File size: 5,710 Bytes
5a96bf0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Post-Traumatic_Stress_Disorder"
cohort = "GSE44456"

# Input paths
in_trait_dir = "../DATA/GEO/Post-Traumatic_Stress_Disorder"
in_cohort_dir = "../DATA/GEO/Post-Traumatic_Stress_Disorder/GSE44456"

# Output paths
out_data_file = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/GSE44456.csv"
out_gene_data_file = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/gene_data/GSE44456.csv"
out_clinical_data_file = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/clinical_data/GSE44456.csv"
json_path = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/cohort_info.json"

# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")

# Get dictionary of unique values per row 
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
    print(f"\n{row}:")
    print(values)
# 1. Gene Expression Data Availability
is_gene_available = True  # Series summary mentions gene expression data from hippocampus

# 2. Variable Availability and Data Type Conversion 
trait_row = 0  # 'phenotype' row contains alcoholic vs control
age_row = 3  # 'age' row contains numeric age values  
gender_row = 1  # 'gender' row contains male/female values

def convert_trait(x: str) -> Optional[int]:
    """Convert phenotype to binary (0=control, 1=alcoholic)"""
    if not isinstance(x, str):
        return None
    x = x.split(': ')[-1].lower()
    if x == 'control':
        return 0
    elif x == 'alcoholic':
        return 1
    return None

def convert_age(x: str) -> Optional[float]:
    """Convert age to float"""
    if not isinstance(x, str):
        return None
    try:
        return float(x.split(': ')[-1])
    except:
        return None

def convert_gender(x: str) -> Optional[int]:
    """Convert gender to binary (0=female, 1=male)"""
    if not isinstance(x, str):
        return None
    x = x.split(': ')[-1].lower()
    if x == 'female':
        return 0
    elif x == 'male':
        return 1
    return None

# 3. Save metadata for initial filtering
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=trait_row is not None
)

# 4. Extract clinical features
selected_clinical_df = geo_select_clinical_features(
    clinical_df=clinical_data,
    trait=trait,
    trait_row=trait_row,
    convert_trait=convert_trait,
    age_row=age_row,
    convert_age=convert_age, 
    gender_row=gender_row,
    convert_gender=convert_gender
)

# Preview and save clinical data
print(preview_df(selected_clinical_df))
selected_clinical_df.to_csv(out_clinical_data_file)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)

# Examine data structure
print("Data structure and head:")
print(genetic_data.head())

print("\nShape:", genetic_data.shape)

print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])

# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# The identifiers appear to be probe IDs (like '7896736', '7896738', etc.)
# rather than standard human gene symbols. They are likely numeric probe IDs 
# specific to the microarray platform used, which need to be mapped to gene symbols
requires_gene_mapping = True
# Extract gene annotation data
gene_annotation = get_gene_annotation(soft_file_path)

# Display column names and preview data
print("Column names:")
print(gene_annotation.columns)

print("\nPreview of gene annotation data:")
print(preview_df(gene_annotation))
# 1. The gene identifiers seem to be in 'ID' column, and gene symbols can be extracted from 'gene_assignment'
# Extract probe-gene mapping from gene annotation data
mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='gene_assignment')

# 2. Get gene expression data from mapping
gene_data = apply_gene_mapping(genetic_data, mapping_data)

# Preview result
print("Gene mapping results:")
print("Input probes shape:", genetic_data.shape)
print("Output genes shape:", gene_data.shape)
print("\nFirst few rows of mapped gene expression data:")
print(gene_data.head())
# Reload clinical data that was processed earlier
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)

# 1. Normalize gene symbols
genetic_data = normalize_gene_symbols_in_index(gene_data)
genetic_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)

# 3. Handle missing values systematically  
linked_data = handle_missing_values(linked_data, trait)

# 4. Check for bias in trait and demographic features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Final validation and information saving
note = "Dataset contains subcutaneous adipose tissue gene expression data from PCOS patients and controls. The gender feature is biased (all female) and was removed."
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort, 
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=trait_biased,
    df=linked_data,
    note=note
)

# 6. Save linked data only if usable 
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)