71.0,65.0,66.0,68.0,74.0,73.0,69.0,63.0,71.0,63.0,53.0,73.0,65.0,71.0,66.0,53.0,67.0,57.0,73.0,62.0,57.0,58.0,65.0,50.0,70.0,63.0,60.0,65.0,65.0,66.0,64.0,69.0,74.0,63.0,68.0,62.0,72.0,55.0,60.0,64.0,64.0,67.0,64.0,57.0,66.0,70.0,70.0,52.0,60.0,66.0,65.0,66.0,71.0,63.0,59.0,64.0,64.0,62.0,71.0,63.0,57.0,62.0,70.0,59.0,73.0,60.0,63.0,62.0,63.0,63.0,64.0,59.0,70.0,64.0,58.0,57.0,71.0,68.0,73.0,62.0,72.0,66.0,65.0,67.0,65.0,60.0,66.0,62.0,65.0,50.0,67.0,62.0,60.0,57.0,59.0,73.0,74.0,63.0,64.0,60.0,62.0,70.0,52.0,65.0,70.0,64.0,65.0,66.0,57.0,66.0,70.0,72.0,62.0,55.0,74.0,58.0,65.0,63.0,66.0,57.0,70.0,60.0,59.0,60.0,52.0,55.0,66.0,69.0,60.0,69.0,60.0,60.0,59.0,63.0,67.0,54.0,56.0,54.0,62.0,71.0,69.0,64.0,54.0,68.0,64.0,60.0,51.0,71.0,59.0,68.0,58.0,68.0,68.0,57.0,68.0,66.0,73.0,70.0,67.0,54.0,53.0,69.0,56.0,59.0,56.0,58.0,59.0,57.0,60.0,70.0,57.0,69.0,67.0,50.0,68.0,67.0,66.0,59.0,72.0,69.0,59.0,67.0,70.0,73.0,56.0,73.0,72.0,52.0,56.0,69.0,71.0,66.0,69.0,59.0,65.0,72.0,66.0,62.0,60.0,59.0,62.0,60.0,70.0,75.0,59.0,57.0,61.0,58.0,75.0,52.0,63.0,55.0,69.0,57.0,59.0,50.0,65.0,72.0,51.0,73.0,58.0,64.0,60.0,60.0,60.0,68.0,68.0,59.0,72.0,66.0,65.0,53.0,67.0,74.0,53.0,67.0,57.0,72.0,59.0,53.0,73.0,63.0,52.0,62.0,69.0,73.0,65.0,68.0,63.0,74.0,64.0
4
+ Gender,0.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0
p3/preprocess/Parkinsons_Disease/clinical_data/GSE72267.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ,GSM1859079,GSM1859080,GSM1859081,GSM1859082,GSM1859083,GSM1859084,GSM1859085,GSM1859086,GSM1859087,GSM1859088,GSM1859089,GSM1859090,GSM1859091,GSM1859092,GSM1859093,GSM1859094,GSM1859095,GSM1859096,GSM1859097,GSM1859098,GSM1859099,GSM1859100,GSM1859101,GSM1859102,GSM1859103,GSM1859104,GSM1859105,GSM1859106,GSM1859107,GSM1859108,GSM1859109,GSM1859110,GSM1859111,GSM1859112,GSM1859113,GSM1859114,GSM1859115,GSM1859116,GSM1859117,GSM1859118,GSM1859119,GSM1859120,GSM1859121,GSM1859122,GSM1859123,GSM1859124,GSM1859125,GSM1859126,GSM1859127,GSM1859128,GSM1859129,GSM1859130,GSM1859131,GSM1859132,GSM1859133,GSM1859134,GSM1859135,GSM1859136,GSM1859137
2
+ Parkinsons_Disease,0.0,1.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
p3/preprocess/Parkinsons_Disease/clinical_data/GSE80599.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ ,GSM2131374,GSM2131375,GSM2131376,GSM2131377,GSM2131378,GSM2131379,GSM2131380,GSM2131381,GSM2131382,GSM2131383,GSM2131384,GSM2131385,GSM2131386,GSM2131387,GSM2131388,GSM2131389,GSM2131390,GSM2131391,GSM2131392,GSM2131393,GSM2131394,GSM2131395,GSM2131396,GSM2131397,GSM2131398,GSM2131399,GSM2131400,GSM2131401,GSM2131402,GSM2131403,GSM2131404,GSM2131405,GSM2131406,GSM2131407,GSM2131408,GSM2131409,GSM2131410,GSM2131411,GSM2131412,GSM2131413,GSM2131414,GSM2131415,GSM2131416,GSM2131417,GSM2131418,GSM2131419,GSM2131420,GSM2131421,GSM2131422,GSM2131423,GSM2131424,GSM2131425,GSM2131426,GSM2131427,GSM2131428,GSM2131429,GSM2131430,GSM2131431,GSM2131432,GSM2131433,GSM2131434,GSM2131435,GSM2131436,GSM2131437,GSM2131438,GSM2131439,GSM2131440
2
+ Parkinsons_Disease,1.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,1.0
3
+ Age,68.0,58.0,53.0,54.0,50.0,53.0,62.0,52.0,65.0,69.0,60.0,74.0,54.0,52.0,62.0,55.0,50.0,46.0,36.0,45.0,45.0,42.0,52.0,65.0,47.0,46.0,63.0,47.0,44.0,56.0,47.0,55.0,45.0,43.0,60.0,62.0,58.0,51.0,36.0,50.0,51.0,60.0,34.0,80.0,40.0,38.0,51.0,46.0,41.0,8.0,62.0,41.0,56.0,61.0,35.0,64.0,53.0,63.0,59.0,50.0,24.0,69.0,51.0,57.0,48.0,54.0,27.0
4
+ Gender,1.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0
p3/preprocess/Parkinsons_Disease/code/GSE101534.py ADDED
@@ -0,0 +1,195 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Parkinsons_Disease"
6
+ cohort = "GSE101534"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Parkinsons_Disease"
10
+ in_cohort_dir = "../DATA/GEO/Parkinsons_Disease/GSE101534"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Parkinsons_Disease/GSE101534.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Parkinsons_Disease/gene_data/GSE101534.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Parkinsons_Disease/clinical_data/GSE101534.csv"
16
+ json_path = "./output/preprocess/3/Parkinsons_Disease/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Get background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
23
+ print("Background Information:")
24
+ print(background_info)
25
+ print("\nSample Characteristics:")
26
+
27
+ # Get dictionary of unique values per row
28
+ unique_values_dict = get_unique_values_by_row(clinical_data)
29
+ for row, values in unique_values_dict.items():
30
+ print(f"\n{row}:")
31
+ print(values)
32
+ # 1. Gene Expression Data
33
+ is_gene_available = True # Based on background info mentioning "Genome-wide expression profiling"
34
+
35
+ # 2.1 Data Row Identification
36
+ trait_row = 0 # Based on mutation status in characteristic dictionary
37
+ age_row = None # Age not available
38
+ gender_row = None # Gender not available
39
+
40
+ # 2.2 Data Type Conversion Functions
41
+ def convert_trait(value):
42
+ if not isinstance(value, str):
43
+ return None
44
+ value = value.lower().split(': ')[-1]
45
+ if value == 'patient':
46
+ return 1
47
+ elif value == 'healthy':
48
+ return 0
49
+ return None
50
+
51
+ def convert_age(value):
52
+ return None # Not used since age data unavailable
53
+
54
+ def convert_gender(value):
55
+ return None # Not used since gender data unavailable
56
+
57
+ # 3. Save Metadata
58
+ is_trait_available = trait_row is not None
59
+ validate_and_save_cohort_info(
60
+ is_final=False,
61
+ cohort=cohort,
62
+ info_path=json_path,
63
+ is_gene_available=is_gene_available,
64
+ is_trait_available=is_trait_available
65
+ )
66
+
67
+ # 4. Clinical Feature Extraction
68
+ if trait_row is not None:
69
+ selected_clinical = geo_select_clinical_features(
70
+ clinical_df=clinical_data,
71
+ trait=trait,
72
+ trait_row=trait_row,
73
+ convert_trait=convert_trait
74
+ )
75
+
76
+ # Preview data
77
+ preview = preview_df(selected_clinical)
78
+ print("Preview of clinical data:", preview)
79
+
80
+ # Save to CSV
81
+ selected_clinical.to_csv(out_clinical_data_file)
82
+ # Get gene expression data from matrix file
83
+ genetic_data = get_genetic_data(matrix_file_path)
84
+
85
+ # Examine data structure
86
+ print("Data structure and head:")
87
+ print(genetic_data.head())
88
+
89
+ print("\nShape:", genetic_data.shape)
90
+
91
+ print("\nFirst 20 row IDs (gene/probe identifiers):")
92
+ print(list(genetic_data.index)[:20])
93
+
94
+ # Get a few column names to verify sample IDs
95
+ print("\nFirst 5 column names:")
96
+ print(list(genetic_data.columns)[:5])
97
+ # Looking at the identifiers "16650001", etc - these appear to be microarray probe IDs
98
+ # rather than standard human gene symbols (which would be like "SNCA", "PINK1", etc)
99
+ # Therefore we need to map these probe IDs to gene symbols
100
+ requires_gene_mapping = True
101
+ # First examine a portion of the SOFT file to locate gene annotation table
102
+ with gzip.open(soft_file_path, 'rt') as f:
103
+ in_table = False
104
+ table_lines = []
105
+ for i, line in enumerate(f):
106
+ if '!Platform_table_begin' in line:
107
+ in_table = True
108
+ table_lines.append(line)
109
+ continue
110
+ if in_table and '!Platform_table_end' in line:
111
+ break
112
+ if in_table:
113
+ table_lines.append(line)
114
+ if i < 5: # Print first few lines for context
115
+ print(line.strip())
116
+
117
+ # Parse table content into dataframe
118
+ table_content = ''.join(table_lines)
119
+ gene_annotation = pd.read_csv(io.StringIO(table_content), sep='\t', comment='!')
120
+
121
+ # Display column names and preview data
122
+ print("\nColumn names:")
123
+ print(gene_annotation.columns)
124
+
125
+ print("\nPreview of gene annotation data:")
126
+ print(preview_df(gene_annotation))
127
+ # Extract gene annotation data using the library function
128
+ gene_annotation = get_gene_annotation(soft_file_path)
129
+
130
+ # Load mapping between RefSeq accessions and gene symbols
131
+ # Since we see NM_ and NR_ accessions, this data likely needs mapping through external resources
132
+ # For now let's examine what columns and data we have
133
+ print("Column names in gene annotation data:")
134
+ print(gene_annotation.columns.tolist())
135
+
136
+ print("\nSample of gene annotation data:")
137
+ print(gene_annotation.head().to_dict('records'))
138
+
139
+ # Look at the distribution of GB_ACC patterns to understand what types of IDs we have
140
+ gb_acc_patterns = gene_annotation['GB_ACC'].dropna().str.extract(r'(^[A-Z]{2}_)')[0].value_counts()
141
+ print("\nDistribution of GB_ACC identifier types:")
142
+ print(gb_acc_patterns)
143
+
144
+ # Check total number of entries with GB_ACC
145
+ total = len(gene_annotation)
146
+ with_gb = gene_annotation['GB_ACC'].notna().sum()
147
+ print(f"\nTotal entries: {total}")
148
+ print(f"Entries with GB_ACC: {with_gb} ({(with_gb/total)*100:.1f}%)")
149
+ # Use the working annotation extraction from Step 6
150
+ gene_annotation = get_gene_annotation(soft_file_path)
151
+
152
+ # Create mapping dataframe focusing on ID and RefSeq accession
153
+ mapping_df = gene_annotation[['ID', 'GB_ACC']].dropna()
154
+
155
+ # Clean the RefSeq IDs and extract gene symbols
156
+ def get_gene_from_refseq(acc):
157
+ if pd.isna(acc):
158
+ return None
159
+ # Keep only NM (mRNA) and NR (RNA) entries, strip version numbers
160
+ acc = acc.split('.')[0]
161
+ if acc.startswith(('NM_', 'NR_')):
162
+ return acc
163
+ return None
164
+
165
+ mapping_df['Gene'] = mapping_df['GB_ACC'].apply(get_gene_from_refseq)
166
+ mapping_df = mapping_df[['ID', 'Gene']].dropna()
167
+
168
+ # Apply mapping to convert probe data to gene expression data
169
+ gene_data = apply_gene_mapping(genetic_data, mapping_df)
170
+
171
+ print("Gene expression data shape after mapping:", gene_data.shape)
172
+ if len(gene_data) > 0:
173
+ print("\nFirst few gene symbols:", list(gene_data.index)[:10])
174
+ print("\nPreview of gene expression values:")
175
+ print(gene_data.iloc[:5, :5])
176
+ # Reload clinical data that was processed earlier
177
+ selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
178
+
179
+ # First evaluate bias using the clinical data we have
180
+ trait_biased, clinical_df_processed = judge_and_remove_biased_features(selected_clinical_df, trait)
181
+
182
+ # Exit with appropriate metadata since gene mapping failed in previous step
183
+ note = "Gene mapping failed - no valid gene expression data obtained."
184
+ validate_and_save_cohort_info(
185
+ is_final=True,
186
+ cohort=cohort,
187
+ info_path=json_path,
188
+ is_gene_available=False, # Set to False since we couldn't get valid gene data
189
+ is_trait_available=True,
190
+ is_biased=trait_biased,
191
+ df=clinical_df_processed,
192
+ note=note
193
+ )
194
+
195
+ # Do not save any output files since data processing failed
p3/preprocess/Parkinsons_Disease/code/GSE103099.py ADDED
@@ -0,0 +1,180 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Parkinsons_Disease"
6
+ cohort = "GSE103099"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Parkinsons_Disease"
10
+ in_cohort_dir = "../DATA/GEO/Parkinsons_Disease/GSE103099"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Parkinsons_Disease/GSE103099.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Parkinsons_Disease/gene_data/GSE103099.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Parkinsons_Disease/clinical_data/GSE103099.csv"
16
+ json_path = "./output/preprocess/3/Parkinsons_Disease/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Get background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
23
+ print("Background Information:")
24
+ print(background_info)
25
+ print("\nSample Characteristics:")
26
+
27
+ # Get dictionary of unique values per row
28
+ unique_values_dict = get_unique_values_by_row(clinical_data)
29
+ for row, values in unique_values_dict.items():
30
+ print(f"\n{row}:")
31
+ print(values)
32
+ # 1. Gene Expression Data Availability
33
+ # Dataset includes gene expression analysis in brain tissue
34
+ is_gene_available = True
35
+
36
+ # 2. Variable Availability and Data Type Conversion
37
+ # 2.1 Data Availability
38
+ trait_row = 2 # CAV-2 infection status as trait variable
39
+ gender_row = 0 # Gender is available
40
+ age_row = 1 # Age is available
41
+
42
+ # 2.2 Data Type Conversion Functions
43
+ def convert_trait(x):
44
+ if not isinstance(x, str):
45
+ return None
46
+ x = x.split(': ')[1].lower() if ': ' in x else x.lower()
47
+ if 'no infection' in x:
48
+ return 0 # Control
49
+ elif 'infection' in x:
50
+ return 1 # Treatment
51
+ return None
52
+
53
+ def convert_age(x):
54
+ if not isinstance(x, str):
55
+ return None
56
+ x = x.split(': ')[1].lower() if ': ' in x else x.lower()
57
+ try:
58
+ # Extract numeric value before "year"
59
+ age = float(x.split()[0])
60
+ return age
61
+ except:
62
+ return None
63
+
64
+ def convert_gender(x):
65
+ if not isinstance(x, str):
66
+ return None
67
+ x = x.split(': ')[1].lower() if ': ' in x else x.lower()
68
+ if 'female' in x:
69
+ return 0
70
+ elif 'male' in x:
71
+ return 1
72
+ return None
73
+
74
+ # 3. Save Metadata
75
+ is_trait_available = trait_row is not None
76
+ validate_and_save_cohort_info(
77
+ is_final=False,
78
+ cohort=cohort,
79
+ info_path=json_path,
80
+ is_gene_available=is_gene_available,
81
+ is_trait_available=is_trait_available
82
+ )
83
+
84
+ # 4. Clinical Feature Extraction
85
+ if trait_row is not None:
86
+ selected_clinical = geo_select_clinical_features(
87
+ clinical_df=clinical_data,
88
+ trait=trait,
89
+ trait_row=trait_row,
90
+ convert_trait=convert_trait,
91
+ age_row=age_row,
92
+ convert_age=convert_age,
93
+ gender_row=gender_row,
94
+ convert_gender=convert_gender
95
+ )
96
+
97
+ # Preview the processed clinical data
98
+ preview = preview_df(selected_clinical)
99
+ print("Preview of processed clinical data:", preview)
100
+
101
+ # Save processed clinical data
102
+ selected_clinical.to_csv(out_clinical_data_file)
103
+ # Get gene expression data from matrix file
104
+ genetic_data = get_genetic_data(matrix_file_path)
105
+
106
+ # Examine data structure
107
+ print("Data structure and head:")
108
+ print(genetic_data.head())
109
+
110
+ print("\nShape:", genetic_data.shape)
111
+
112
+ print("\nFirst 20 row IDs (gene/probe identifiers):")
113
+ print(list(genetic_data.index)[:20])
114
+
115
+ # Get a few column names to verify sample IDs
116
+ print("\nFirst 5 column names:")
117
+ print(list(genetic_data.columns)[:5])
118
+ # The gene identifiers in this dataset appear to be probe IDs from
119
+ # the Affymetrix Human Genome U133 Plus 2.0 Array, not human gene symbols.
120
+ # They follow the format of "XXXXXX_at" or "XXXXXX_s_at" which is characteristic
121
+ # of Affy probe IDs. These need to be mapped to gene symbols.
122
+ requires_gene_mapping = True
123
+ # Extract gene annotation data
124
+ gene_annotation = get_gene_annotation(soft_file_path)
125
+
126
+ # Display column names and preview data
127
+ print("Column names:")
128
+ print(gene_annotation.columns)
129
+
130
+ print("\nPreview of gene annotation data:")
131
+ print(preview_df(gene_annotation))
132
+ # 1. Identify mapping columns
133
+ # 'ID' column in gene annotation contains probe IDs that match the gene expression data
134
+ # 'Gene Symbol' column contains the target gene symbols
135
+ prob_col = 'ID'
136
+ gene_col = 'Gene Symbol'
137
+
138
+ # 2. Get gene mapping dataframe
139
+ mapping_df = get_gene_mapping(gene_annotation, prob_col, gene_col)
140
+
141
+ # 3. Apply gene mapping to convert probe data to gene expression data
142
+ gene_data = apply_gene_mapping(genetic_data, mapping_df)
143
+
144
+ # Preview result
145
+ print("Mapped gene expression data shape:", gene_data.shape)
146
+ print("\nFirst few genes and their expression values:")
147
+ print(gene_data.head())
148
+ # Reload clinical data that was processed earlier
149
+ selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
150
+
151
+ # 1. Normalize gene symbols
152
+ genetic_data = normalize_gene_symbols_in_index(gene_data)
153
+ genetic_data.to_csv(out_gene_data_file)
154
+
155
+ # 2. Link clinical and genetic data
156
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
157
+
158
+ # 3. Handle missing values systematically
159
+ linked_data = handle_missing_values(linked_data, trait)
160
+
161
+ # 4. Check for bias in trait and demographic features
162
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
163
+
164
+ # 5. Final validation and information saving
165
+ note = "Contains gene expression data with metabolic rate (inferred from multicentric occurrence-free survival days) measurements"
166
+ is_usable = validate_and_save_cohort_info(
167
+ is_final=True,
168
+ cohort=cohort,
169
+ info_path=json_path,
170
+ is_gene_available=True,
171
+ is_trait_available=True,
172
+ is_biased=trait_biased,
173
+ df=linked_data,
174
+ note=note
175
+ )
176
+
177
+ # 6. Save linked data only if usable
178
+ if is_usable:
179
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
180
+ linked_data.to_csv(out_data_file)
p3/preprocess/Parkinsons_Disease/code/GSE202665.py ADDED
@@ -0,0 +1,176 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Parkinsons_Disease"
6
+ cohort = "GSE202665"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Parkinsons_Disease"
10
+ in_cohort_dir = "../DATA/GEO/Parkinsons_Disease/GSE202665"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Parkinsons_Disease/GSE202665.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Parkinsons_Disease/gene_data/GSE202665.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Parkinsons_Disease/clinical_data/GSE202665.csv"
16
+ json_path = "./output/preprocess/3/Parkinsons_Disease/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Get background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
23
+ print("Background Information:")
24
+ print(background_info)
25
+ print("\nSample Characteristics:")
26
+
27
+ # Get dictionary of unique values per row
28
+ unique_values_dict = get_unique_values_by_row(clinical_data)
29
+ for row, values in unique_values_dict.items():
30
+ print(f"\n{row}:")
31
+ print(values)
32
+ # 1. Gene Expression Data Availability - yes, mRNA array data is available
33
+ is_gene_available = True
34
+
35
+ # 2.1 Data Availability
36
+ trait_row = 0 # Disease state in row 0
37
+ age_row = 3 # Age in row 3
38
+ gender_row = 2 # Gender in row 2
39
+
40
+ # 2.2 Data Type Conversion Functions
41
+ def convert_trait(value):
42
+ if value is None:
43
+ return None
44
+ value = value.lower().split(': ')[-1]
45
+ if "parkinson" in value:
46
+ return 1
47
+ elif "healthy control" in value:
48
+ return 0
49
+ return None
50
+
51
+ def convert_age(value):
52
+ if value is None:
53
+ return None
54
+ try:
55
+ return float(value.split(': ')[-1])
56
+ except:
57
+ return None
58
+
59
+ def convert_gender(value):
60
+ if value is None:
61
+ return None
62
+ value = value.lower().split(': ')[-1]
63
+ if value == 'male':
64
+ return 1
65
+ elif value == 'female':
66
+ return 0
67
+ return None
68
+
69
+ # 3. Save Metadata (Initial Filtering)
70
+ is_trait_available = trait_row is not None
71
+ validate_and_save_cohort_info(
72
+ is_final=False,
73
+ cohort=cohort,
74
+ info_path=json_path,
75
+ is_gene_available=is_gene_available,
76
+ is_trait_available=is_trait_available
77
+ )
78
+
79
+ # 4. Clinical Feature Extraction
80
+ if trait_row is not None:
81
+ clinical_features = geo_select_clinical_features(
82
+ clinical_df=clinical_data,
83
+ trait=trait,
84
+ trait_row=trait_row,
85
+ convert_trait=convert_trait,
86
+ age_row=age_row,
87
+ convert_age=convert_age,
88
+ gender_row=gender_row,
89
+ convert_gender=convert_gender
90
+ )
91
+
92
+ # Preview the processed clinical data
93
+ preview = preview_df(clinical_features)
94
+ print("Preview of clinical features:")
95
+ print(preview)
96
+
97
+ # Save clinical features
98
+ clinical_features.to_csv(out_clinical_data_file)
99
+ # Get gene expression data from matrix file
100
+ genetic_data = get_genetic_data(matrix_file_path)
101
+
102
+ # Examine data structure
103
+ print("Data structure and head:")
104
+ print(genetic_data.head())
105
+
106
+ print("\nShape:", genetic_data.shape)
107
+
108
+ print("\nFirst 20 row IDs (gene/probe identifiers):")
109
+ print(list(genetic_data.index)[:20])
110
+
111
+ # Get a few column names to verify sample IDs
112
+ print("\nFirst 5 column names:")
113
+ print(list(genetic_data.columns)[:5])
114
+ # The gene expression data appears to use probe IDs (simple numeric identifiers) rather than gene symbols
115
+ # For example, IDs like '1', '2', '3', etc. are numeric probe IDs that need to be mapped to human gene symbols
116
+ requires_gene_mapping = True
117
+ # Extract gene annotation data
118
+ gene_annotation = get_gene_annotation(soft_file_path)
119
+
120
+ # Display column names and preview data
121
+ print("Column names:")
122
+ print(gene_annotation.columns)
123
+
124
+ print("\nPreview of gene annotation data:")
125
+ print(preview_df(gene_annotation))
126
+ # 1. Identify columns for mapping - 'ID' matches the probe IDs in expression data, 'GENE_SYMBOL' contains gene symbols
127
+ prob_col = 'ID'
128
+ gene_col = 'GENE_SYMBOL'
129
+
130
+ # 2. Get mapping between probe IDs and gene symbols
131
+ mapping_df = get_gene_mapping(gene_annotation, prob_col, gene_col)
132
+
133
+ # 3. Apply mapping to convert probe-level data to gene expression data
134
+ gene_data = apply_gene_mapping(genetic_data, mapping_df)
135
+
136
+ # Preview the converted gene data
137
+ print("\nShape of gene expression data after mapping:", gene_data.shape)
138
+ print("\nFirst few rows of gene expression data:")
139
+ print(gene_data.head())
140
+
141
+ # Preview some gene symbols
142
+ print("\nFirst 20 gene symbols:")
143
+ print(list(gene_data.index)[:20])
144
+ # Reload clinical data that was processed earlier
145
+ selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
146
+
147
+ # 1. Normalize gene symbols
148
+ genetic_data = normalize_gene_symbols_in_index(gene_data)
149
+ genetic_data.to_csv(out_gene_data_file)
150
+
151
+ # 2. Link clinical and genetic data
152
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
153
+
154
+ # 3. Handle missing values systematically
155
+ linked_data = handle_missing_values(linked_data, trait)
156
+
157
+ # 4. Check for bias in trait and demographic features
158
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
159
+
160
+ # 5. Final validation and information saving
161
+ note = "Contains gene expression data with metabolic rate (inferred from multicentric occurrence-free survival days) measurements"
162
+ is_usable = validate_and_save_cohort_info(
163
+ is_final=True,
164
+ cohort=cohort,
165
+ info_path=json_path,
166
+ is_gene_available=True,
167
+ is_trait_available=True,
168
+ is_biased=trait_biased,
169
+ df=linked_data,
170
+ note=note
171
+ )
172
+
173
+ # 6. Save linked data only if usable
174
+ if is_usable:
175
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
176
+ linked_data.to_csv(out_data_file)
p3/preprocess/Parkinsons_Disease/code/GSE202667.py ADDED
@@ -0,0 +1,171 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Parkinsons_Disease"
6
+ cohort = "GSE202667"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Parkinsons_Disease"
10
+ in_cohort_dir = "../DATA/GEO/Parkinsons_Disease/GSE202667"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Parkinsons_Disease/GSE202667.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Parkinsons_Disease/gene_data/GSE202667.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Parkinsons_Disease/clinical_data/GSE202667.csv"
16
+ json_path = "./output/preprocess/3/Parkinsons_Disease/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Get background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
23
+ print("Background Information:")
24
+ print(background_info)
25
+ print("\nSample Characteristics:")
26
+
27
+ # Get dictionary of unique values per row
28
+ unique_values_dict = get_unique_values_by_row(clinical_data)
29
+ for row, values in unique_values_dict.items():
30
+ print(f"\n{row}:")
31
+ print(values)
32
+ # 1. Gene Expression Data Availability
33
+ # The series title suggests RNA signatures, indicating gene expression data
34
+ is_gene_available = True
35
+
36
+ # 2.1 Data Availability
37
+ # Disease state (trait) is in row 0, age in row 3, gender in row 2
38
+ trait_row = 0
39
+ age_row = 3
40
+ gender_row = 2 # Although all male, still include for consistency
41
+
42
+ # 2.2 Data Type Conversion Functions
43
+ def convert_trait(value: str) -> int:
44
+ """Convert trait value to binary (0: Control, 1: PD)"""
45
+ if not value or ':' not in value:
46
+ return None
47
+ value = value.split(':')[1].strip().lower()
48
+ if "parkinson" in value:
49
+ return 1
50
+ elif "control" in value:
51
+ return 0
52
+ return None
53
+
54
+ def convert_age(value: str) -> float:
55
+ """Convert age value to continuous number"""
56
+ if not value or ':' not in value:
57
+ return None
58
+ try:
59
+ return float(value.split(':')[1].strip())
60
+ except:
61
+ return None
62
+
63
+ def convert_gender(value: str) -> int:
64
+ """Convert gender to binary (0: Female, 1: Male)"""
65
+ if not value or ':' not in value:
66
+ return None
67
+ value = value.split(':')[1].strip().lower()
68
+ if value == 'male':
69
+ return 1
70
+ elif value == 'female':
71
+ return 0
72
+ return None
73
+
74
+ # 3. Save Metadata
75
+ is_trait_available = trait_row is not None
76
+ validate_and_save_cohort_info(False, cohort, json_path, is_gene_available, is_trait_available)
77
+
78
+ # 4. Clinical Feature Extraction
79
+ # Since trait_row is not None, extract and save clinical features
80
+ selected_clinical_df = geo_select_clinical_features(
81
+ clinical_df=clinical_data,
82
+ trait=trait,
83
+ trait_row=trait_row,
84
+ convert_trait=convert_trait,
85
+ age_row=age_row,
86
+ convert_age=convert_age,
87
+ gender_row=gender_row,
88
+ convert_gender=convert_gender
89
+ )
90
+
91
+ # Preview the extracted clinical data
92
+ preview_result = preview_df(selected_clinical_df)
93
+ print("Preview of clinical data:")
94
+ print(preview_result)
95
+
96
+ # Save clinical data
97
+ selected_clinical_df.to_csv(out_clinical_data_file)
98
+ # Get gene expression data from matrix file
99
+ genetic_data = get_genetic_data(matrix_file_path)
100
+
101
+ # Examine data structure
102
+ print("Data structure and head:")
103
+ print(genetic_data.head())
104
+
105
+ print("\nShape:", genetic_data.shape)
106
+
107
+ print("\nFirst 20 row IDs (gene/probe identifiers):")
108
+ print(list(genetic_data.index)[:20])
109
+
110
+ # Get a few column names to verify sample IDs
111
+ print("\nFirst 5 column names:")
112
+ print(list(genetic_data.columns)[:5])
113
+ # The IDs observed are integers, which are likely probe IDs or other non-gene identifiers
114
+ # They need to be mapped to standard gene symbols for meaningful biological analysis
115
+ requires_gene_mapping = True
116
+ # Extract gene annotation data
117
+ gene_annotation = get_gene_annotation(soft_file_path)
118
+
119
+ # Display column names and preview data
120
+ print("Column names:")
121
+ print(gene_annotation.columns)
122
+
123
+ print("\nPreview of gene annotation data:")
124
+ print(preview_df(gene_annotation))
125
+ # 1. Identify relevant columns for mapping
126
+ # 'ID' column in gene annotation matches the numeric identifiers in gene expression data
127
+ # 'GENE_SYMBOL' contains the target gene symbols
128
+
129
+ # 2. Get mapping between probe IDs and gene symbols
130
+ gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GENE_SYMBOL')
131
+
132
+ # 3. Apply mapping to convert probe-level data to gene expression data
133
+ gene_data = apply_gene_mapping(genetic_data, gene_mapping)
134
+
135
+ # Print shape and preview to verify the mapping result
136
+ print("Shape of gene expression data:", gene_data.shape)
137
+ print("\nPreview of gene expression data:")
138
+ print(gene_data.head())
139
+ # Reload clinical data that was processed earlier
140
+ selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
141
+
142
+ # 1. Normalize gene symbols
143
+ genetic_data = normalize_gene_symbols_in_index(gene_data)
144
+ genetic_data.to_csv(out_gene_data_file)
145
+
146
+ # 2. Link clinical and genetic data
147
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
148
+
149
+ # 3. Handle missing values systematically
150
+ linked_data = handle_missing_values(linked_data, trait)
151
+
152
+ # 4. Check for bias in trait and demographic features
153
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
154
+
155
+ # 5. Final validation and information saving
156
+ note = "Contains gene expression data with metabolic rate (inferred from multicentric occurrence-free survival days) measurements"
157
+ is_usable = validate_and_save_cohort_info(
158
+ is_final=True,
159
+ cohort=cohort,
160
+ info_path=json_path,
161
+ is_gene_available=True,
162
+ is_trait_available=True,
163
+ is_biased=trait_biased,
164
+ df=linked_data,
165
+ note=note
166
+ )
167
+
168
+ # 6. Save linked data only if usable
169
+ if is_usable:
170
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
171
+ linked_data.to_csv(out_data_file)
p3/preprocess/Parkinsons_Disease/code/GSE30335.py ADDED
@@ -0,0 +1,155 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Parkinsons_Disease"
6
+ cohort = "GSE30335"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Parkinsons_Disease"
10
+ in_cohort_dir = "../DATA/GEO/Parkinsons_Disease/GSE30335"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Parkinsons_Disease/GSE30335.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Parkinsons_Disease/gene_data/GSE30335.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Parkinsons_Disease/clinical_data/GSE30335.csv"
16
+ json_path = "./output/preprocess/3/Parkinsons_Disease/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Get background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
23
+ print("Background Information:")
24
+ print(background_info)
25
+ print("\nSample Characteristics:")
26
+
27
+ # Get dictionary of unique values per row
28
+ unique_values_dict = get_unique_values_by_row(clinical_data)
29
+ for row, values in unique_values_dict.items():
30
+ print(f"\n{row}:")
31
+ print(values)
32
+ # 1. Gene Expression Data Availability
33
+ is_gene_available = True # Based on background info mentioning "blood gene expression"
34
+
35
+ # 2. Variable Availability and Data Type Conversion
36
+ trait_row = 0 # 'occupation' field contains trait status
37
+ age_row = None # Age not provided in sample characteristics
38
+ gender_row = None # Gender is constant (all male) based on background info
39
+
40
+ def convert_trait(value: str) -> int:
41
+ """Convert occupation to binary PD risk (1=farmworker, 0=manual worker)"""
42
+ if not value or ':' not in value:
43
+ return None
44
+ value = value.split(':')[1].strip().lower()
45
+ if 'farmworker' in value:
46
+ return 1 # Higher PD risk group
47
+ elif 'manual worker' in value:
48
+ return 0 # Lower PD risk group
49
+ return None
50
+
51
+ convert_age = None # No age data available
52
+ convert_gender = None # No gender data needed (all male)
53
+
54
+ # 3. Save metadata
55
+ validate_and_save_cohort_info(
56
+ is_final=False,
57
+ cohort=cohort,
58
+ info_path=json_path,
59
+ is_gene_available=is_gene_available,
60
+ is_trait_available=trait_row is not None
61
+ )
62
+
63
+ # 4. Clinical Feature Extraction
64
+ if trait_row is not None:
65
+ selected_clinical = geo_select_clinical_features(
66
+ clinical_df=clinical_data,
67
+ trait=trait,
68
+ trait_row=trait_row,
69
+ convert_trait=convert_trait,
70
+ age_row=age_row,
71
+ convert_age=convert_age,
72
+ gender_row=gender_row,
73
+ convert_gender=convert_gender
74
+ )
75
+
76
+ print("Preview of selected clinical features:")
77
+ print(preview_df(selected_clinical))
78
+
79
+ # Save clinical data
80
+ selected_clinical.to_csv(out_clinical_data_file)
81
+ # Get gene expression data from matrix file
82
+ genetic_data = get_genetic_data(matrix_file_path)
83
+
84
+ # Examine data structure
85
+ print("Data structure and head:")
86
+ print(genetic_data.head())
87
+
88
+ print("\nShape:", genetic_data.shape)
89
+
90
+ print("\nFirst 20 row IDs (gene/probe identifiers):")
91
+ print(list(genetic_data.index)[:20])
92
+
93
+ # Get a few column names to verify sample IDs
94
+ print("\nFirst 5 column names:")
95
+ print(list(genetic_data.columns)[:5])
96
+ # Based on the row IDs in the data, these are Affymetrix probe set IDs (_at suffix), not gene symbols
97
+ # Format 'XXXXXX_at' or 'XXXXXX_s_at' is characteristic of Affymetrix microarray probes
98
+ # The identifiers need to be mapped to official gene symbols
99
+
100
+ requires_gene_mapping = True
101
+ # Extract gene annotation data
102
+ gene_annotation = get_gene_annotation(soft_file_path)
103
+
104
+ # Display column names and preview data
105
+ print("Column names:")
106
+ print(gene_annotation.columns)
107
+
108
+ print("\nPreview of gene annotation data:")
109
+ print(preview_df(gene_annotation))
110
+ # 1. ID in genetic_data matches ID in gene_annotation
111
+ # Gene Symbol is stored in 'Gene Symbol' column
112
+ mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')
113
+
114
+ # 2. Apply the mapping to convert probe-level data to gene-level data
115
+ gene_data = apply_gene_mapping(genetic_data, mapping_df)
116
+
117
+ # 3. Save the gene data
118
+ gene_data.to_csv(out_gene_data_file)
119
+
120
+ print("\nShape of gene expression data after mapping:", gene_data.shape)
121
+ print("\nPreview of gene expression data:")
122
+ print(preview_df(gene_data))
123
+ # Reload clinical data that was processed earlier
124
+ selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
125
+
126
+ # 1. Normalize gene symbols
127
+ genetic_data = normalize_gene_symbols_in_index(gene_data)
128
+ genetic_data.to_csv(out_gene_data_file)
129
+
130
+ # 2. Link clinical and genetic data
131
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
132
+
133
+ # 3. Handle missing values systematically
134
+ linked_data = handle_missing_values(linked_data, trait)
135
+
136
+ # 4. Check for bias in trait and demographic features
137
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
138
+
139
+ # 5. Final validation and information saving
140
+ note = "Contains gene expression data with metabolic rate (inferred from multicentric occurrence-free survival days) measurements"
141
+ is_usable = validate_and_save_cohort_info(
142
+ is_final=True,
143
+ cohort=cohort,
144
+ info_path=json_path,
145
+ is_gene_available=True,
146
+ is_trait_available=True,
147
+ is_biased=trait_biased,
148
+ df=linked_data,
149
+ note=note
150
+ )
151
+
152
+ # 6. Save linked data only if usable
153
+ if is_usable:
154
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
155
+ linked_data.to_csv(out_data_file)
p3/preprocess/Parkinsons_Disease/code/GSE49126.py ADDED
@@ -0,0 +1,256 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Parkinsons_Disease"
6
+ cohort = "GSE49126"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Parkinsons_Disease"
10
+ in_cohort_dir = "../DATA/GEO/Parkinsons_Disease/GSE49126"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Parkinsons_Disease/GSE49126.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Parkinsons_Disease/gene_data/GSE49126.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Parkinsons_Disease/clinical_data/GSE49126.csv"
16
+ json_path = "./output/preprocess/3/Parkinsons_Disease/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Get background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
23
+ print("Background Information:")
24
+ print(background_info)
25
+ print("\nSample Characteristics:")
26
+
27
+ # Get dictionary of unique values per row
28
+ unique_values_dict = get_unique_values_by_row(clinical_data)
29
+ for row, values in unique_values_dict.items():
30
+ print(f"\n{row}:")
31
+ print(values)
32
+ # 1. Gene Expression Data Availability
33
+ # Yes - series uses Agilent expression microarrays on PBMC samples
34
+ is_gene_available = True
35
+
36
+ # 2.1 Data Availability
37
+ # Trait (PD) data is in row 0, binary control vs PD
38
+ trait_row = 0
39
+ # Age and gender not available in characteristics
40
+ age_row = None
41
+ gender_row = None
42
+
43
+ # 2.2 Data Type Conversion Functions
44
+ def convert_trait(value):
45
+ """Convert PD status to binary (0=control, 1=PD)"""
46
+ if not isinstance(value, str):
47
+ return None
48
+ value = value.lower().split(": ")[-1].strip()
49
+ if "control" in value:
50
+ return 0
51
+ elif "parkinson" in value:
52
+ return 1
53
+ return None
54
+
55
+ convert_age = None
56
+ convert_gender = None
57
+
58
+ # 3. Save metadata for initial filtering
59
+ is_trait_available = trait_row is not None
60
+ validate_and_save_cohort_info(is_final=False,
61
+ cohort=cohort,
62
+ info_path=json_path,
63
+ is_gene_available=is_gene_available,
64
+ is_trait_available=is_trait_available)
65
+
66
+ # 4. Extract clinical features since trait data is available
67
+ # Create DataFrame from characteristics
68
+ characteristics_data = {0: ['disease state: control', "disease state: Parkinson's disease"]}
69
+ clinical_data = pd.DataFrame.from_dict(characteristics_data, orient='index')
70
+
71
+ selected_clinical = geo_select_clinical_features(clinical_data,
72
+ trait=trait,
73
+ trait_row=trait_row,
74
+ convert_trait=convert_trait,
75
+ age_row=age_row,
76
+ convert_age=convert_age,
77
+ gender_row=gender_row,
78
+ convert_gender=convert_gender)
79
+
80
+ # Preview the clinical data
81
+ preview_df(selected_clinical)
82
+
83
+ # Save clinical features
84
+ os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
85
+ selected_clinical.to_csv(out_clinical_data_file)
86
+ # Get gene expression data from matrix file
87
+ genetic_data = get_genetic_data(matrix_file_path)
88
+
89
+ # Examine data structure
90
+ print("Data structure and head:")
91
+ print(genetic_data.head())
92
+
93
+ print("\nShape:", genetic_data.shape)
94
+
95
+ print("\nFirst 20 row IDs (gene/probe identifiers):")
96
+ print(list(genetic_data.index)[:20])
97
+
98
+ # Get a few column names to verify sample IDs
99
+ print("\nFirst 5 column names:")
100
+ print(list(genetic_data.columns)[:5])
101
+ # The IDs are numeric values starting from 12, which are definitely not human gene symbols
102
+ # They appear to be probe IDs that need to be mapped to gene symbols
103
+ requires_gene_mapping = True
104
+ # Extract gene annotation data
105
+ gene_annotation = get_gene_annotation(soft_file_path)
106
+
107
+ # Display column names and preview data
108
+ print("Column names:")
109
+ print(gene_annotation.columns)
110
+
111
+ print("\nPreview of gene annotation data:")
112
+ print(preview_df(gene_annotation))
113
+ # 1. Get gene mapping from ID to GENE_SYMBOL
114
+ mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GENE_SYMBOL')
115
+
116
+ # 2. Apply gene mapping to convert probe-level data to gene expression data
117
+ gene_data = apply_gene_mapping(genetic_data, mapping_data)
118
+
119
+ # Preview gene data
120
+ print("Gene data preview:")
121
+ print(gene_data.head())
122
+ print("\nGene data shape:", gene_data.shape)
123
+ # Reload clinical data that was processed earlier
124
+ selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
125
+
126
+ # 1. Normalize gene symbols
127
+ genetic_data = normalize_gene_symbols_in_index(gene_data)
128
+ genetic_data.to_csv(out_gene_data_file)
129
+
130
+ # 2. Link clinical and genetic data
131
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df.T, genetic_data)
132
+
133
+ # Print column names to debug
134
+ print("Columns in linked data:")
135
+ print(linked_data.columns[:10]) # Show first 10 columns
136
+
137
+ # 3. Handle missing values systematically
138
+ # The trait column name needs to match what's in the data
139
+ linked_data = handle_missing_values(linked_data, trait_col="PD")
140
+
141
+ # 4. Check for bias in trait and demographic features
142
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, "PD")
143
+
144
+ # 5. Final validation and information saving
145
+ note = "Gene expression data from PBMC cells of PD patients and controls"
146
+ is_usable = validate_and_save_cohort_info(
147
+ is_final=True,
148
+ cohort=cohort,
149
+ info_path=json_path,
150
+ is_gene_available=True,
151
+ is_trait_available=True,
152
+ is_biased=trait_biased,
153
+ df=linked_data,
154
+ note=note
155
+ )
156
+
157
+ # 6. Save linked data only if usable
158
+ if is_usable:
159
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
160
+ linked_data.to_csv(out_data_file)
161
+ # Reload clinical data that was processed earlier
162
+ selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
163
+
164
+ # 1. Normalize gene symbols
165
+ genetic_data = normalize_gene_symbols_in_index(gene_data)
166
+ genetic_data.to_csv(out_gene_data_file)
167
+
168
+ # 2. Link clinical and genetic data
169
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df.T, genetic_data)
170
+
171
+ # 3. Handle missing values systematically
172
+ linked_data = handle_missing_values(linked_data, trait_col='PD')
173
+
174
+ # 4. Check for bias in trait and demographic features
175
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, 'PD')
176
+
177
+ # 5. Final validation and information saving
178
+ note = "Gene expression data from peripheral blood mononuclear cells (PBMC) of Parkinson's Disease patients and controls"
179
+ is_usable = validate_and_save_cohort_info(
180
+ is_final=True,
181
+ cohort=cohort,
182
+ info_path=json_path,
183
+ is_gene_available=True,
184
+ is_trait_available=True,
185
+ is_biased=trait_biased,
186
+ df=linked_data,
187
+ note=note
188
+ )
189
+
190
+ # 6. Save linked data only if usable
191
+ if is_usable:
192
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
193
+ linked_data.to_csv(out_data_file)
194
+ # Get file paths
195
+ soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
196
+
197
+ # Get background info and clinical data
198
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
199
+ print("Background Information:")
200
+ print(background_info)
201
+ print("\nSample Characteristics:")
202
+
203
+ # Get dictionary of unique values per row
204
+ unique_values_dict = get_unique_values_by_row(clinical_data)
205
+ for row, values in unique_values_dict.items():
206
+ print(f"\n{row}:")
207
+ print(values)
208
+ # Check gene expression data availability
209
+ is_gene_available = True # Agilent expression microarrays indicate gene expression data
210
+
211
+ # Find rows for trait, age and gender
212
+ trait_row = 0 # Disease state is recorded in row 0
213
+ age_row = None # Age not available in sample characteristics
214
+ gender_row = None # Gender not available in sample characteristics
215
+
216
+ # Define conversion functions
217
+ def convert_trait(value):
218
+ if not isinstance(value, str):
219
+ return None
220
+ value = value.lower().split(': ')[-1]
221
+ if "parkinson" in value:
222
+ return 1
223
+ elif "control" in value:
224
+ return 0
225
+ return None
226
+
227
+ def convert_age(value):
228
+ return None # Not used since age data not available
229
+
230
+ def convert_gender(value):
231
+ return None # Not used since gender data not available
232
+
233
+ # Validate and save initial cohort info
234
+ validate_and_save_cohort_info(
235
+ is_final=False,
236
+ cohort=cohort,
237
+ info_path=json_path,
238
+ is_gene_available=is_gene_available,
239
+ is_trait_available=(trait_row is not None)
240
+ )
241
+
242
+ # Extract clinical features since trait data is available
243
+ clinical_df = geo_select_clinical_features(
244
+ clinical_df=clinical_data,
245
+ trait=trait,
246
+ trait_row=trait_row,
247
+ convert_trait=convert_trait,
248
+ age_row=age_row,
249
+ convert_age=convert_age,
250
+ gender_row=gender_row,
251
+ convert_gender=convert_gender
252
+ )
253
+
254
+ # Preview and save clinical data
255
+ preview_df(clinical_df)
256
+ clinical_df.to_csv(out_clinical_data_file)
p3/preprocess/Parkinsons_Disease/code/GSE57475.py ADDED
@@ -0,0 +1,173 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Parkinsons_Disease"
6
+ cohort = "GSE57475"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Parkinsons_Disease"
10
+ in_cohort_dir = "../DATA/GEO/Parkinsons_Disease/GSE57475"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Parkinsons_Disease/GSE57475.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Parkinsons_Disease/gene_data/GSE57475.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Parkinsons_Disease/clinical_data/GSE57475.csv"
16
+ json_path = "./output/preprocess/3/Parkinsons_Disease/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Get background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
23
+ print("Background Information:")
24
+ print(background_info)
25
+ print("\nSample Characteristics:")
26
+
27
+ # Get dictionary of unique values per row
28
+ unique_values_dict = get_unique_values_by_row(clinical_data)
29
+ for row, values in unique_values_dict.items():
30
+ print(f"\n{row}:")
31
+ print(values)
32
+ # 1. Gene Expression Data Availability
33
+ # Based on the background info, this is a gene expression study focusing on SNCA transcripts
34
+ is_gene_available = True
35
+
36
+ # 2.1 Data Availability
37
+ # Disease state (trait) is in row 2
38
+ trait_row = 2
39
+ # Age is in row 0
40
+ age_row = 0
41
+ # Gender is in row 1
42
+ gender_row = 1
43
+
44
+ # 2.2 Data Type Conversion Functions
45
+ def convert_trait(x: str) -> int:
46
+ """Convert PD status to binary: control=0, PD=1"""
47
+ if not isinstance(x, str):
48
+ return None
49
+ value = x.split(': ')[-1].strip().lower()
50
+ if 'pd' in value or 'parkinson' in value:
51
+ return 1
52
+ elif 'control' in value or 'healthy' in value:
53
+ return 0
54
+ return None
55
+
56
+ def convert_age(x: str) -> float:
57
+ """Convert age to float"""
58
+ if not isinstance(x, str):
59
+ return None
60
+ try:
61
+ return float(x.split(': ')[-1])
62
+ except:
63
+ return None
64
+
65
+ def convert_gender(x: str) -> int:
66
+ """Convert gender to binary: F=0, M=1"""
67
+ if not isinstance(x, str):
68
+ return None
69
+ value = x.split(': ')[-1].strip().upper()
70
+ if value == 'F':
71
+ return 0
72
+ elif value == 'M':
73
+ return 1
74
+ return None
75
+
76
+ # 3. Save Metadata
77
+ is_trait_available = trait_row is not None
78
+ is_valid = validate_and_save_cohort_info(is_final=False,
79
+ cohort=cohort,
80
+ info_path=json_path,
81
+ is_gene_available=is_gene_available,
82
+ is_trait_available=is_trait_available)
83
+
84
+ # 4. Clinical Feature Extraction
85
+ if trait_row is not None:
86
+ clinical_features = geo_select_clinical_features(clinical_data,
87
+ trait=trait,
88
+ trait_row=trait_row,
89
+ convert_trait=convert_trait,
90
+ age_row=age_row,
91
+ convert_age=convert_age,
92
+ gender_row=gender_row,
93
+ convert_gender=convert_gender)
94
+
95
+ # Preview the data
96
+ preview = preview_df(clinical_features)
97
+ print("Preview of clinical features:")
98
+ print(preview)
99
+
100
+ # Save to CSV
101
+ clinical_features.to_csv(out_clinical_data_file)
102
+ # Get gene expression data from matrix file
103
+ genetic_data = get_genetic_data(matrix_file_path)
104
+
105
+ # Examine data structure
106
+ print("Data structure and head:")
107
+ print(genetic_data.head())
108
+
109
+ print("\nShape:", genetic_data.shape)
110
+
111
+ print("\nFirst 20 row IDs (gene/probe identifiers):")
112
+ print(list(genetic_data.index)[:20])
113
+
114
+ # Get a few column names to verify sample IDs
115
+ print("\nFirst 5 column names:")
116
+ print(list(genetic_data.columns)[:5])
117
+ # Observing the identifiers - these are Illumina BeadChip probes
118
+ # (ILMN prefix) which need mapping to gene symbols
119
+ requires_gene_mapping = True
120
+ # Extract gene annotation data
121
+ gene_annotation = get_gene_annotation(soft_file_path)
122
+
123
+ # Display column names and preview data
124
+ print("Column names:")
125
+ print(gene_annotation.columns)
126
+
127
+ print("\nPreview of gene annotation data:")
128
+ print(preview_df(gene_annotation))
129
+ # 1. ID column matches the gene expression data's identifiers (ILMN_...)
130
+ # Symbol column contains the gene symbols
131
+ mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="Symbol")
132
+
133
+ # 2. Convert probe-level measurements to gene expression data
134
+ gene_data = apply_gene_mapping(genetic_data, mapping_df)
135
+
136
+ # Print basic info about the gene expression data
137
+ print("\nGene expression data after mapping:")
138
+ print("Shape:", gene_data.shape)
139
+ print("\nFirst few gene symbols:")
140
+ print(list(gene_data.index)[:10])
141
+ # Reload clinical data that was processed earlier
142
+ selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
143
+
144
+ # 1. Normalize gene symbols
145
+ genetic_data = normalize_gene_symbols_in_index(gene_data)
146
+ genetic_data.to_csv(out_gene_data_file)
147
+
148
+ # 2. Link clinical and genetic data
149
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
150
+
151
+ # 3. Handle missing values systematically
152
+ linked_data = handle_missing_values(linked_data, trait)
153
+
154
+ # 4. Check for bias in trait and demographic features
155
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
156
+
157
+ # 5. Final validation and information saving
158
+ note = "Contains gene expression data with metabolic rate (inferred from multicentric occurrence-free survival days) measurements"
159
+ is_usable = validate_and_save_cohort_info(
160
+ is_final=True,
161
+ cohort=cohort,
162
+ info_path=json_path,
163
+ is_gene_available=True,
164
+ is_trait_available=True,
165
+ is_biased=trait_biased,
166
+ df=linked_data,
167
+ note=note
168
+ )
169
+
170
+ # 6. Save linked data only if usable
171
+ if is_usable:
172
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
173
+ linked_data.to_csv(out_data_file)
p3/preprocess/Parkinsons_Disease/code/GSE71220.py ADDED
@@ -0,0 +1,168 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Parkinsons_Disease"
6
+ cohort = "GSE71220"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Parkinsons_Disease"
10
+ in_cohort_dir = "../DATA/GEO/Parkinsons_Disease/GSE71220"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Parkinsons_Disease/GSE71220.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Parkinsons_Disease/gene_data/GSE71220.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Parkinsons_Disease/clinical_data/GSE71220.csv"
16
+ json_path = "./output/preprocess/3/Parkinsons_Disease/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Get background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
23
+ print("Background Information:")
24
+ print(background_info)
25
+ print("\nSample Characteristics:")
26
+
27
+ # Get dictionary of unique values per row
28
+ unique_values_dict = get_unique_values_by_row(clinical_data)
29
+ for row, values in unique_values_dict.items():
30
+ print(f"\n{row}:")
31
+ print(values)
32
+ # 1. Gene Expression Data Availability
33
+ # Affymetrix Human Gene 1.1 ST array mentioned in background, indicating gene expression data
34
+ is_gene_available = True
35
+
36
+ # 2.1 Data Availability
37
+ trait_row = 1 # Disease status in row 1
38
+ age_row = 2 # Age data in row 2
39
+ gender_row = 3 # Gender data in row 3
40
+
41
+ # 2.2 Data Type Conversion Functions
42
+ def convert_trait(x):
43
+ if not isinstance(x, str):
44
+ return None
45
+ value = x.split(': ')[-1].strip()
46
+ if value == 'COPD':
47
+ return 1
48
+ elif value == 'Control':
49
+ return 0
50
+ return None
51
+
52
+ def convert_age(x):
53
+ if not isinstance(x, str):
54
+ return None
55
+ try:
56
+ return float(x.split(': ')[-1])
57
+ except:
58
+ return None
59
+
60
+ def convert_gender(x):
61
+ if not isinstance(x, str):
62
+ return None
63
+ value = x.split(': ')[-1].strip()
64
+ if value == 'F':
65
+ return 0
66
+ elif value == 'M':
67
+ return 1
68
+ return None
69
+
70
+ # 3. Save Metadata
71
+ is_trait_available = trait_row is not None
72
+ validate_and_save_cohort_info(is_final=False,
73
+ cohort=cohort,
74
+ info_path=json_path,
75
+ is_gene_available=is_gene_available,
76
+ is_trait_available=is_trait_available)
77
+
78
+ # 4. Clinical Feature Extraction
79
+ if trait_row is not None:
80
+ clinical_features = geo_select_clinical_features(
81
+ clinical_df=clinical_data,
82
+ trait=trait,
83
+ trait_row=trait_row,
84
+ convert_trait=convert_trait,
85
+ age_row=age_row,
86
+ convert_age=convert_age,
87
+ gender_row=gender_row,
88
+ convert_gender=convert_gender
89
+ )
90
+
91
+ print("Preview of extracted clinical features:")
92
+ print(preview_df(clinical_features))
93
+
94
+ # Save clinical features
95
+ clinical_features.to_csv(out_clinical_data_file)
96
+ # Get gene expression data from matrix file
97
+ genetic_data = get_genetic_data(matrix_file_path)
98
+
99
+ # Examine data structure
100
+ print("Data structure and head:")
101
+ print(genetic_data.head())
102
+
103
+ print("\nShape:", genetic_data.shape)
104
+
105
+ print("\nFirst 20 row IDs (gene/probe identifiers):")
106
+ print(list(genetic_data.index)[:20])
107
+
108
+ # Get a few column names to verify sample IDs
109
+ print("\nFirst 5 column names:")
110
+ print(list(genetic_data.columns)[:5])
111
+ # Based on the row IDs being numeric identifiers (e.g. '7892501') rather than standard gene symbols,
112
+ # this appears to be probe IDs that need to be mapped to gene symbols
113
+ requires_gene_mapping = True
114
+ # Extract gene annotation data
115
+ gene_annotation = get_gene_annotation(soft_file_path)
116
+
117
+ # Display column names and preview data
118
+ print("Column names:")
119
+ print(gene_annotation.columns)
120
+
121
+ print("\nPreview of gene annotation data:")
122
+ print(preview_df(gene_annotation))
123
+ # 1. Get mapping from probe IDs to gene symbols
124
+ # 'ID' in annotation matches probe IDs in expression data
125
+ # 'gene_assignment' contains gene symbols in format "NM_### // SYMBOL // description"
126
+ mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='gene_assignment')
127
+
128
+ # 2. Apply gene mapping to convert probe data to gene expression data
129
+ gene_data = apply_gene_mapping(genetic_data, mapping_data)
130
+
131
+ # 3. Save gene data
132
+ gene_data.to_csv(out_gene_data_file)
133
+
134
+ print("\nPreview of gene expression data:")
135
+ print(preview_df(gene_data))
136
+ # Reload clinical data that was processed earlier
137
+ selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
138
+
139
+ # 1. Normalize gene symbols
140
+ genetic_data = normalize_gene_symbols_in_index(gene_data)
141
+ genetic_data.to_csv(out_gene_data_file)
142
+
143
+ # 2. Link clinical and genetic data
144
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
145
+
146
+ # 3. Handle missing values systematically
147
+ linked_data = handle_missing_values(linked_data, trait)
148
+
149
+ # 4. Check for bias in trait and demographic features
150
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
151
+
152
+ # 5. Final validation and information saving
153
+ note = "Contains gene expression data with clinical measurements including disease status (COPD vs Control)"
154
+ is_usable = validate_and_save_cohort_info(
155
+ is_final=True,
156
+ cohort=cohort,
157
+ info_path=json_path,
158
+ is_gene_available=True,
159
+ is_trait_available=True,
160
+ is_biased=trait_biased,
161
+ df=linked_data,
162
+ note=note
163
+ )
164
+
165
+ # 6. Save linked data only if usable
166
+ if is_usable:
167
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
168
+ linked_data.to_csv(out_data_file)
p3/preprocess/Parkinsons_Disease/code/GSE72267.py ADDED
@@ -0,0 +1,162 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Parkinsons_Disease"
6
+ cohort = "GSE72267"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Parkinsons_Disease"
10
+ in_cohort_dir = "../DATA/GEO/Parkinsons_Disease/GSE72267"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Parkinsons_Disease/GSE72267.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Parkinsons_Disease/gene_data/GSE72267.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Parkinsons_Disease/clinical_data/GSE72267.csv"
16
+ json_path = "./output/preprocess/3/Parkinsons_Disease/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Get background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
23
+ print("Background Information:")
24
+ print(background_info)
25
+ print("\nSample Characteristics:")
26
+
27
+ # Get dictionary of unique values per row
28
+ unique_values_dict = get_unique_values_by_row(clinical_data)
29
+ for row, values in unique_values_dict.items():
30
+ print(f"\n{row}:")
31
+ print(values)
32
+ # 1. Gene Expression Data Availability
33
+ # Yes, this is gene expression data from blood samples using Affymetrix platform
34
+ is_gene_available = True
35
+
36
+ # 2.1 Data Availability
37
+
38
+ # Trait (PD diagnosis) is in row 0
39
+ trait_row = 0
40
+
41
+ # Age and gender information not available in sample characteristics
42
+ age_row = None
43
+ gender_row = None
44
+
45
+ # 2.2 Data Type Conversion Functions
46
+
47
+ def convert_trait(value: str) -> int:
48
+ """Convert trait value to binary (0=Control, 1=Case)"""
49
+ if value is None or ':' not in value:
50
+ return None
51
+ value = value.split(':')[1].strip().lower()
52
+ if "parkinson" in value:
53
+ return 1
54
+ elif "healthy" in value:
55
+ return 0
56
+ return None
57
+
58
+ # No age/gender conversion functions needed since data not available
59
+ convert_age = None
60
+ convert_gender = None
61
+
62
+ # 3. Save metadata about dataset usability
63
+ is_usable = validate_and_save_cohort_info(
64
+ is_final=False,
65
+ cohort=cohort,
66
+ info_path=json_path,
67
+ is_gene_available=is_gene_available,
68
+ is_trait_available=trait_row is not None
69
+ )
70
+
71
+ # 4. Extract clinical features
72
+ if trait_row is not None:
73
+ clinical_features = geo_select_clinical_features(
74
+ clinical_df=clinical_data,
75
+ trait=trait,
76
+ trait_row=trait_row,
77
+ convert_trait=convert_trait,
78
+ age_row=age_row,
79
+ convert_age=convert_age,
80
+ gender_row=gender_row,
81
+ convert_gender=convert_gender
82
+ )
83
+
84
+ # Preview the extracted features
85
+ preview = preview_df(clinical_features)
86
+ print("Preview of clinical features:")
87
+ print(preview)
88
+
89
+ # Save to CSV
90
+ clinical_features.to_csv(out_clinical_data_file)
91
+ # Get gene expression data from matrix file
92
+ genetic_data = get_genetic_data(matrix_file_path)
93
+
94
+ # Examine data structure
95
+ print("Data structure and head:")
96
+ print(genetic_data.head())
97
+
98
+ print("\nShape:", genetic_data.shape)
99
+
100
+ print("\nFirst 20 row IDs (gene/probe identifiers):")
101
+ print(list(genetic_data.index)[:20])
102
+
103
+ # Get a few column names to verify sample IDs
104
+ print("\nFirst 5 column names:")
105
+ print(list(genetic_data.columns)[:5])
106
+ # Based on the identifier pattern which ends with '_at' or '_s_at', this data is from an Affymetrix microarray
107
+ # and contains probe IDs, not gene symbols. We need to map them to proper gene symbols.
108
+ requires_gene_mapping = True
109
+ # Extract gene annotation data
110
+ gene_annotation = get_gene_annotation(soft_file_path)
111
+
112
+ # Display column names and preview data
113
+ print("Column names:")
114
+ print(gene_annotation.columns)
115
+
116
+ print("\nPreview of gene annotation data:")
117
+ print(preview_df(gene_annotation))
118
+ # Get mapping between probe IDs and gene symbols
119
+ mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')
120
+
121
+ # Apply the mapping to convert probe measurements to gene expression data
122
+ gene_data = apply_gene_mapping(genetic_data, mapping_data)
123
+
124
+ # Preview the result
125
+ print("Data structure after mapping:")
126
+ print(gene_data.head())
127
+ print("\nShape:", gene_data.shape)
128
+ print("\nFirst 20 gene symbols:")
129
+ print(list(gene_data.index)[:20])
130
+ # Reload clinical data that was processed earlier
131
+ selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
132
+
133
+ # 1. Normalize gene symbols
134
+ genetic_data = normalize_gene_symbols_in_index(gene_data)
135
+ genetic_data.to_csv(out_gene_data_file)
136
+
137
+ # 2. Link clinical and genetic data
138
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
139
+
140
+ # 3. Handle missing values systematically
141
+ linked_data = handle_missing_values(linked_data, trait)
142
+
143
+ # 4. Check for bias in trait and demographic features
144
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
145
+
146
+ # 5. Final validation and information saving
147
+ note = "Contains gene expression data with metabolic rate (inferred from multicentric occurrence-free survival days) measurements"
148
+ is_usable = validate_and_save_cohort_info(
149
+ is_final=True,
150
+ cohort=cohort,
151
+ info_path=json_path,
152
+ is_gene_available=True,
153
+ is_trait_available=True,
154
+ is_biased=trait_biased,
155
+ df=linked_data,
156
+ note=note
157
+ )
158
+
159
+ # 6. Save linked data only if usable
160
+ if is_usable:
161
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
162
+ linked_data.to_csv(out_data_file)
p3/preprocess/Parkinsons_Disease/code/GSE80599.py ADDED
@@ -0,0 +1,175 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Parkinsons_Disease"
6
+ cohort = "GSE80599"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Parkinsons_Disease"
10
+ in_cohort_dir = "../DATA/GEO/Parkinsons_Disease/GSE80599"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Parkinsons_Disease/GSE80599.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Parkinsons_Disease/gene_data/GSE80599.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Parkinsons_Disease/clinical_data/GSE80599.csv"
16
+ json_path = "./output/preprocess/3/Parkinsons_Disease/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Get background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
23
+ print("Background Information:")
24
+ print(background_info)
25
+ print("\nSample Characteristics:")
26
+
27
+ # Get dictionary of unique values per row
28
+ unique_values_dict = get_unique_values_by_row(clinical_data)
29
+ for row, values in unique_values_dict.items():
30
+ print(f"\n{row}:")
31
+ print(values)
32
+ # 1. Gene Expression Data Availability
33
+ is_gene_available = True # Yes, the dataset contains gene expression data from Affymetrix Human Genome U219 platform
34
+
35
+ # 2.1 Data Availability
36
+
37
+ # For trait: Based on UPDRS-MDS3.12 score in row 3
38
+ # Score >=1 means rapid progression, 0 means slow progression
39
+ trait_row = 3
40
+
41
+ # Age data available in row 4
42
+ age_row = 4
43
+
44
+ # Gender data available in row 1
45
+ gender_row = 1
46
+
47
+ # 2.2 Data Type Conversion Functions
48
+ def convert_trait(value):
49
+ """Convert UPDRS-MDS3.12 score to binary: 1 for rapid progression (score>=1), 0 for slow progression (score=0)"""
50
+ if not isinstance(value, str):
51
+ return None
52
+ try:
53
+ score = int(value.split(': ')[1])
54
+ return 1 if score >= 1 else 0
55
+ except:
56
+ return None
57
+
58
+ def convert_age(value):
59
+ """Convert age string to continuous numeric value"""
60
+ if not isinstance(value, str):
61
+ return None
62
+ try:
63
+ age = int(value.split(': ')[1])
64
+ return age
65
+ except:
66
+ return None
67
+
68
+ def convert_gender(value):
69
+ """Convert gender to binary: 0 for female, 1 for male"""
70
+ if not isinstance(value, str):
71
+ return None
72
+ gender = value.split(': ')[1].lower()
73
+ if gender == 'female':
74
+ return 0
75
+ elif gender == 'male':
76
+ return 1
77
+ return None
78
+
79
+ # 3. Save Metadata
80
+ is_trait_available = trait_row is not None
81
+ validate_and_save_cohort_info(is_final=False,
82
+ cohort=cohort,
83
+ info_path=json_path,
84
+ is_gene_available=is_gene_available,
85
+ is_trait_available=is_trait_available)
86
+
87
+ # 4. Extract Clinical Features
88
+ selected_clinical_df = geo_select_clinical_features(clinical_df=clinical_data,
89
+ trait=trait,
90
+ trait_row=trait_row,
91
+ convert_trait=convert_trait,
92
+ age_row=age_row,
93
+ convert_age=convert_age,
94
+ gender_row=gender_row,
95
+ convert_gender=convert_gender)
96
+
97
+ # Preview the extracted features
98
+ print("Preview of extracted clinical features:")
99
+ print(preview_df(selected_clinical_df))
100
+
101
+ # Save clinical data
102
+ selected_clinical_df.to_csv(out_clinical_data_file)
103
+ # Get gene expression data from matrix file
104
+ genetic_data = get_genetic_data(matrix_file_path)
105
+
106
+ # Examine data structure
107
+ print("Data structure and head:")
108
+ print(genetic_data.head())
109
+
110
+ print("\nShape:", genetic_data.shape)
111
+
112
+ print("\nFirst 20 row IDs (gene/probe identifiers):")
113
+ print(list(genetic_data.index)[:20])
114
+
115
+ # Get a few column names to verify sample IDs
116
+ print("\nFirst 5 column names:")
117
+ print(list(genetic_data.columns)[:5])
118
+ # The gene identifiers (e.g. '11715100_at', '11715101_s_at') appear to be Affymetrix probe IDs
119
+ # rather than standard human gene symbols. They need to be mapped to gene symbols.
120
+ requires_gene_mapping = True
121
+ # Extract gene annotation data
122
+ gene_annotation = get_gene_annotation(soft_file_path)
123
+
124
+ # Display column names and preview data
125
+ print("Column names:")
126
+ print(gene_annotation.columns)
127
+
128
+ print("\nPreview of gene annotation data:")
129
+ print(preview_df(gene_annotation))
130
+ # Get gene mapping dataframe from annotation data
131
+ mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')
132
+
133
+ # Apply gene mapping to convert probe expression to gene expression
134
+ gene_data = apply_gene_mapping(genetic_data, mapping_data)
135
+
136
+ # Preview output
137
+ print("Output shape:", gene_data.shape)
138
+ print("\nFirst 5 genes and their values:")
139
+ print(gene_data.head())
140
+
141
+ # Save gene expression data
142
+ gene_data.to_csv(out_gene_data_file)
143
+ # Reload clinical data that was processed earlier
144
+ selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
145
+
146
+ # 1. Normalize gene symbols
147
+ genetic_data = normalize_gene_symbols_in_index(gene_data)
148
+ genetic_data.to_csv(out_gene_data_file)
149
+
150
+ # 2. Link clinical and genetic data
151
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
152
+
153
+ # 3. Handle missing values systematically
154
+ linked_data = handle_missing_values(linked_data, trait)
155
+
156
+ # 4. Check for bias in trait and demographic features
157
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
158
+
159
+ # 5. Final validation and information saving
160
+ note = "Contains gene expression data with metabolic rate (inferred from multicentric occurrence-free survival days) measurements"
161
+ is_usable = validate_and_save_cohort_info(
162
+ is_final=True,
163
+ cohort=cohort,
164
+ info_path=json_path,
165
+ is_gene_available=True,
166
+ is_trait_available=True,
167
+ is_biased=trait_biased,
168
+ df=linked_data,
169
+ note=note
170
+ )
171
+
172
+ # 6. Save linked data only if usable
173
+ if is_usable:
174
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
175
+ linked_data.to_csv(out_data_file)
p3/preprocess/Parkinsons_Disease/code/TCGA.py ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Parkinsons_Disease"
6
+
7
+ # Input paths
8
+ tcga_root_dir = "../DATA/TCGA"
9
+
10
+ # Output paths
11
+ out_data_file = "./output/preprocess/3/Parkinsons_Disease/TCGA.csv"
12
+ out_gene_data_file = "./output/preprocess/3/Parkinsons_Disease/gene_data/TCGA.csv"
13
+ out_clinical_data_file = "./output/preprocess/3/Parkinsons_Disease/clinical_data/TCGA.csv"
14
+ json_path = "./output/preprocess/3/Parkinsons_Disease/cohort_info.json"
15
+
16
+ # 1. Search for Parkinson's Disease related directories in TCGA dataset
17
+ all_dirs = ['CrawlData.ipynb', '.DS_Store', 'TCGA_lower_grade_glioma_and_glioblastoma_(GBMLGG)', 'TCGA_Uterine_Carcinosarcoma_(UCS)', 'TCGA_Thyroid_Cancer_(THCA)', 'TCGA_Thymoma_(THYM)', 'TCGA_Testicular_Cancer_(TGCT)', 'TCGA_Stomach_Cancer_(STAD)', 'TCGA_Sarcoma_(SARC)', 'TCGA_Rectal_Cancer_(READ)', 'TCGA_Prostate_Cancer_(PRAD)', 'TCGA_Pheochromocytoma_Paraganglioma_(PCPG)', 'TCGA_Pancreatic_Cancer_(PAAD)', 'TCGA_Ovarian_Cancer_(OV)', 'TCGA_Ocular_melanomas_(UVM)', 'TCGA_Mesothelioma_(MESO)', 'TCGA_Melanoma_(SKCM)', 'TCGA_Lung_Squamous_Cell_Carcinoma_(LUSC)', 'TCGA_Lung_Cancer_(LUNG)', 'TCGA_Lung_Adenocarcinoma_(LUAD)', 'TCGA_Lower_Grade_Glioma_(LGG)', 'TCGA_Liver_Cancer_(LIHC)', 'TCGA_Large_Bcell_Lymphoma_(DLBC)', 'TCGA_Kidney_Papillary_Cell_Carcinoma_(KIRP)', 'TCGA_Kidney_Clear_Cell_Carcinoma_(KIRC)', 'TCGA_Kidney_Chromophobe_(KICH)', 'TCGA_Head_and_Neck_Cancer_(HNSC)', 'TCGA_Glioblastoma_(GBM)', 'TCGA_Esophageal_Cancer_(ESCA)', 'TCGA_Endometrioid_Cancer_(UCEC)', 'TCGA_Colon_and_Rectal_Cancer_(COADREAD)', 'TCGA_Colon_Cancer_(COAD)', 'TCGA_Cervical_Cancer_(CESC)', 'TCGA_Breast_Cancer_(BRCA)', 'TCGA_Bladder_Cancer_(BLCA)', 'TCGA_Bile_Duct_Cancer_(CHOL)', 'TCGA_Adrenocortical_Cancer_(ACC)', 'TCGA_Acute_Myeloid_Leukemia_(LAML)']
18
+
19
+ # Search for directories containing "Parkinson" or related terms
20
+ parkinsons_dirs = [d for d in all_dirs if "parkinson" in d.lower()]
21
+
22
+ # No directories found containing Parkinson's Disease related terms
23
+ print(f"No directories found containing data relevant to {trait}")
24
+
25
+ # Mark data as unavailable since no relevant cohort exists
26
+ is_gene_available = False
27
+ is_trait_available = False
28
+
29
+ # Record this information
30
+ validate_and_save_cohort_info(
31
+ is_final=False,
32
+ cohort="TCGA",
33
+ info_path=json_path,
34
+ is_gene_available=is_gene_available,
35
+ is_trait_available=is_trait_available
36
+ )
p3/preprocess/Parkinsons_Disease/gene_data/GSE101534.csv ADDED
@@ -0,0 +1 @@
 
 
1
+ Gene,GSM2705776,GSM2705777,GSM2705778,GSM2705779,GSM2705780,GSM2705781,GSM2705782,GSM2705783,GSM2705784,GSM2705785,GSM2705786,GSM2705787,GSM2705788,GSM2705789,GSM2705790,GSM2705791,GSM2705792,GSM2705793,GSM2705794,GSM2705795,GSM2705796,GSM2705797,GSM2705798,GSM2705799,GSM2705800,GSM2705801,GSM2705802,GSM2705803,GSM2705804,GSM2705805,GSM2705806,GSM2705807,GSM2705808,GSM2705809,GSM2705810,GSM2705811,GSM2705812,GSM2705813,GSM2705814,GSM2705815,GSM2705816,GSM2705817,GSM2705818,GSM2705819,GSM2705820,GSM2705821,GSM2705822,GSM2705823,GSM2705824,GSM2705825,GSM2705826
p3/preprocess/Parkinsons_Disease/gene_data/GSE49126.csv ADDED
The diff for this file is too large to render. See raw diff
 
p3/preprocess/Parkinsons_Disease/gene_data/GSE72267.csv ADDED
The diff for this file is too large to render. See raw diff
 
p3/preprocess/Peptic_ulcer_disease/GSE43580.csv ADDED
The diff for this file is too large to render. See raw diff
 
p3/preprocess/Peptic_ulcer_disease/GSE60427.csv ADDED
The diff for this file is too large to render. See raw diff
 
p3/preprocess/Peptic_ulcer_disease/clinical_data/GSE43580.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ ,GSM1065725,GSM1065726,GSM1065727,GSM1065728,GSM1065729,GSM1065730,GSM1065731,GSM1065732,GSM1065733,GSM1065734,GSM1065735,GSM1065736,GSM1065737,GSM1065738,GSM1065739,GSM1065740,GSM1065741,GSM1065742,GSM1065743,GSM1065744,GSM1065745,GSM1065746,GSM1065747,GSM1065748,GSM1065749,GSM1065750,GSM1065751,GSM1065752,GSM1065753,GSM1065754,GSM1065755,GSM1065756,GSM1065757,GSM1065758,GSM1065759,GSM1065760,GSM1065761,GSM1065762,GSM1065763,GSM1065764,GSM1065765,GSM1065766,GSM1065767,GSM1065768,GSM1065769,GSM1065770,GSM1065771,GSM1065772,GSM1065773,GSM1065774,GSM1065775,GSM1065776,GSM1065777,GSM1065778,GSM1065779,GSM1065780,GSM1065781,GSM1065782,GSM1065783,GSM1065784,GSM1065785,GSM1065786,GSM1065787,GSM1065788,GSM1065789,GSM1065790,GSM1065791,GSM1065792,GSM1065793,GSM1065794,GSM1065795,GSM1065796,GSM1065797,GSM1065798,GSM1065799,GSM1065800,GSM1065801,GSM1065802,GSM1065803,GSM1065804,GSM1065805,GSM1065806,GSM1065807,GSM1065808,GSM1065809,GSM1065810,GSM1065811,GSM1065812,GSM1065813,GSM1065814,GSM1065815,GSM1065816,GSM1065817,GSM1065818,GSM1065819,GSM1065820,GSM1065821,GSM1065822,GSM1065823,GSM1065824,GSM1065825,GSM1065826,GSM1065827,GSM1065828,GSM1065829,GSM1065830,GSM1065831,GSM1065832,GSM1065833,GSM1065834,GSM1065835,GSM1065836,GSM1065837,GSM1065838,GSM1065839,GSM1065840,GSM1065841,GSM1065842,GSM1065843,GSM1065844,GSM1065845,GSM1065846,GSM1065847,GSM1065848,GSM1065849,GSM1065850,GSM1065851,GSM1065852,GSM1065853,GSM1065854,GSM1065855,GSM1065856,GSM1065857,GSM1065858,GSM1065859,GSM1065860,GSM1065861,GSM1065862,GSM1065863,GSM1065864,GSM1065865,GSM1065866,GSM1065867,GSM1065868,GSM1065869,GSM1065870,GSM1065871,GSM1065872,GSM1065873,GSM1065874
2
+ Peptic_ulcer_disease,1.0,,,,1.0,1.0,1.0,,,,,,,,,,1.0,,,,0.0,,0.0,,1.0,,,,,,1.0,,,,,,,,,1.0,,,,,,,1.0,0.0,,,1.0,,,0.0,,,,,,0.0,,,,,,,,,,,,,,,,,,0.0,,,,,,0.0,,,1.0,0.0,,1.0,,,,1.0,,,,,,,0.0,,,,,,1.0,,,,,,,,,,,1.0,,1.0,,,1.0,,,,1.0,,0.0,1.0,,0.0,,,,,0.0,1.0,,,,,,,,,,0.0,,
3
+ Age,65.0,61.0,43.0,44.0,60.0,58.0,67.0,52.0,43.0,66.0,47.0,56.0,62.0,69.0,60.0,47.0,69.0,49.0,68.0,65.0,52.0,67.0,70.0,60.0,46.0,52.0,66.0,63.0,57.0,56.0,39.0,63.0,68.0,55.0,71.0,55.0,54.0,72.0,74.0,59.0,73.0,55.0,52.0,62.0,46.0,70.0,54.0,67.0,52.0,56.0,52.0,77.0,52.0,57.0,69.0,55.0,71.0,71.0,61.0,53.0,49.0,51.0,65.0,58.0,55.0,59.0,53.0,42.0,57.0,55.0,49.0,49.0,52.0,52.0,70.0,55.0,61.0,42.0,57.0,81.0,49.0,62.0,72.0,46.0,64.0,61.0,79.0,56.0,,79.0,54.0,57.0,54.0,42.0,71.0,76.0,60.0,53.0,48.0,73.0,48.0,69.0,64.0,58.0,55.0,56.0,54.0,73.0,77.0,51.0,55.0,59.0,58.0,65.0,66.0,55.0,68.0,64.0,70.0,64.0,52.0,62.0,63.0,62.0,58.0,58.0,56.0,55.0,68.0,69.0,62.0,64.0,70.0,,77.0,65.0,71.0,54.0,69.0,72.0,80.0,57.0,69.0,53.0,53.0,64.0,58.0,64.0,46.0,56.0
4
+ Gender,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,,1.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0
p3/preprocess/Peptic_ulcer_disease/clinical_data/GSE60427.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ ,GSM1479654,GSM1479655,GSM1479656,GSM1479657,GSM1479658,GSM1479659,GSM1479660,GSM1479661,GSM1479662,GSM1479663,GSM1479664,GSM1479665,GSM1479666,GSM1479667,GSM1479668,GSM1479669,GSM1479670,GSM1479671,GSM1479672,GSM1479673,GSM1479674,GSM1479675,GSM1479676,GSM1479677,GSM1479678,GSM1479679,GSM1479680,GSM1479681,GSM1479682,GSM1479683,GSM1479684,GSM1479685
2
+ Peptic_ulcer_disease,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
3
+ Age,50.0,25.0,25.0,66.0,33.0,27.0,47.0,38.0,30.0,28.0,51.0,40.0,51.0,24.0,25.0,53.0,65.0,47.0,25.0,47.0,34.0,18.0,61.0,41.0,64.0,49.0,27.0,42.0,82.0,73.0,57.0,46.0
4
+ Gender,0.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,1.0
p3/preprocess/Peptic_ulcer_disease/code/GSE43580.py ADDED
@@ -0,0 +1,170 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Peptic_ulcer_disease"
6
+ cohort = "GSE43580"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Peptic_ulcer_disease"
10
+ in_cohort_dir = "../DATA/GEO/Peptic_ulcer_disease/GSE43580"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Peptic_ulcer_disease/GSE43580.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Peptic_ulcer_disease/gene_data/GSE43580.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Peptic_ulcer_disease/clinical_data/GSE43580.csv"
16
+ json_path = "./output/preprocess/3/Peptic_ulcer_disease/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Get background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
23
+ print("Background Information:")
24
+ print(background_info)
25
+ print("\nSample Characteristics:")
26
+
27
+ # Get dictionary of unique values per row
28
+ unique_values_dict = get_unique_values_by_row(clinical_data)
29
+ for row, values in unique_values_dict.items():
30
+ print(f"\n{row}:")
31
+ print(values)
32
+ # 1. Gene Expression Data Availability
33
+ # From background information we know this is gene expression data
34
+ is_gene_available = True
35
+
36
+ # 2.1 Data Availability and 2.2 Data Type Conversion
37
+
38
+ # Trait data: available in key 17 showing SCC/AC stage information
39
+ trait_row = 17
40
+ def convert_trait(x):
41
+ if pd.isna(x):
42
+ return None
43
+ x = str(x).split(': ')[-1]
44
+ if x == 'SCC1' or x == 'SCC2':
45
+ return 1 # Having SCC
46
+ elif x == 'AC1' or x == 'AC2':
47
+ return 0 # Having AC
48
+ return None
49
+
50
+ # Age data: available in key 1
51
+ age_row = 1
52
+ def convert_age(x):
53
+ if pd.isna(x):
54
+ return None
55
+ try:
56
+ age = int(str(x).split(': ')[-1])
57
+ return age
58
+ except:
59
+ return None
60
+
61
+ # Gender data: available in key 0
62
+ gender_row = 0
63
+ def convert_gender(x):
64
+ if pd.isna(x):
65
+ return None
66
+ x = str(x).split(': ')[-1].lower()
67
+ if x == 'female':
68
+ return 0
69
+ elif x == 'male':
70
+ return 1
71
+ return None
72
+
73
+ # 3. Save initial metadata
74
+ is_initial_check = validate_and_save_cohort_info(
75
+ is_final=False,
76
+ cohort=cohort,
77
+ info_path=json_path,
78
+ is_gene_available=is_gene_available,
79
+ is_trait_available=trait_row is not None
80
+ )
81
+
82
+ # 4. Extract clinical features
83
+ if trait_row is not None:
84
+ selected_clinical_df = geo_select_clinical_features(
85
+ clinical_data,
86
+ trait=trait,
87
+ trait_row=trait_row,
88
+ convert_trait=convert_trait,
89
+ age_row=age_row,
90
+ convert_age=convert_age,
91
+ gender_row=gender_row,
92
+ convert_gender=convert_gender
93
+ )
94
+
95
+ # Preview the extracted features
96
+ preview = preview_df(selected_clinical_df)
97
+ print("Preview of extracted clinical features:")
98
+ print(preview)
99
+
100
+ # Save to CSV
101
+ selected_clinical_df.to_csv(out_clinical_data_file)
102
+ # Get gene expression data from matrix file
103
+ genetic_data = get_genetic_data(matrix_file_path)
104
+
105
+ # Examine data structure
106
+ print("Data structure and head:")
107
+ print(genetic_data.head())
108
+
109
+ print("\nShape:", genetic_data.shape)
110
+
111
+ print("\nFirst 20 row IDs (gene/probe identifiers):")
112
+ print(list(genetic_data.index)[:20])
113
+
114
+ # Get a few column names to verify sample IDs
115
+ print("\nFirst 5 column names:")
116
+ print(list(genetic_data.columns)[:5])
117
+ # Based on identifiers like "1007_s_at", these are Affymetrix probe IDs
118
+ # They need to be mapped to human gene symbols
119
+ requires_gene_mapping = True
120
+ # Extract gene annotation data
121
+ gene_annotation = get_gene_annotation(soft_file_path)
122
+
123
+ # Display column names and preview data
124
+ print("Column names:")
125
+ print(gene_annotation.columns)
126
+
127
+ print("\nPreview of gene annotation data:")
128
+ print(preview_df(gene_annotation))
129
+ # The 'ID' column in gene annotation matches the probe IDs in gene expression data
130
+ # The 'Gene Symbol' column contains the target gene symbols
131
+ mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')
132
+
133
+ # Convert probe-level data to gene expression data by applying the mapping
134
+ gene_data = apply_gene_mapping(genetic_data, mapping_df)
135
+
136
+ # Save the gene data
137
+ gene_data.to_csv(out_gene_data_file)
138
+ # Reload clinical data that was processed earlier
139
+ selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
140
+
141
+ # 1. Normalize gene symbols
142
+ genetic_data = normalize_gene_symbols_in_index(gene_data)
143
+ genetic_data.to_csv(out_gene_data_file)
144
+
145
+ # 2. Link clinical and genetic data
146
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
147
+
148
+ # 3. Handle missing values systematically
149
+ linked_data = handle_missing_values(linked_data, trait)
150
+
151
+ # 4. Check for bias in trait and demographic features
152
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
153
+
154
+ # 5. Final validation and information saving
155
+ note = "Contains gene expression data with metabolic rate (inferred from multicentric occurrence-free survival days) measurements"
156
+ is_usable = validate_and_save_cohort_info(
157
+ is_final=True,
158
+ cohort=cohort,
159
+ info_path=json_path,
160
+ is_gene_available=True,
161
+ is_trait_available=True,
162
+ is_biased=trait_biased,
163
+ df=linked_data,
164
+ note=note
165
+ )
166
+
167
+ # 6. Save linked data only if usable
168
+ if is_usable:
169
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
170
+ linked_data.to_csv(out_data_file)
p3/preprocess/Peptic_ulcer_disease/code/GSE60427.py ADDED
@@ -0,0 +1,173 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Peptic_ulcer_disease"
6
+ cohort = "GSE60427"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Peptic_ulcer_disease"
10
+ in_cohort_dir = "../DATA/GEO/Peptic_ulcer_disease/GSE60427"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Peptic_ulcer_disease/GSE60427.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Peptic_ulcer_disease/gene_data/GSE60427.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Peptic_ulcer_disease/clinical_data/GSE60427.csv"
16
+ json_path = "./output/preprocess/3/Peptic_ulcer_disease/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Get background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
23
+ print("Background Information:")
24
+ print(background_info)
25
+ print("\nSample Characteristics:")
26
+
27
+ # Get dictionary of unique values per row
28
+ unique_values_dict = get_unique_values_by_row(clinical_data)
29
+ for row, values in unique_values_dict.items():
30
+ print(f"\n{row}:")
31
+ print(values)
32
+ # 1. Gene Expression Data Availability
33
+ # Based on background info, this is a microarray expression dataset studying TLR genes
34
+ is_gene_available = True
35
+
36
+ # 2.1 Data Row Identification
37
+ # trait: Use gastritis grade as an indicator of PUD severity (row 4)
38
+ trait_row = 4
39
+ # gender data available in row 1
40
+ gender_row = 1
41
+ # age data available in row 2
42
+ age_row = 2
43
+
44
+ # 2.2 Data Type Conversion Functions
45
+ def convert_trait(value: str) -> int:
46
+ # Extract value after colon and strip whitespace
47
+ if ':' in value:
48
+ value = value.split(':')[1].strip()
49
+ # Convert to binary: 1 for severe/IM, 0 for normal/mild
50
+ if value in ['severe', 'IM']:
51
+ return 1
52
+ elif value in ['normal', 'mild']:
53
+ return 0
54
+ return None
55
+
56
+ def convert_age(value: str) -> float:
57
+ if ':' in value:
58
+ try:
59
+ return float(value.split(':')[1].strip())
60
+ except:
61
+ return None
62
+ return None
63
+
64
+ def convert_gender(value: str) -> int:
65
+ if ':' in value:
66
+ value = value.split(':')[1].strip()
67
+ if value.upper() == 'F':
68
+ return 0
69
+ elif value.upper() == 'M':
70
+ return 1
71
+ return None
72
+
73
+ # 3. Save initial validation results
74
+ is_trait_available = trait_row is not None
75
+ _ = validate_and_save_cohort_info(
76
+ is_final=False,
77
+ cohort=cohort,
78
+ info_path=json_path,
79
+ is_gene_available=is_gene_available,
80
+ is_trait_available=is_trait_available
81
+ )
82
+
83
+ # 4. Extract clinical features since trait data is available
84
+ clinical_features = geo_select_clinical_features(
85
+ clinical_df=clinical_data,
86
+ trait=trait,
87
+ trait_row=trait_row,
88
+ convert_trait=convert_trait,
89
+ age_row=age_row,
90
+ convert_age=convert_age,
91
+ gender_row=gender_row,
92
+ convert_gender=convert_gender
93
+ )
94
+
95
+ # Preview the extracted features
96
+ print(preview_df(clinical_features))
97
+
98
+ # Save clinical data
99
+ clinical_features.to_csv(out_clinical_data_file)
100
+ # Get gene expression data from matrix file
101
+ genetic_data = get_genetic_data(matrix_file_path)
102
+
103
+ # Examine data structure
104
+ print("Data structure and head:")
105
+ print(genetic_data.head())
106
+
107
+ print("\nShape:", genetic_data.shape)
108
+
109
+ print("\nFirst 20 row IDs (gene/probe identifiers):")
110
+ print(list(genetic_data.index)[:20])
111
+
112
+ # Get a few column names to verify sample IDs
113
+ print("\nFirst 5 column names:")
114
+ print(list(genetic_data.columns)[:5])
115
+ # The identifiers starting with "A_19_P" appear to be Agilent array probe IDs rather than standard human gene symbols
116
+ # They follow the standard Agilent microarray probe ID format
117
+ requires_gene_mapping = True
118
+ # Extract gene annotation data
119
+ gene_annotation = get_gene_annotation(soft_file_path)
120
+
121
+ # Display column names and preview data
122
+ print("Column names:")
123
+ print(gene_annotation.columns)
124
+
125
+ print("\nPreview of gene annotation data:")
126
+ print(preview_df(gene_annotation))
127
+ # Extract gene mapping from annotation data
128
+ # ID column in gene_annotation matches probe identifiers in gene expression data
129
+ # GENE_SYMBOL contains corresponding human gene symbols
130
+ mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GENE_SYMBOL')
131
+
132
+ # Apply gene mapping to convert probe-level data to gene-level data
133
+ gene_data = apply_gene_mapping(genetic_data, mapping_data)
134
+
135
+ # Preview the gene expression data
136
+ print("Gene expression data shape:", gene_data.shape)
137
+ print("\nFirst few rows:")
138
+ print(gene_data.head())
139
+ print("\nFirst few gene symbols:")
140
+ print(list(gene_data.index)[:10])
141
+ # Reload clinical data that was processed earlier
142
+ selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
143
+
144
+ # 1. Normalize gene symbols
145
+ genetic_data = normalize_gene_symbols_in_index(gene_data)
146
+ genetic_data.to_csv(out_gene_data_file)
147
+
148
+ # 2. Link clinical and genetic data
149
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
150
+
151
+ # 3. Handle missing values systematically
152
+ linked_data = handle_missing_values(linked_data, trait)
153
+
154
+ # 4. Check for bias in trait and demographic features
155
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
156
+
157
+ # 5. Final validation and information saving
158
+ note = "Contains gene expression data with metabolic rate (inferred from multicentric occurrence-free survival days) measurements"
159
+ is_usable = validate_and_save_cohort_info(
160
+ is_final=True,
161
+ cohort=cohort,
162
+ info_path=json_path,
163
+ is_gene_available=True,
164
+ is_trait_available=True,
165
+ is_biased=trait_biased,
166
+ df=linked_data,
167
+ note=note
168
+ )
169
+
170
+ # 6. Save linked data only if usable
171
+ if is_usable:
172
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
173
+ linked_data.to_csv(out_data_file)
p3/preprocess/Peptic_ulcer_disease/code/TCGA.py ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Peptic_ulcer_disease"
6
+
7
+ # Input paths
8
+ tcga_root_dir = "../DATA/TCGA"
9
+
10
+ # Output paths
11
+ out_data_file = "./output/preprocess/3/Peptic_ulcer_disease/TCGA.csv"
12
+ out_gene_data_file = "./output/preprocess/3/Peptic_ulcer_disease/gene_data/TCGA.csv"
13
+ out_clinical_data_file = "./output/preprocess/3/Peptic_ulcer_disease/clinical_data/TCGA.csv"
14
+ json_path = "./output/preprocess/3/Peptic_ulcer_disease/cohort_info.json"
15
+
16
+ # 1. Check for available directories for peptic ulcer disease data
17
+ all_dirs = ['CrawlData.ipynb', '.DS_Store', 'TCGA_lower_grade_glioma_and_glioblastoma_(GBMLGG)', 'TCGA_Uterine_Carcinosarcoma_(UCS)', 'TCGA_Thyroid_Cancer_(THCA)', 'TCGA_Thymoma_(THYM)', 'TCGA_Testicular_Cancer_(TGCT)', 'TCGA_Stomach_Cancer_(STAD)', 'TCGA_Sarcoma_(SARC)', 'TCGA_Rectal_Cancer_(READ)', 'TCGA_Prostate_Cancer_(PRAD)', 'TCGA_Pheochromocytoma_Paraganglioma_(PCPG)', 'TCGA_Pancreatic_Cancer_(PAAD)', 'TCGA_Ovarian_Cancer_(OV)', 'TCGA_Ocular_melanomas_(UVM)', 'TCGA_Mesothelioma_(MESO)', 'TCGA_Melanoma_(SKCM)', 'TCGA_Lung_Squamous_Cell_Carcinoma_(LUSC)', 'TCGA_Lung_Cancer_(LUNG)', 'TCGA_Lung_Adenocarcinoma_(LUAD)', 'TCGA_Lower_Grade_Glioma_(LGG)', 'TCGA_Liver_Cancer_(LIHC)', 'TCGA_Large_Bcell_Lymphoma_(DLBC)', 'TCGA_Kidney_Papillary_Cell_Carcinoma_(KIRP)', 'TCGA_Kidney_Clear_Cell_Carcinoma_(KIRC)', 'TCGA_Kidney_Chromophobe_(KICH)', 'TCGA_Head_and_Neck_Cancer_(HNSC)', 'TCGA_Glioblastoma_(GBM)', 'TCGA_Esophageal_Cancer_(ESCA)', 'TCGA_Endometrioid_Cancer_(UCEC)', 'TCGA_Colon_and_Rectal_Cancer_(COADREAD)', 'TCGA_Colon_Cancer_(COAD)', 'TCGA_Cervical_Cancer_(CESC)', 'TCGA_Breast_Cancer_(BRCA)', 'TCGA_Bladder_Cancer_(BLCA)', 'TCGA_Bile_Duct_Cancer_(CHOL)', 'TCGA_Adrenocortical_Cancer_(ACC)', 'TCGA_Acute_Myeloid_Leukemia_(LAML)']
18
+
19
+ # Select STAD (stomach cancer) directory as most relevant to peptic ulcer disease
20
+ selected_dir = 'TCGA_Stomach_Cancer_(STAD)'
21
+ cohort_dir = os.path.join(tcga_root_dir, selected_dir)
22
+
23
+ # Get file paths for clinical and genetic data
24
+ clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir)
25
+
26
+ # Load the data files
27
+ clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t')
28
+ genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t')
29
+
30
+ # Print clinical columns for analysis
31
+ print("Clinical data columns:")
32
+ print(clinical_df.columns.tolist())
33
+
34
+ is_gene_available = True
35
+ is_trait_available = True
36
+
37
+ # Record the data availability
38
+ validate_and_save_cohort_info(
39
+ is_final=False,
40
+ cohort="TCGA",
41
+ info_path=json_path,
42
+ is_gene_available=is_gene_available,
43
+ is_trait_available=is_trait_available
44
+ )
45
+ # Define candidate columns for age and gender
46
+ candidate_age_cols = ['age_at_initial_pathologic_diagnosis', 'days_to_birth']
47
+ candidate_gender_cols = ['gender']
48
+
49
+ # Load clinical data from previous step (keeping this commented out since it should exist from earlier)
50
+ #clinical_df = pd.read_csv(clinical_file_path, index_col=0)
51
+
52
+ # Extract candidate columns
53
+ age_preview = preview_df(clinical_df[candidate_age_cols])
54
+ gender_preview = preview_df(clinical_df[candidate_gender_cols])
55
+
56
+ print("Age columns preview:")
57
+ print(age_preview)
58
+ print("\nGender columns preview:")
59
+ print(gender_preview)
60
+ # Analyze age columns
61
+ age_col = 'age_at_initial_pathologic_diagnosis' # This column has valid numeric values
62
+ # days_to_birth has missing values and requires conversion, so we skip it
63
+
64
+ # Analyze gender columns
65
+ gender_col = 'gender' # Only one gender column exists with valid values
66
+
67
+ # Print chosen columns
68
+ print(f"Chosen age column: {age_col}")
69
+ print(f"Chosen gender column: {gender_col}")
70
+ # 1. Extract and standardize clinical features
71
+ selected_clinical_df = tcga_select_clinical_features(clinical_df, trait, age_col, gender_col)
72
+
73
+ # 2. Normalize gene symbols in genetic data
74
+ normalized_genetic_df = normalize_gene_symbols_in_index(genetic_df)
75
+ os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
76
+ normalized_genetic_df.to_csv(out_gene_data_file)
77
+
78
+ # 3. Link clinical and genetic data
79
+ linked_data = pd.merge(selected_clinical_df, normalized_genetic_df.T, left_index=True, right_index=True)
80
+
81
+ # 4. Handle missing values
82
+ linked_data = handle_missing_values(linked_data, trait)
83
+
84
+ # 5. Check for bias in trait and demographic features
85
+ is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
86
+
87
+ # 6. Validate and save cohort info
88
+ note = f"Sample size after preprocessing: {len(linked_data)}. Number of genes: {len(linked_data.columns) - 3}"
89
+ is_usable = validate_and_save_cohort_info(
90
+ is_final=True,
91
+ cohort="TCGA",
92
+ info_path=json_path,
93
+ is_gene_available=True,
94
+ is_trait_available=True,
95
+ is_biased=is_biased,
96
+ df=linked_data,
97
+ note=note
98
+ )
99
+
100
+ # 7. Save linked data if usable
101
+ if is_usable:
102
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
103
+ linked_data.to_csv(out_data_file)
104
+ print(f"Linked data saved to {out_data_file}")
105
+ print("Shape of final linked data:", linked_data.shape)
106
+ else:
107
+ print("Dataset was found to be unusable and was not saved")
p3/preprocess/Peptic_ulcer_disease/cohort_info.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"GSE60427": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": true, "has_gender": true, "sample_size": 32, "note": "Contains gene expression data with metabolic rate (inferred from multicentric occurrence-free survival days) measurements"}, "GSE43580": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": true, "has_gender": true, "sample_size": 33, "note": "Contains gene expression data with metabolic rate (inferred from multicentric occurrence-free survival days) measurements"}, "TCGA": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": true, "has_gender": true, "sample_size": 450, "note": "Sample size after preprocessing: 450. Number of genes: 19848"}}
p3/preprocess/Peptic_ulcer_disease/gene_data/GSE60427.csv ADDED
The diff for this file is too large to render. See raw diff
 
p3/preprocess/Pheochromocytoma_and_Paraganglioma/GSE19987.csv ADDED
The diff for this file is too large to render. See raw diff
 
p3/preprocess/Pheochromocytoma_and_Paraganglioma/clinical_data/GSE19422.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ,GSM482992,GSM482993,GSM482994,GSM482995,GSM482996,GSM482997,GSM482998,GSM482999,GSM483000,GSM483001,GSM483002,GSM483003,GSM483004,GSM483005,GSM483006,GSM483007,GSM483008,GSM483009,GSM483010,GSM483011,GSM483012,GSM483013,GSM483014,GSM483015,GSM483016,GSM483017,GSM483018,GSM483019,GSM483020,GSM483021,GSM483022,GSM483023,GSM483024,GSM483025,GSM483026,GSM483027,GSM483028,GSM483029,GSM483030,GSM483031,GSM483032,GSM483033,GSM483034,GSM483035,GSM483036,GSM483037,GSM483038,GSM483039,GSM483040,GSM483041,GSM483042,GSM483043,GSM483044,GSM483045,GSM483046,GSM483047,GSM483048,GSM483049,GSM483050,GSM483051,GSM483052,GSM483053,GSM483054,GSM483055,GSM483056,GSM483057,GSM483058,GSM483059,GSM483060,GSM483061,GSM483062,GSM483063,GSM483064,GSM483065,GSM483066,GSM483067,GSM483068,GSM483069,GSM483070,GSM483071,GSM483072,GSM483073,GSM483074,GSM483075,GSM483076,GSM483077,GSM483078,GSM483079,GSM483080,GSM483081
2
+ Pheochromocytoma_and_Paraganglioma,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0
p3/preprocess/Pheochromocytoma_and_Paraganglioma/clinical_data/GSE19987.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ,GSM62248,GSM62249,GSM62250,GSM62251,GSM62252,GSM62253,GSM62254,GSM62255,GSM62256,GSM62257,GSM62258,GSM62259,GSM62260,GSM62261,GSM62262,GSM62263,GSM62264,GSM62265,GSM62266,GSM62267,GSM62268,GSM62269,GSM62270,GSM62271,GSM62272,GSM62273,GSM62274,GSM62275,GSM62276,GSM62277,GSM62278,GSM62279,GSM62280,GSM62281,GSM62282,GSM62283,GSM62284,GSM62285,GSM62286,GSM62287,GSM62288,GSM62289,GSM62290,GSM62291,GSM62292,GSM62293,GSM62294,GSM62295,GSM62296,GSM62297,GSM62298,GSM62299,GSM62300,GSM62301,GSM62302,GSM62303,GSM62304,GSM62305,GSM62306,GSM62307,GSM62308,GSM62309,GSM62310,GSM62311,GSM62312,GSM62313,GSM62314,GSM62315,GSM62316,GSM62317,GSM62318,GSM62319,GSM62320,GSM62321,GSM62322
2
+ Pheochromocytoma_and_Paraganglioma,0.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
p3/preprocess/Pheochromocytoma_and_Paraganglioma/clinical_data/GSE33371.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ ,GSM825367,GSM825368,GSM825369,GSM825370,GSM825371,GSM825372,GSM825373,GSM825374,GSM825375,GSM825376,GSM825377,GSM825378,GSM825379,GSM825380,GSM825381,GSM825382,GSM825383,GSM825384,GSM825385,GSM825386,GSM825387,GSM825388,GSM825389,GSM825390,GSM825391,GSM825392,GSM825393,GSM825394,GSM825395,GSM825396,GSM825397,GSM825398,GSM825399,GSM825400,GSM825401,GSM825402,GSM825403,GSM825404,GSM825405,GSM825406,GSM825407,GSM825408,GSM825409,GSM825410,GSM825411,GSM825412,GSM825413,GSM825414,GSM825415,GSM825416,GSM825417,GSM825418,GSM825419,GSM825420,GSM825421,GSM825422,GSM825423,GSM825424,GSM825425,GSM825426,GSM825427,GSM825428,GSM825429,GSM825430,GSM825431
2
+ Pheochromocytoma,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
3
+ Age,71.0,58.0,71.0,44.0,32.0,28.0,55.0,78.0,41.0,58.0,45.0,28.0,57.0,25.0,25.0,56.0,33.0,44.0,71.0,56.0,51.0,32.0,38.0,49.0,62.0,59.0,52.0,54.0,48.0,55.0,64.0,45.0,5.0,49.0,45.0,48.0,77.0,47.0,55.0,52.0,34.0,35.0,52.0,48.0,45.0,39.0,40.0,31.0,87.0,45.0,41.0,5.0,32.0,50.0,55.0,19.0,61.0,33.0,31.0,60.0,51.0,71.0,25.0,47.0,49.0
4
+ Gender,0.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0
p3/preprocess/Pheochromocytoma_and_Paraganglioma/clinical_data/GSE39716.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ ,GSM978080,GSM978081,GSM978082,GSM978083,GSM978084,GSM978085,GSM978086,GSM978087,GSM978088,GSM978089,GSM978090,GSM978091,GSM978092,GSM978093,GSM978094,GSM978095,GSM978096,GSM978097,GSM978098,GSM978099,GSM978100,GSM978101,GSM978102,GSM978103,GSM978104,GSM978105,GSM978106,GSM978107,GSM978108,GSM978109,GSM978110,GSM978111,GSM978112,GSM978113,GSM978114,GSM978115,GSM978116,GSM978117,GSM978118,GSM978119,GSM978120,GSM978121,GSM978122,GSM978123,GSM978124,GSM978125,GSM978126,GSM978127,GSM978128,GSM978129,GSM978130,GSM978131,GSM978132
2
+ Pheochromocytoma_and_Paraganglioma,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
3
+ Age,61.0,,53.0,72.0,72.0,65.0,56.0,62.0,28.5,24.0,46.0,9.0,22.8,26.6,38.2,45.6,36.0,36.2,52.0,12.0,31.0,55.0,35.0,34.8,17.0,30.0,16.0,31.0,26.6,61.4,31.8,32.6,49.3,61.1,26.6,27.1,48.0,29.0,24.3,34.0,42.8,29.4,42.6,39.2,30.0,33.1,18.9,13.1,28.6,16.1,22.7,23.1,24.8
4
+ Gender,1.0,,0.0,0.0,0.0,,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0
p3/preprocess/Pheochromocytoma_and_Paraganglioma/clinical_data/GSE64957.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ,GSM1584943,GSM1584944,GSM1584945,GSM1584946,GSM1584947,GSM1584948,GSM1584949,GSM1584950,GSM1584951,GSM1584952,GSM1584953,GSM1584954,GSM1584955,GSM1584956,GSM1584957,GSM1584958,GSM1584959,GSM1584960,GSM1584961,GSM1584962,GSM1584963,GSM1584964,GSM1584965,GSM1584966,GSM1584967,GSM1584968,GSM1584969,GSM1584970,GSM1584971,GSM1584972,GSM1584973,GSM1584974,GSM1584975,GSM1584976,GSM1584977,GSM1584978,GSM1584979,GSM1584980,GSM1584981,GSM1584982,GSM1584983,GSM1584984,GSM1584985,GSM1584986,GSM1584987,GSM1584988,GSM1584989,GSM1584990,GSM1584991,GSM1584992,GSM1584993,GSM1584994,GSM1584995,GSM1584996,GSM1584997
2
+ Pheochromocytoma_and_Paraganglioma,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0
p3/preprocess/Pheochromocytoma_and_Paraganglioma/clinical_data/GSE67066.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ,GSM1637993,GSM1637994,GSM1637995,GSM1637996,GSM1637997,GSM1637998,GSM1637999,GSM1638000,GSM1638001,GSM1638002,GSM1638003,GSM1638004,GSM1638005,GSM1638006,GSM1638007,GSM1638008,GSM1638009,GSM1638010,GSM1638011,GSM1638012,GSM1638013,GSM1638014,GSM1638015,GSM1638016,GSM1638017,GSM1638018,GSM1638019,GSM1638020,GSM1638021,GSM1638022,GSM1638023,GSM1638024,GSM1638025,GSM1638026,GSM1638027,GSM1638028,GSM1638029,GSM1638030,GSM1638031,GSM1638032,GSM1638033,GSM1638034,GSM1638035,GSM1638036,GSM1638037,GSM1638038,GSM1638039,GSM1638040,GSM1638041,GSM1638042,GSM1638043
2
+ Pheochromocytoma_and_Paraganglioma,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
p3/preprocess/Pheochromocytoma_and_Paraganglioma/code/GSE19422.py ADDED
@@ -0,0 +1,159 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Pheochromocytoma_and_Paraganglioma"
6
+ cohort = "GSE19422"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Pheochromocytoma_and_Paraganglioma"
10
+ in_cohort_dir = "../DATA/GEO/Pheochromocytoma_and_Paraganglioma/GSE19422"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Pheochromocytoma_and_Paraganglioma/GSE19422.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Pheochromocytoma_and_Paraganglioma/gene_data/GSE19422.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Pheochromocytoma_and_Paraganglioma/clinical_data/GSE19422.csv"
16
+ json_path = "./output/preprocess/3/Pheochromocytoma_and_Paraganglioma/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Get background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
23
+ print("Background Information:")
24
+ print(background_info)
25
+ print("\nSample Characteristics:")
26
+
27
+ # Get dictionary of unique values per row
28
+ unique_values_dict = get_unique_values_by_row(clinical_data)
29
+ for row, values in unique_values_dict.items():
30
+ print(f"\n{row}:")
31
+ print(values)
32
+ # 1. Gene Expression Data Availability
33
+ # Based on the background info mentioning "Gene expression profiling" and "cDNA microarray",
34
+ # this dataset contains gene expression data
35
+ is_gene_available = True
36
+
37
+ # 2.1 Row identifiers for clinical features
38
+ # tissue type indicates tumor/normal status (trait)
39
+ trait_row = 0
40
+
41
+ # Age and gender are not available in sample characteristics
42
+ age_row = None
43
+ gender_row = None
44
+
45
+ # 2.2 Data type conversion functions
46
+ def convert_trait(value):
47
+ """Convert tissue type to binary: 1 for tumor (PCC/PGL), 0 for normal"""
48
+ if not value or ':' not in value:
49
+ return None
50
+ value = value.split(':')[1].strip().lower()
51
+ if 'normal' in value:
52
+ return 0
53
+ elif 'tumor' in value or 'pcc' in value or 'pgl' in value:
54
+ return 1
55
+ return None
56
+
57
+ convert_age = None
58
+ convert_gender = None
59
+
60
+ # 3. Save metadata about data availability
61
+ validate_and_save_cohort_info(
62
+ is_final=False,
63
+ cohort=cohort,
64
+ info_path=json_path,
65
+ is_gene_available=is_gene_available,
66
+ is_trait_available=(trait_row is not None)
67
+ )
68
+
69
+ # 4. Extract clinical features since trait data is available
70
+ clinical_features = geo_select_clinical_features(
71
+ clinical_df=clinical_data,
72
+ trait=trait,
73
+ trait_row=trait_row,
74
+ convert_trait=convert_trait,
75
+ age_row=age_row,
76
+ convert_age=convert_age,
77
+ gender_row=gender_row,
78
+ convert_gender=convert_gender
79
+ )
80
+
81
+ # Preview the extracted features
82
+ print("Preview of clinical features:")
83
+ print(preview_df(clinical_features))
84
+
85
+ # Save clinical data
86
+ clinical_features.to_csv(out_clinical_data_file)
87
+ # Get gene expression data from matrix file
88
+ genetic_data = get_genetic_data(matrix_file_path)
89
+
90
+ # Examine data structure
91
+ print("Data structure and head:")
92
+ print(genetic_data.head())
93
+
94
+ print("\nShape:", genetic_data.shape)
95
+
96
+ print("\nFirst 20 row IDs (gene/probe identifiers):")
97
+ print(list(genetic_data.index)[:20])
98
+
99
+ # Get a few column names to verify sample IDs
100
+ print("\nFirst 5 column names:")
101
+ print(list(genetic_data.columns)[:5])
102
+ # Based on the gene identifiers which start with "A_23_P", these are Agilent microarray probe IDs, not gene symbols
103
+ # They need to be mapped to human gene symbols for analysis
104
+ requires_gene_mapping = True
105
+ # Extract gene annotation data
106
+ gene_annotation = get_gene_annotation(soft_file_path)
107
+
108
+ # Display column names and preview data
109
+ print("Column names:")
110
+ print(gene_annotation.columns)
111
+
112
+ print("\nPreview of gene annotation data:")
113
+ print(preview_df(gene_annotation))
114
+ # Get gene mapping data
115
+ # 'ID' in gene annotation matches probe IDs in expression data
116
+ # 'GENE_SYMBOL' contains the target gene symbols
117
+ mapping_data = get_gene_mapping(gene_annotation, 'ID', 'GENE_SYMBOL')
118
+
119
+ # Convert probe measurements to gene expression data
120
+ gene_data = apply_gene_mapping(genetic_data, mapping_data)
121
+
122
+ # Preview results
123
+ print("Shape of original probe data:", genetic_data.shape)
124
+ print("Shape after mapping to genes:", gene_data.shape)
125
+ print("\nFirst few rows and columns of gene expression data:")
126
+ print(gene_data.head().iloc[:, :5])
127
+ # Reload clinical data that was processed earlier
128
+ selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
129
+
130
+ # 1. Normalize gene symbols
131
+ genetic_data = normalize_gene_symbols_in_index(gene_data)
132
+ genetic_data.to_csv(out_gene_data_file)
133
+
134
+ # 2. Link clinical and genetic data
135
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
136
+
137
+ # 3. Handle missing values systematically
138
+ linked_data = handle_missing_values(linked_data, trait)
139
+
140
+ # 4. Check for bias in trait and demographic features
141
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
142
+
143
+ # 5. Final validation and information saving
144
+ note = "Dataset contains gene expression data from adrenal tissue samples, with cases identified by presence of pheochromocytoma"
145
+ is_usable = validate_and_save_cohort_info(
146
+ is_final=True,
147
+ cohort=cohort,
148
+ info_path=json_path,
149
+ is_gene_available=True,
150
+ is_trait_available=True,
151
+ is_biased=trait_biased,
152
+ df=linked_data,
153
+ note=note
154
+ )
155
+
156
+ # 6. Save linked data only if usable
157
+ if is_usable:
158
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
159
+ linked_data.to_csv(out_data_file)
p3/preprocess/Pheochromocytoma_and_Paraganglioma/code/GSE19987.py ADDED
@@ -0,0 +1,172 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Pheochromocytoma_and_Paraganglioma"
6
+ cohort = "GSE19987"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Pheochromocytoma_and_Paraganglioma"
10
+ in_cohort_dir = "../DATA/GEO/Pheochromocytoma_and_Paraganglioma/GSE19987"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Pheochromocytoma_and_Paraganglioma/GSE19987.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Pheochromocytoma_and_Paraganglioma/gene_data/GSE19987.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Pheochromocytoma_and_Paraganglioma/clinical_data/GSE19987.csv"
16
+ json_path = "./output/preprocess/3/Pheochromocytoma_and_Paraganglioma/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Get background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
23
+ print("Background Information:")
24
+ print(background_info)
25
+ print("\nSample Characteristics:")
26
+
27
+ # Get dictionary of unique values per row
28
+ unique_values_dict = get_unique_values_by_row(clinical_data)
29
+ for row, values in unique_values_dict.items():
30
+ print(f"\n{row}:")
31
+ print(values)
32
+ # 1. Gene Expression Data Availability
33
+ # Yes, this dataset contains gene expression data for studying Pheochromocytoma
34
+ is_gene_available = True
35
+
36
+ # 2.1 Data Availability
37
+
38
+ # Trait can be determined from tumor location (row 2)
39
+ trait_row = 2
40
+
41
+ # Age data not available
42
+ age_row = None
43
+
44
+ # Gender data not available
45
+ gender_row = None
46
+
47
+ # 2.2 Data Type Conversion Functions
48
+ def convert_trait(value: str) -> int:
49
+ # Extract value after colon
50
+ if ':' in value:
51
+ value = value.split(':')[1].strip()
52
+ if value.lower() == 'adrenal':
53
+ return 0 # Adrenal pheochromocytoma
54
+ elif value.lower() == 'extraadrenal':
55
+ return 1 # Extra-adrenal paraganglioma
56
+ return None
57
+
58
+ def convert_age(value: str) -> float:
59
+ # Not used since age data unavailable
60
+ return None
61
+
62
+ def convert_gender(value: str) -> int:
63
+ # Not used since gender data unavailable
64
+ return None
65
+
66
+ # 3. Save Metadata
67
+ validate_and_save_cohort_info(
68
+ is_final=False,
69
+ cohort=cohort,
70
+ info_path=json_path,
71
+ is_gene_available=is_gene_available,
72
+ is_trait_available=trait_row is not None
73
+ )
74
+
75
+ # 4. Clinical Feature Extraction
76
+ if trait_row is not None:
77
+ selected_clinical = geo_select_clinical_features(
78
+ clinical_df=clinical_data,
79
+ trait=trait,
80
+ trait_row=trait_row,
81
+ convert_trait=convert_trait,
82
+ age_row=age_row,
83
+ convert_age=convert_age,
84
+ gender_row=gender_row,
85
+ convert_gender=convert_gender
86
+ )
87
+
88
+ # Preview the processed clinical data
89
+ print("Preview of processed clinical data:")
90
+ print(preview_df(selected_clinical))
91
+
92
+ # Save to CSV
93
+ selected_clinical.to_csv(out_clinical_data_file)
94
+ # Get gene expression data from matrix file
95
+ genetic_data = get_genetic_data(matrix_file_path)
96
+
97
+ # Examine data structure
98
+ print("Data structure and head:")
99
+ print(genetic_data.head())
100
+
101
+ print("\nShape:", genetic_data.shape)
102
+
103
+ print("\nFirst 20 row IDs (gene/probe identifiers):")
104
+ print(list(genetic_data.index)[:20])
105
+
106
+ # Get a few column names to verify sample IDs
107
+ print("\nFirst 5 column names:")
108
+ print(list(genetic_data.columns)[:5])
109
+ # Based on the row IDs ending with "_at" (e.g. "1007_s_at", "1053_at"),
110
+ # these appear to be Affymetrix probe IDs rather than gene symbols,
111
+ # so they will need to be mapped to official gene symbols
112
+ requires_gene_mapping = True
113
+ # Extract gene annotation data
114
+ gene_annotation = get_gene_annotation(soft_file_path)
115
+
116
+ # Display column names and preview data
117
+ print("Column names:")
118
+ print(gene_annotation.columns)
119
+
120
+ print("\nPreview of gene annotation data:")
121
+ print(preview_df(gene_annotation))
122
+ # 1. From inspection, 'ID' column contains probe IDs (e.g., "1007_s_at") matching gene expression data
123
+ # 'Gene Symbol' column contains the corresponding gene symbols
124
+ prob_col = 'ID'
125
+ gene_col = 'Gene Symbol'
126
+
127
+ # 2. Get mapping between probe IDs and gene symbols
128
+ mapping_df = get_gene_mapping(gene_annotation, prob_col, gene_col)
129
+
130
+ # 3. Apply mapping to convert probe expressions to gene expressions
131
+ gene_data = apply_gene_mapping(genetic_data, mapping_df)
132
+
133
+ # Preview results
134
+ print("First few rows and columns of mapped gene expression data:")
135
+ print(gene_data.head().iloc[:, :5])
136
+
137
+ print("\nShape:", gene_data.shape)
138
+ print("\nFirst 10 gene symbols:")
139
+ print(list(gene_data.index)[:10])
140
+ # Reload clinical data that was processed earlier
141
+ selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
142
+
143
+ # 1. Normalize gene symbols
144
+ genetic_data = normalize_gene_symbols_in_index(gene_data)
145
+ genetic_data.to_csv(out_gene_data_file)
146
+
147
+ # 2. Link clinical and genetic data
148
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
149
+
150
+ # 3. Handle missing values systematically
151
+ linked_data = handle_missing_values(linked_data, trait)
152
+
153
+ # 4. Check for bias in trait and demographic features
154
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
155
+
156
+ # 5. Final validation and information saving
157
+ note = "Dataset contains gene expression data from adrenal tissue samples, with cases identified by presence of pheochromocytoma"
158
+ is_usable = validate_and_save_cohort_info(
159
+ is_final=True,
160
+ cohort=cohort,
161
+ info_path=json_path,
162
+ is_gene_available=True,
163
+ is_trait_available=True,
164
+ is_biased=trait_biased,
165
+ df=linked_data,
166
+ note=note
167
+ )
168
+
169
+ # 6. Save linked data only if usable
170
+ if is_usable:
171
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
172
+ linked_data.to_csv(out_data_file)
p3/preprocess/Pheochromocytoma_and_Paraganglioma/code/GSE33371.py ADDED
@@ -0,0 +1,175 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Pheochromocytoma_and_Paraganglioma"
6
+ cohort = "GSE33371"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Pheochromocytoma_and_Paraganglioma"
10
+ in_cohort_dir = "../DATA/GEO/Pheochromocytoma_and_Paraganglioma/GSE33371"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Pheochromocytoma_and_Paraganglioma/GSE33371.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Pheochromocytoma_and_Paraganglioma/gene_data/GSE33371.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Pheochromocytoma_and_Paraganglioma/clinical_data/GSE33371.csv"
16
+ json_path = "./output/preprocess/3/Pheochromocytoma_and_Paraganglioma/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Get background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
23
+ print("Background Information:")
24
+ print(background_info)
25
+ print("\nSample Characteristics:")
26
+
27
+ # Get dictionary of unique values per row
28
+ unique_values_dict = get_unique_values_by_row(clinical_data)
29
+ for row, values in unique_values_dict.items():
30
+ print(f"\n{row}:")
31
+ print(values)
32
+ # 1. Gene expression data availability
33
+ # From title and overall design, this dataset contains Affymetrix HG_U133_plus_2 arrays data
34
+ is_gene_available = True
35
+
36
+ # 2.1 Data availability
37
+ # trait_row: 3 - Clinical characteristics shows pheochromocytoma cases
38
+ trait_row = 3
39
+ # age_row: 0 - Age data is available
40
+ age_row = 0
41
+ # gender_row: 1 - Sex data is available
42
+ gender_row = 1
43
+
44
+ # 2.2 Data conversion functions
45
+ def convert_trait(x: str) -> Union[int, None]:
46
+ """Convert clinical characteristics to binary labels"""
47
+ if not isinstance(x, str):
48
+ return None
49
+ value = x.split(': ')[-1].lower()
50
+ # Convert to binary: 1 for pheochromocytoma cases, 0 for others
51
+ if 'pheochromocytoma' in value:
52
+ return 1
53
+ return 0
54
+
55
+ def convert_age(x: str) -> Union[float, None]:
56
+ """Convert age to float"""
57
+ if not isinstance(x, str):
58
+ return None
59
+ value = x.split(': ')[-1]
60
+ try:
61
+ if value == '<10':
62
+ return 5.0 # Approximate middle value
63
+ return float(value)
64
+ except:
65
+ return None
66
+
67
+ def convert_gender(x: str) -> Union[int, None]:
68
+ """Convert gender to binary (0:Female, 1:Male)"""
69
+ if not isinstance(x, str):
70
+ return None
71
+ value = x.split(': ')[-1].upper()
72
+ if value == 'F':
73
+ return 0
74
+ elif value == 'M':
75
+ return 1
76
+ return None
77
+
78
+ # 3. Save metadata
79
+ validate_and_save_cohort_info(is_final=False,
80
+ cohort=cohort,
81
+ info_path=json_path,
82
+ is_gene_available=is_gene_available,
83
+ is_trait_available=trait_row is not None)
84
+
85
+ # 4. Clinical feature extraction
86
+ # Extract clinical features using the library function
87
+ clinical_df = geo_select_clinical_features(clinical_data,
88
+ trait='Pheochromocytoma',
89
+ trait_row=trait_row,
90
+ convert_trait=convert_trait,
91
+ age_row=age_row,
92
+ convert_age=convert_age,
93
+ gender_row=gender_row,
94
+ convert_gender=convert_gender)
95
+
96
+ # Preview the extracted features
97
+ preview_result = preview_df(clinical_df)
98
+ print("Preview of clinical features:")
99
+ print(preview_result)
100
+
101
+ # Save clinical data
102
+ clinical_df.to_csv(out_clinical_data_file)
103
+ # Get gene expression data from matrix file
104
+ genetic_data = get_genetic_data(matrix_file_path)
105
+
106
+ # Examine data structure
107
+ print("Data structure and head:")
108
+ print(genetic_data.head())
109
+
110
+ print("\nShape:", genetic_data.shape)
111
+
112
+ print("\nFirst 20 row IDs (gene/probe identifiers):")
113
+ print(list(genetic_data.index)[:20])
114
+
115
+ # Get a few column names to verify sample IDs
116
+ print("\nFirst 5 column names:")
117
+ print(list(genetic_data.columns)[:5])
118
+ # Observe the IDs from the gene expression data
119
+ # The identifiers follow the pattern like '1007_s_at', '1053_at' which are
120
+ # Affymetrix probe IDs from microarray platforms
121
+ # These need to be mapped to human gene symbols
122
+
123
+ requires_gene_mapping = True
124
+ # Extract gene annotation data
125
+ gene_annotation = get_gene_annotation(soft_file_path)
126
+
127
+ # Display column names and preview data
128
+ print("Column names:")
129
+ print(gene_annotation.columns)
130
+
131
+ print("\nPreview of gene annotation data:")
132
+ print(preview_df(gene_annotation))
133
+ # Get gene mapping from annotation data
134
+ mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')
135
+
136
+ # Apply mapping to convert probe-level data to gene expression data
137
+ gene_data = apply_gene_mapping(genetic_data, mapping_df)
138
+
139
+ # Print first few rows and shape of the mapped gene data
140
+ print("Gene expression data after mapping:")
141
+ print(gene_data.head())
142
+ print("\nShape:", gene_data.shape)
143
+ # Reload clinical data that was processed earlier
144
+ selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
145
+
146
+ # 1. Normalize gene symbols
147
+ genetic_data = normalize_gene_symbols_in_index(gene_data)
148
+ genetic_data.to_csv(out_gene_data_file)
149
+
150
+ # 2. Link clinical and genetic data
151
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
152
+
153
+ # 3. Handle missing values systematically
154
+ linked_data = handle_missing_values(linked_data, "Pheochromocytoma")
155
+
156
+ # 4. Check for bias in trait and demographic features
157
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, "Pheochromocytoma")
158
+
159
+ # 5. Final validation and information saving
160
+ note = "Dataset contains gene expression data from adrenal tissue samples, with cases identified by presence of pheochromocytoma"
161
+ is_usable = validate_and_save_cohort_info(
162
+ is_final=True,
163
+ cohort=cohort,
164
+ info_path=json_path,
165
+ is_gene_available=True,
166
+ is_trait_available=True,
167
+ is_biased=trait_biased,
168
+ df=linked_data,
169
+ note=note
170
+ )
171
+
172
+ # 6. Save linked data only if usable
173
+ if is_usable:
174
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
175
+ linked_data.to_csv(out_data_file)
p3/preprocess/Pheochromocytoma_and_Paraganglioma/code/GSE39716.py ADDED
@@ -0,0 +1,173 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Pheochromocytoma_and_Paraganglioma"
6
+ cohort = "GSE39716"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Pheochromocytoma_and_Paraganglioma"
10
+ in_cohort_dir = "../DATA/GEO/Pheochromocytoma_and_Paraganglioma/GSE39716"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Pheochromocytoma_and_Paraganglioma/GSE39716.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Pheochromocytoma_and_Paraganglioma/gene_data/GSE39716.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Pheochromocytoma_and_Paraganglioma/clinical_data/GSE39716.csv"
16
+ json_path = "./output/preprocess/3/Pheochromocytoma_and_Paraganglioma/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Get background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
23
+ print("Background Information:")
24
+ print(background_info)
25
+ print("\nSample Characteristics:")
26
+
27
+ # Get dictionary of unique values per row
28
+ unique_values_dict = get_unique_values_by_row(clinical_data)
29
+ for row, values in unique_values_dict.items():
30
+ print(f"\n{row}:")
31
+ print(values)
32
+ # 1. Gene Expression Data Availability
33
+ # This dataset contains human HuGene1.0-ST Gene Chip data, which is gene expression data
34
+ is_gene_available = True
35
+
36
+ # 2. Variable Availability and Data Type Conversion
37
+ # 2.1 Data rows from sample characteristics
38
+ trait_row = 2 # tissue type indicates normal vs tumor
39
+ age_row = 0 # age data is available
40
+ gender_row = 1 # gender data is available
41
+
42
+ # 2.2 Data Type Conversion Functions
43
+ def convert_trait(value: str) -> int:
44
+ """Convert tissue type to binary: 0 for normal, 1 for tumor"""
45
+ if not value or '--' in value:
46
+ return None
47
+ value = value.split(': ')[1].lower()
48
+ if 'normal' in value:
49
+ return 0
50
+ elif 'tumor' in value:
51
+ return 1
52
+ return None
53
+
54
+ def convert_age(value: str) -> float:
55
+ """Convert age to float"""
56
+ if not value or '--' in value:
57
+ return None
58
+ try:
59
+ return float(value.split(': ')[1])
60
+ except:
61
+ return None
62
+
63
+ def convert_gender(value: str) -> int:
64
+ """Convert gender to binary: 0 for female, 1 for male"""
65
+ if not value or '--' in value:
66
+ return None
67
+ value = value.split(': ')[1].lower()
68
+ if value == 'female':
69
+ return 0
70
+ elif value == 'male':
71
+ return 1
72
+ return None
73
+
74
+ # 3. Save Metadata
75
+ validate_and_save_cohort_info(
76
+ is_final=False,
77
+ cohort=cohort,
78
+ info_path=json_path,
79
+ is_gene_available=is_gene_available,
80
+ is_trait_available=trait_row is not None
81
+ )
82
+
83
+ # 4. Clinical Feature Extraction
84
+ if trait_row is not None:
85
+ clinical_features = geo_select_clinical_features(
86
+ clinical_df=clinical_data,
87
+ trait=trait,
88
+ trait_row=trait_row,
89
+ convert_trait=convert_trait,
90
+ age_row=age_row,
91
+ convert_age=convert_age,
92
+ gender_row=gender_row,
93
+ convert_gender=convert_gender
94
+ )
95
+ print("Preview of extracted clinical features:")
96
+ print(preview_df(clinical_features))
97
+ clinical_features.to_csv(out_clinical_data_file)
98
+ # Get gene expression data from matrix file
99
+ genetic_data = get_genetic_data(matrix_file_path)
100
+
101
+ # Examine data structure
102
+ print("Data structure and head:")
103
+ print(genetic_data.head())
104
+
105
+ print("\nShape:", genetic_data.shape)
106
+
107
+ print("\nFirst 20 row IDs (gene/probe identifiers):")
108
+ print(list(genetic_data.index)[:20])
109
+
110
+ # Get a few column names to verify sample IDs
111
+ print("\nFirst 5 column names:")
112
+ print(list(genetic_data.columns)[:5])
113
+ # The gene identifiers are 7-digit IDs starting with '7892', which appear to be Illumina probe IDs
114
+ # These are not standard human gene symbols and will need to be mapped
115
+ requires_gene_mapping = True
116
+ # Extract gene annotation data
117
+ gene_annotation = get_gene_annotation(soft_file_path)
118
+
119
+ # Display column names and preview data
120
+ print("Column names:")
121
+ print(gene_annotation.columns)
122
+
123
+ print("\nPreview of gene annotation data:")
124
+ print(preview_df(gene_annotation))
125
+ # From the output, we can see that 'ID' in the annotation matches the row IDs in expression data
126
+ # 'gene_assignment' contains gene symbol information
127
+
128
+ # Extract mapping between identifiers and gene symbols
129
+ mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='gene_assignment')
130
+
131
+ # Apply the mapping to convert probe-level data to gene-level data
132
+ gene_data = apply_gene_mapping(genetic_data, mapping_df)
133
+
134
+ # Save the processed gene expression data
135
+ gene_data.to_csv(out_gene_data_file)
136
+
137
+ # Preview gene data structure
138
+ print("\nProcessed gene data preview:")
139
+ print(preview_df(gene_data))
140
+ print("\nShape:", gene_data.shape)
141
+ # Reload clinical data that was processed earlier
142
+ selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
143
+
144
+ # 1. Normalize gene symbols
145
+ genetic_data = normalize_gene_symbols_in_index(gene_data)
146
+ genetic_data.to_csv(out_gene_data_file)
147
+
148
+ # 2. Link clinical and genetic data
149
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
150
+
151
+ # 3. Handle missing values systematically
152
+ linked_data = handle_missing_values(linked_data, trait)
153
+
154
+ # 4. Check for bias in trait and demographic features
155
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
156
+
157
+ # 5. Final validation and information saving
158
+ note = "Contains gene expression data with metabolic rate (inferred from multicentric occurrence-free survival days) measurements"
159
+ is_usable = validate_and_save_cohort_info(
160
+ is_final=True,
161
+ cohort=cohort,
162
+ info_path=json_path,
163
+ is_gene_available=True,
164
+ is_trait_available=True,
165
+ is_biased=trait_biased,
166
+ df=linked_data,
167
+ note=note
168
+ )
169
+
170
+ # 6. Save linked data only if usable
171
+ if is_usable:
172
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
173
+ linked_data.to_csv(out_data_file)
p3/preprocess/Pheochromocytoma_and_Paraganglioma/code/GSE64957.py ADDED
@@ -0,0 +1,190 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Pheochromocytoma_and_Paraganglioma"
6
+ cohort = "GSE64957"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Pheochromocytoma_and_Paraganglioma"
10
+ in_cohort_dir = "../DATA/GEO/Pheochromocytoma_and_Paraganglioma/GSE64957"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Pheochromocytoma_and_Paraganglioma/GSE64957.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Pheochromocytoma_and_Paraganglioma/gene_data/GSE64957.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Pheochromocytoma_and_Paraganglioma/clinical_data/GSE64957.csv"
16
+ json_path = "./output/preprocess/3/Pheochromocytoma_and_Paraganglioma/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Get background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
23
+ print("Background Information:")
24
+ print(background_info)
25
+ print("\nSample Characteristics:")
26
+
27
+ # Get dictionary of unique values per row
28
+ unique_values_dict = get_unique_values_by_row(clinical_data)
29
+ for row, values in unique_values_dict.items():
30
+ print(f"\n{row}:")
31
+ print(values)
32
+ # 1. Gene Expression Data Availability
33
+ # Yes, this dataset contains gene expression data from Affymetrix Human Genome U133 Plus 2.0 Array
34
+ is_gene_available = True
35
+
36
+ # 2.1 Variable Availability
37
+ # Trait (pheo vs non-pheo) can be inferred from row 0 (disease field)
38
+ trait_row = 0
39
+
40
+ # Age not available
41
+ age_row = None
42
+
43
+ # Gender not available
44
+ gender_row = None
45
+
46
+ # 2.2 Data Type Conversion Functions
47
+ def convert_trait(value):
48
+ """Convert disease value to binary: Pheochromocytoma (1) vs non-Pheochromocytoma (0)"""
49
+ if not isinstance(value, str):
50
+ return None
51
+ value = value.lower().split(': ')[-1]
52
+ if 'pheochromocytoma' in value:
53
+ return 1
54
+ elif "conn's syndrome" in value:
55
+ return 0
56
+ return None
57
+
58
+ def convert_age(value):
59
+ return None
60
+
61
+ def convert_gender(value):
62
+ return None
63
+
64
+ # 3. Save initial metadata
65
+ is_trait_available = trait_row is not None
66
+ validate_and_save_cohort_info(is_final=False,
67
+ cohort=cohort,
68
+ info_path=json_path,
69
+ is_gene_available=is_gene_available,
70
+ is_trait_available=is_trait_available)
71
+
72
+ # 4. Extract clinical features
73
+ if trait_row is not None:
74
+ clinical_features = geo_select_clinical_features(
75
+ clinical_df=clinical_data,
76
+ trait=trait,
77
+ trait_row=trait_row,
78
+ convert_trait=convert_trait,
79
+ age_row=age_row,
80
+ convert_age=convert_age,
81
+ gender_row=gender_row,
82
+ convert_gender=convert_gender
83
+ )
84
+
85
+ # Preview the extracted features
86
+ preview = preview_df(clinical_features)
87
+
88
+ # Save clinical features
89
+ clinical_features.to_csv(out_clinical_data_file)
90
+ # Get gene expression data from matrix file
91
+ genetic_data = get_genetic_data(matrix_file_path)
92
+
93
+ # Examine data structure
94
+ print("Data structure and head:")
95
+ print(genetic_data.head())
96
+
97
+ print("\nShape:", genetic_data.shape)
98
+
99
+ print("\nFirst 20 row IDs (gene/probe identifiers):")
100
+ print(list(genetic_data.index)[:20])
101
+
102
+ # Get a few column names to verify sample IDs
103
+ print("\nFirst 5 column names:")
104
+ print(list(genetic_data.columns)[:5])
105
+ # The IDs appear to be numerical probe identifiers (e.g. 7892501, 7892502)
106
+ # rather than human gene symbols (e.g. TP53, BRCA1)
107
+ # These are likely probe IDs from a microarray platform that need to be mapped to gene symbols
108
+ requires_gene_mapping = True
109
+ # Extract gene annotation data
110
+ gene_annotation = get_gene_annotation(soft_file_path)
111
+
112
+ # Display column names and preview data
113
+ print("Column names:")
114
+ print(gene_annotation.columns)
115
+
116
+ print("\nPreview of gene annotation data:")
117
+ print(preview_df(gene_annotation))
118
+ # In gene_annotation, 'ID' column stores probe identifiers matching genetic_data indices
119
+ # 'gene_assignment' column stores gene symbol information in format "gene symbol // gene title // ..."
120
+
121
+ # Create mapping dataframe from probe ID to gene symbol
122
+ mapping_data = get_gene_mapping(gene_annotation, 'ID', 'gene_assignment')
123
+
124
+ # Extract gene symbols from gene assignment string
125
+ mapping_data['Gene'] = mapping_data['Gene'].str.split(' // ').str[0]
126
+
127
+ # Apply gene mapping to convert probe measurements to gene expression
128
+ gene_data = apply_gene_mapping(genetic_data, mapping_data)
129
+
130
+ # Preview results
131
+ print("Gene expression data shape:", gene_data.shape)
132
+ print("\nFirst few gene symbols:")
133
+ print(list(gene_data.index)[:10])
134
+ print("\nFirst few values:")
135
+ print(gene_data.head())
136
+ # First check the clinical data processing
137
+ print("Clinical Data Preview:")
138
+ selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
139
+ print(selected_clinical_df.head())
140
+ print("\nClinical Data Shape:", selected_clinical_df.shape)
141
+ print("\nClinical Data Column Names:", selected_clinical_df.columns)
142
+ print("\nClinical Data Info:")
143
+ print(selected_clinical_df.info())
144
+
145
+ # If clinical data is valid, proceed with processing
146
+ if not selected_clinical_df.empty and not selected_clinical_df.isna().all().all():
147
+ # 1. Normalize gene symbols
148
+ genetic_data = normalize_gene_symbols_in_index(gene_data)
149
+ genetic_data.to_csv(out_gene_data_file)
150
+ print("\nGenetic Data Shape after normalization:", genetic_data.shape)
151
+
152
+ # 2. Link clinical and genetic data
153
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
154
+ print("\nLinked Data Shape:", linked_data.shape)
155
+
156
+ # 3. Handle missing values
157
+ linked_data = handle_missing_values(linked_data, trait)
158
+
159
+ # 4. Check for bias
160
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
161
+
162
+ # 5. Final validation and saving metadata
163
+ note = "Gene expression data from Affymetrix array with disease status (pheochromocytoma vs Conn's syndrome)"
164
+ is_usable = validate_and_save_cohort_info(
165
+ is_final=True,
166
+ cohort=cohort,
167
+ info_path=json_path,
168
+ is_gene_available=True,
169
+ is_trait_available=True,
170
+ is_biased=trait_biased,
171
+ df=linked_data,
172
+ note=note
173
+ )
174
+
175
+ # 6. Save if usable
176
+ if is_usable:
177
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
178
+ linked_data.to_csv(out_data_file)
179
+ else:
180
+ print("Error: Clinical data processing failed - empty or invalid data")
181
+ validate_and_save_cohort_info(
182
+ is_final=True,
183
+ cohort=cohort,
184
+ info_path=json_path,
185
+ is_gene_available=True,
186
+ is_trait_available=True,
187
+ is_biased=True,
188
+ df=pd.DataFrame(),
189
+ note="Clinical data processing failed - empty or invalid data"
190
+ )
p3/preprocess/Pheochromocytoma_and_Paraganglioma/code/GSE67066.py ADDED
@@ -0,0 +1,157 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Pheochromocytoma_and_Paraganglioma"
6
+ cohort = "GSE67066"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Pheochromocytoma_and_Paraganglioma"
10
+ in_cohort_dir = "../DATA/GEO/Pheochromocytoma_and_Paraganglioma/GSE67066"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Pheochromocytoma_and_Paraganglioma/GSE67066.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Pheochromocytoma_and_Paraganglioma/gene_data/GSE67066.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Pheochromocytoma_and_Paraganglioma/clinical_data/GSE67066.csv"
16
+ json_path = "./output/preprocess/3/Pheochromocytoma_and_Paraganglioma/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Get background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
23
+ print("Background Information:")
24
+ print(background_info)
25
+ print("\nSample Characteristics:")
26
+
27
+ # Get dictionary of unique values per row
28
+ unique_values_dict = get_unique_values_by_row(clinical_data)
29
+ for row, values in unique_values_dict.items():
30
+ print(f"\n{row}:")
31
+ print(values)
32
+ # 1. Gene Expression Data Availability
33
+ # The background indicates this is mRNA expression data
34
+ is_gene_available = True
35
+
36
+ # 2. Variable Availability and Data Type Conversion
37
+ # Trait data (benign vs malignant) is available in row 1
38
+ trait_row = 1
39
+
40
+ def convert_trait(value: str) -> int:
41
+ if not isinstance(value, str):
42
+ return None
43
+ value = value.split(': ')[-1].lower()
44
+ if 'benign' in value:
45
+ return 0
46
+ elif 'malignant' in value:
47
+ return 1
48
+ return None
49
+
50
+ # Age and gender data not found in sample characteristics
51
+ age_row = None
52
+ gender_row = None
53
+ convert_age = None
54
+ convert_gender = None
55
+
56
+ # 3. Save metadata about data availability
57
+ validate_and_save_cohort_info(is_final=False,
58
+ cohort=cohort,
59
+ info_path=json_path,
60
+ is_gene_available=is_gene_available,
61
+ is_trait_available=trait_row is not None)
62
+
63
+ # 4. Extract clinical features
64
+ clinical_df = geo_select_clinical_features(clinical_data,
65
+ trait,
66
+ trait_row=trait_row,
67
+ convert_trait=convert_trait,
68
+ age_row=age_row,
69
+ convert_age=convert_age,
70
+ gender_row=gender_row,
71
+ convert_gender=convert_gender)
72
+
73
+ # Preview extracted features
74
+ print("Preview of clinical data:")
75
+ print(preview_df(clinical_df))
76
+
77
+ # Save clinical data
78
+ os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
79
+ clinical_df.to_csv(out_clinical_data_file)
80
+ # Get gene expression data from matrix file
81
+ genetic_data = get_genetic_data(matrix_file_path)
82
+
83
+ # Examine data structure
84
+ print("Data structure and head:")
85
+ print(genetic_data.head())
86
+
87
+ print("\nShape:", genetic_data.shape)
88
+
89
+ print("\nFirst 20 row IDs (gene/probe identifiers):")
90
+ print(list(genetic_data.index)[:20])
91
+
92
+ # Get a few column names to verify sample IDs
93
+ print("\nFirst 5 column names:")
94
+ print(list(genetic_data.columns)[:5])
95
+ # Based on the format of the gene identifiers (e.g. "1007_s_at"), which appear to be Affymetrix probe IDs,
96
+ # we need to map these to human gene symbols
97
+ requires_gene_mapping = True
98
+ # Extract gene annotation data
99
+ gene_annotation = get_gene_annotation(soft_file_path)
100
+
101
+ # Display column names and preview data
102
+ print("Column names:")
103
+ print(gene_annotation.columns)
104
+
105
+ print("\nPreview of gene annotation data:")
106
+ print(preview_df(gene_annotation))
107
+ # Get mapping between probe IDs and gene symbols
108
+ mapping_data = get_gene_mapping(gene_annotation, 'ID', 'Gene Symbol')
109
+
110
+ # Apply gene mapping to convert probe-level data to gene expression data
111
+ gene_data = apply_gene_mapping(genetic_data, mapping_data)
112
+
113
+ # Preview resulting gene expression data
114
+ print("Preview of mapped gene expression data:")
115
+ print(gene_data.head())
116
+ print("\nShape:", gene_data.shape)
117
+
118
+ # Print some gene symbols to verify mapping
119
+ print("\nFirst 20 gene symbols:")
120
+ print(list(gene_data.index)[:20])
121
+
122
+ # Get a few column names to verify sample IDs are preserved
123
+ print("\nFirst 5 column names:")
124
+ print(list(gene_data.columns)[:5])
125
+ # Reload clinical data that was processed earlier
126
+ selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
127
+
128
+ # 1. Normalize gene symbols
129
+ genetic_data = normalize_gene_symbols_in_index(gene_data)
130
+ genetic_data.to_csv(out_gene_data_file)
131
+
132
+ # 2. Link clinical and genetic data
133
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
134
+
135
+ # 3. Handle missing values systematically
136
+ linked_data = handle_missing_values(linked_data, trait)
137
+
138
+ # 4. Check for bias in trait and demographic features
139
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
140
+
141
+ # 5. Final validation and information saving
142
+ note = "Contains gene expression data with metabolic rate (inferred from multicentric occurrence-free survival days) measurements"
143
+ is_usable = validate_and_save_cohort_info(
144
+ is_final=True,
145
+ cohort=cohort,
146
+ info_path=json_path,
147
+ is_gene_available=True,
148
+ is_trait_available=True,
149
+ is_biased=trait_biased,
150
+ df=linked_data,
151
+ note=note
152
+ )
153
+
154
+ # 6. Save linked data only if usable
155
+ if is_usable:
156
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
157
+ linked_data.to_csv(out_data_file)
p3/preprocess/Pheochromocytoma_and_Paraganglioma/code/TCGA.py ADDED
@@ -0,0 +1,143 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Pheochromocytoma_and_Paraganglioma"
6
+
7
+ # Input paths
8
+ tcga_root_dir = "../DATA/TCGA"
9
+
10
+ # Output paths
11
+ out_data_file = "./output/preprocess/3/Pheochromocytoma_and_Paraganglioma/TCGA.csv"
12
+ out_gene_data_file = "./output/preprocess/3/Pheochromocytoma_and_Paraganglioma/gene_data/TCGA.csv"
13
+ out_clinical_data_file = "./output/preprocess/3/Pheochromocytoma_and_Paraganglioma/clinical_data/TCGA.csv"
14
+ json_path = "./output/preprocess/3/Pheochromocytoma_and_Paraganglioma/cohort_info.json"
15
+
16
+ # 1. Check for available directories for Pheochromocytoma and Paraganglioma data
17
+ all_dirs = ['CrawlData.ipynb', '.DS_Store', 'TCGA_lower_grade_glioma_and_glioblastoma_(GBMLGG)', 'TCGA_Uterine_Carcinosarcoma_(UCS)', 'TCGA_Thyroid_Cancer_(THCA)', 'TCGA_Thymoma_(THYM)', 'TCGA_Testicular_Cancer_(TGCT)', 'TCGA_Stomach_Cancer_(STAD)', 'TCGA_Sarcoma_(SARC)', 'TCGA_Rectal_Cancer_(READ)', 'TCGA_Prostate_Cancer_(PRAD)', 'TCGA_Pheochromocytoma_Paraganglioma_(PCPG)', 'TCGA_Pancreatic_Cancer_(PAAD)', 'TCGA_Ovarian_Cancer_(OV)', 'TCGA_Ocular_melanomas_(UVM)', 'TCGA_Mesothelioma_(MESO)', 'TCGA_Melanoma_(SKCM)', 'TCGA_Lung_Squamous_Cell_Carcinoma_(LUSC)', 'TCGA_Lung_Cancer_(LUNG)', 'TCGA_Lung_Adenocarcinoma_(LUAD)', 'TCGA_Lower_Grade_Glioma_(LGG)', 'TCGA_Liver_Cancer_(LIHC)', 'TCGA_Large_Bcell_Lymphoma_(DLBC)', 'TCGA_Kidney_Papillary_Cell_Carcinoma_(KIRP)', 'TCGA_Kidney_Clear_Cell_Carcinoma_(KIRC)', 'TCGA_Kidney_Chromophobe_(KICH)', 'TCGA_Head_and_Neck_Cancer_(HNSC)', 'TCGA_Glioblastoma_(GBM)', 'TCGA_Esophageal_Cancer_(ESCA)', 'TCGA_Endometrioid_Cancer_(UCEC)', 'TCGA_Colon_and_Rectal_Cancer_(COADREAD)', 'TCGA_Colon_Cancer_(COAD)', 'TCGA_Cervical_Cancer_(CESC)', 'TCGA_Breast_Cancer_(BRCA)', 'TCGA_Bladder_Cancer_(BLCA)', 'TCGA_Bile_Duct_Cancer_(CHOL)', 'TCGA_Adrenocortical_Cancer_(ACC)', 'TCGA_Acute_Myeloid_Leukemia_(LAML)']
18
+
19
+ # Select PCPG directory as exact match for Pheochromocytoma and Paraganglioma
20
+ selected_dir = 'TCGA_Pheochromocytoma_Paraganglioma_(PCPG)'
21
+ cohort_dir = os.path.join(tcga_root_dir, selected_dir)
22
+
23
+ # Get file paths for clinical and genetic data
24
+ clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir)
25
+
26
+ # Load the data files
27
+ clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t')
28
+ genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t')
29
+
30
+ # Print clinical columns for analysis
31
+ print("Clinical data columns:")
32
+ print(clinical_df.columns.tolist())
33
+
34
+ is_gene_available = True
35
+ is_trait_available = True
36
+
37
+ # Record the data availability
38
+ validate_and_save_cohort_info(
39
+ is_final=False,
40
+ cohort="TCGA",
41
+ info_path=json_path,
42
+ is_gene_available=is_gene_available,
43
+ is_trait_available=is_trait_available
44
+ )
45
+ # Identify candidate columns
46
+ candidate_age_cols = ['age_at_initial_pathologic_diagnosis', 'days_to_birth']
47
+ candidate_gender_cols = ['gender']
48
+
49
+ # Debug directory structure
50
+ print(f"Root dir exists: {os.path.exists(tcga_root_dir)}")
51
+ if os.path.exists(tcga_root_dir):
52
+ print("Available directories:", os.listdir(tcga_root_dir))
53
+
54
+ # Get clinical file path
55
+ cohort_dir = os.path.join(tcga_root_dir, "TCGA-PCPG")
56
+ clinical_file_path, _ = tcga_get_relevant_filepaths(cohort_dir)
57
+
58
+ # Read clinical data
59
+ clinical_df = pd.read_csv(clinical_file_path, index_col=0)
60
+
61
+ # Extract and preview age columns
62
+ age_preview = clinical_df[candidate_age_cols].head()
63
+ print("\nAge columns preview:")
64
+ print(preview_df(age_preview))
65
+
66
+ # Extract and preview gender columns
67
+ gender_preview = clinical_df[candidate_gender_cols].head()
68
+ print("\nGender columns preview:")
69
+ print(preview_df(gender_preview))
70
+ # 1. Check for available directories for Pheochromocytoma and Paraganglioma data
71
+ all_dirs = ['CrawlData.ipynb', '.DS_Store', 'TCGA_lower_grade_glioma_and_glioblastoma_(GBMLGG)', 'TCGA_Uterine_Carcinosarcoma_(UCS)', 'TCGA_Thyroid_Cancer_(THCA)', 'TCGA_Thymoma_(THYM)', 'TCGA_Testicular_Cancer_(TGCT)', 'TCGA_Stomach_Cancer_(STAD)', 'TCGA_Sarcoma_(SARC)', 'TCGA_Rectal_Cancer_(READ)', 'TCGA_Prostate_Cancer_(PRAD)', 'TCGA_Pheochromocytoma_Paraganglioma_(PCPG)', 'TCGA_Pancreatic_Cancer_(PAAD)', 'TCGA_Ovarian_Cancer_(OV)', 'TCGA_Ocular_melanomas_(UVM)', 'TCGA_Mesothelioma_(MESO)', 'TCGA_Melanoma_(SKCM)', 'TCGA_Lung_Squamous_Cell_Carcinoma_(LUSC)', 'TCGA_Lung_Cancer_(LUNG)', 'TCGA_Lung_Adenocarcinoma_(LUAD)', 'TCGA_Lower_Grade_Glioma_(LGG)', 'TCGA_Liver_Cancer_(LIHC)', 'TCGA_Large_Bcell_Lymphoma_(DLBC)', 'TCGA_Kidney_Papillary_Cell_Carcinoma_(KIRP)', 'TCGA_Kidney_Clear_Cell_Carcinoma_(KIRC)', 'TCGA_Kidney_Chromophobe_(KICH)', 'TCGA_Head_and_Neck_Cancer_(HNSC)', 'TCGA_Glioblastoma_(GBM)', 'TCGA_Esophageal_Cancer_(ESCA)', 'TCGA_Endometrioid_Cancer_(UCEC)', 'TCGA_Colon_and_Rectal_Cancer_(COADREAD)', 'TCGA_Colon_Cancer_(COAD)', 'TCGA_Cervical_Cancer_(CESC)', 'TCGA_Breast_Cancer_(BRCA)', 'TCGA_Bladder_Cancer_(BLCA)', 'TCGA_Bile_Duct_Cancer_(CHOL)', 'TCGA_Adrenocortical_Cancer_(ACC)', 'TCGA_Acute_Myeloid_Leukemia_(LAML)']
72
+
73
+ # Select PCPG directory as exact match for Pheochromocytoma and Paraganglioma
74
+ selected_dir = 'TCGA_Pheochromocytoma_Paraganglioma_(PCPG)'
75
+ cohort_dir = os.path.join(tcga_root_dir, selected_dir)
76
+
77
+ # Get file paths for clinical and genetic data
78
+ clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir)
79
+
80
+ # Load the data files
81
+ clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t')
82
+ genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t')
83
+
84
+ # Print clinical columns for analysis
85
+ print("Clinical data columns:")
86
+ print(clinical_df.columns.tolist())
87
+
88
+ is_gene_available = True
89
+ is_trait_available = True
90
+
91
+ # Record the data availability
92
+ validate_and_save_cohort_info(
93
+ is_final=False,
94
+ cohort="TCGA",
95
+ info_path=json_path,
96
+ is_gene_available=is_gene_available,
97
+ is_trait_available=is_trait_available
98
+ )
99
+ # Set age and gender column variables based on known column names
100
+ age_col = "age_at_initial_pathologic_diagnosis"
101
+ gender_col = "gender"
102
+
103
+ # Print chosen columns
104
+ print(f"Chosen age column: {age_col}")
105
+ print(f"Chosen gender column: {gender_col}")
106
+ # 1. Extract and standardize clinical features
107
+ selected_clinical_df = tcga_select_clinical_features(clinical_df, trait, age_col, gender_col)
108
+
109
+ # 2. Normalize gene symbols in genetic data
110
+ normalized_genetic_df = normalize_gene_symbols_in_index(genetic_df)
111
+ os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
112
+ normalized_genetic_df.to_csv(out_gene_data_file)
113
+
114
+ # 3. Link clinical and genetic data
115
+ linked_data = pd.merge(selected_clinical_df, normalized_genetic_df.T, left_index=True, right_index=True)
116
+
117
+ # 4. Handle missing values
118
+ linked_data = handle_missing_values(linked_data, trait)
119
+
120
+ # 5. Check for bias in trait and demographic features
121
+ is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
122
+
123
+ # 6. Validate and save cohort info
124
+ note = f"Sample size after preprocessing: {len(linked_data)}. Number of genes: {len(linked_data.columns) - 3}"
125
+ is_usable = validate_and_save_cohort_info(
126
+ is_final=True,
127
+ cohort="TCGA",
128
+ info_path=json_path,
129
+ is_gene_available=True,
130
+ is_trait_available=True,
131
+ is_biased=is_biased,
132
+ df=linked_data,
133
+ note=note
134
+ )
135
+
136
+ # 7. Save linked data if usable
137
+ if is_usable:
138
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
139
+ linked_data.to_csv(out_data_file)
140
+ print(f"Linked data saved to {out_data_file}")
141
+ print("Shape of final linked data:", linked_data.shape)
142
+ else:
143
+ print("Dataset was found to be unusable and was not saved")
p3/preprocess/Pheochromocytoma_and_Paraganglioma/cohort_info.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"GSE67066": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": false, "has_gender": false, "sample_size": 51, "note": "Contains gene expression data with metabolic rate (inferred from multicentric occurrence-free survival days) measurements"}, "GSE64957": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": "Gene expression data from Affymetrix array with disease status (pheochromocytoma vs Conn's syndrome)"}, "GSE39716": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": true, "has_gender": true, "sample_size": 53, "note": "Contains gene expression data with metabolic rate (inferred from multicentric occurrence-free survival days) measurements"}, "GSE33371": {"is_usable": false, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": true, "has_age": true, "has_gender": true, "sample_size": 65, "note": "Dataset contains gene expression data from adrenal tissue samples, with cases identified by presence of pheochromocytoma"}, "GSE19987": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": false, "has_gender": false, "sample_size": 75, "note": "Dataset contains gene expression data from adrenal tissue samples, with cases identified by presence of pheochromocytoma"}, "GSE19422": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": false, "has_gender": false, "sample_size": 90, "note": "Dataset contains gene expression data from adrenal tissue samples, with cases identified by presence of pheochromocytoma"}, "TCGA": {"is_usable": false, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": true, "has_age": true, "has_gender": true, "sample_size": 187, "note": "Sample size after preprocessing: 187. Number of genes: 19848"}}
p3/preprocess/Pheochromocytoma_and_Paraganglioma/gene_data/GSE19987.csv ADDED
The diff for this file is too large to render. See raw diff
 
p3/preprocess/Pheochromocytoma_and_Paraganglioma/gene_data/GSE64957.csv ADDED
@@ -0,0 +1 @@
 
 
1
+ Gene,GSM1584943,GSM1584944,GSM1584945,GSM1584946,GSM1584947,GSM1584948,GSM1584949,GSM1584950,GSM1584951,GSM1584952,GSM1584953,GSM1584954,GSM1584955,GSM1584956,GSM1584957,GSM1584958,GSM1584959,GSM1584960,GSM1584961,GSM1584962,GSM1584963,GSM1584964,GSM1584965,GSM1584966,GSM1584967,GSM1584968,GSM1584969,GSM1584970,GSM1584971,GSM1584972,GSM1584973,GSM1584974,GSM1584975,GSM1584976,GSM1584977,GSM1584978,GSM1584979,GSM1584980,GSM1584981,GSM1584982,GSM1584983,GSM1584984,GSM1584985,GSM1584986,GSM1584987,GSM1584988,GSM1584989,GSM1584990,GSM1584991,GSM1584992,GSM1584993,GSM1584994,GSM1584995,GSM1584996,GSM1584997