Liu-Hy commited on
Commit
5a96bf0
·
verified ·
1 Parent(s): 0733067

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +1 -0
  2. p3/preprocess/Hypertrophic_Cardiomyopathy/GSE36961.csv +3 -0
  3. p3/preprocess/Post-Traumatic_Stress_Disorder/clinical_data/GSE44456.csv +4 -0
  4. p3/preprocess/Post-Traumatic_Stress_Disorder/clinical_data/GSE63878.csv +2 -0
  5. p3/preprocess/Post-Traumatic_Stress_Disorder/clinical_data/GSE64814.csv +2 -0
  6. p3/preprocess/Post-Traumatic_Stress_Disorder/clinical_data/GSE67663.csv +4 -0
  7. p3/preprocess/Post-Traumatic_Stress_Disorder/clinical_data/GSE77164.csv +4 -0
  8. p3/preprocess/Post-Traumatic_Stress_Disorder/clinical_data/GSE81761.csv +4 -0
  9. p3/preprocess/Post-Traumatic_Stress_Disorder/code/GSE114852.py +157 -0
  10. p3/preprocess/Post-Traumatic_Stress_Disorder/code/GSE199841.py +170 -0
  11. p3/preprocess/Post-Traumatic_Stress_Disorder/code/GSE44456.py +168 -0
  12. p3/preprocess/Post-Traumatic_Stress_Disorder/code/GSE52875.py +60 -0
  13. p3/preprocess/Post-Traumatic_Stress_Disorder/code/GSE63878.py +149 -0
  14. p3/preprocess/Post-Traumatic_Stress_Disorder/code/GSE64814.py +158 -0
  15. p3/preprocess/Post-Traumatic_Stress_Disorder/code/GSE67663.py +184 -0
  16. p3/preprocess/Post-Traumatic_Stress_Disorder/code/GSE77164.py +156 -0
  17. p3/preprocess/Post-Traumatic_Stress_Disorder/code/GSE81761.py +174 -0
  18. p3/preprocess/Post-Traumatic_Stress_Disorder/code/TCGA.py +30 -0
  19. p3/preprocess/Post-Traumatic_Stress_Disorder/gene_data/GSE114852.csv +0 -0
  20. p3/preprocess/Post-Traumatic_Stress_Disorder/gene_data/GSE199841.csv +0 -0
  21. p3/preprocess/Prostate_Cancer/clinical_data/GSE125341.csv +2 -0
  22. p3/preprocess/Prostate_Cancer/clinical_data/GSE178631.csv +2 -0
  23. p3/preprocess/Prostate_Cancer/clinical_data/GSE200879.csv +2 -0
  24. p3/preprocess/Prostate_Cancer/clinical_data/GSE201805.csv +3 -0
  25. p3/preprocess/Prostate_Cancer/clinical_data/GSE206793.csv +3 -0
  26. p3/preprocess/Prostate_Cancer/clinical_data/GSE209954.csv +3 -0
  27. p3/preprocess/Prostate_Cancer/clinical_data/GSE248619.csv +2 -0
  28. p3/preprocess/Prostate_Cancer/clinical_data/TCGA.csv +567 -0
  29. p3/preprocess/Prostate_Cancer/code/GSE125341.py +194 -0
  30. p3/preprocess/Prostate_Cancer/code/GSE178631.py +154 -0
  31. p3/preprocess/Prostate_Cancer/code/GSE192817.py +156 -0
  32. p3/preprocess/Prostate_Cancer/code/GSE200879.py +202 -0
  33. p3/preprocess/Prostate_Cancer/code/GSE201805.py +192 -0
  34. p3/preprocess/Prostate_Cancer/code/GSE206793.py +86 -0
  35. p3/preprocess/Prostate_Cancer/code/GSE209954.py +206 -0
  36. p3/preprocess/Prostate_Cancer/code/GSE235003.py +148 -0
  37. p3/preprocess/Prostate_Cancer/code/GSE248619.py +197 -0
  38. p3/preprocess/Prostate_Cancer/code/GSE259218.py +67 -0
  39. p3/preprocess/Prostate_Cancer/code/TCGA.py +121 -0
  40. p3/preprocess/Prostate_Cancer/cohort_info.json +1 -0
  41. p3/preprocess/Prostate_Cancer/gene_data/GSE125341.csv +1 -0
  42. p3/preprocess/Prostate_Cancer/gene_data/GSE192817.csv +1 -0
  43. p3/preprocess/Prostate_Cancer/gene_data/GSE200879.csv +1 -0
  44. p3/preprocess/Prostate_Cancer/gene_data/GSE235003.csv +1 -0
  45. p3/preprocess/Prostate_Cancer/gene_data/TCGA.csv +1 -0
  46. p3/preprocess/Psoriasis/GSE183134.csv +0 -0
  47. p3/preprocess/Psoriasis/clinical_data/GSE123086.csv +4 -0
  48. p3/preprocess/Psoriasis/clinical_data/GSE123088.csv +4 -0
  49. p3/preprocess/Psoriasis/clinical_data/GSE158448.csv +2 -0
  50. p3/preprocess/Psoriasis/clinical_data/GSE162998.csv +2 -0
.gitattributes CHANGED
@@ -1880,3 +1880,4 @@ p3/preprocess/Intellectual_Disability/GSE59630.csv filter=lfs diff=lfs merge=lfs
1880
  p3/preprocess/Kidney_Papillary_Cell_Carcinoma/GSE42977.csv filter=lfs diff=lfs merge=lfs -text
1881
  p3/preprocess/lower_grade_glioma_and_glioblastoma/gene_data/GSE35158.csv filter=lfs diff=lfs merge=lfs -text
1882
  p3/preprocess/lower_grade_glioma_and_glioblastoma/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
 
 
1880
  p3/preprocess/Kidney_Papillary_Cell_Carcinoma/GSE42977.csv filter=lfs diff=lfs merge=lfs -text
1881
  p3/preprocess/lower_grade_glioma_and_glioblastoma/gene_data/GSE35158.csv filter=lfs diff=lfs merge=lfs -text
1882
  p3/preprocess/lower_grade_glioma_and_glioblastoma/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
1883
+ p3/preprocess/Hypertrophic_Cardiomyopathy/GSE36961.csv filter=lfs diff=lfs merge=lfs -text
p3/preprocess/Hypertrophic_Cardiomyopathy/GSE36961.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5c3647115f031e7db8d92f6c5d91ac94cbc78d0c60154dd8d8be34015c2f3eb8
3
+ size 31701924
p3/preprocess/Post-Traumatic_Stress_Disorder/clinical_data/GSE44456.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ ,GSM1085665,GSM1085666,GSM1085667,GSM1085668,GSM1085669,GSM1085670,GSM1085671,GSM1085672,GSM1085673,GSM1085674,GSM1085675,GSM1085676,GSM1085677,GSM1085678,GSM1085679,GSM1085680,GSM1085681,GSM1085682,GSM1085683,GSM1085684,GSM1085685,GSM1085686,GSM1085687,GSM1085688,GSM1085689,GSM1085690,GSM1085691,GSM1085692,GSM1085693,GSM1085694,GSM1085695,GSM1085696,GSM1085697,GSM1085698,GSM1085699,GSM1085700,GSM1085701,GSM1085702,GSM1085703
2
+ Post-Traumatic_Stress_Disorder,0.0,1.0,0.0,1.0,0.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0
3
+ Age,68.0,51.0,50.0,50.0,56.0,59.0,37.0,58.0,60.0,81.0,50.0,82.0,67.0,51.0,56.0,67.0,58.0,70.0,56.0,61.0,59.0,48.0,53.0,44.0,62.0,56.0,42.0,69.0,57.0,71.0,75.0,78.0,58.0,49.0,49.0,57.0,52.0,52.0,60.0
4
+ Gender,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0
p3/preprocess/Post-Traumatic_Stress_Disorder/clinical_data/GSE63878.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ,GSM1558775,GSM1558776,GSM1558777,GSM1558778,GSM1558779,GSM1558780,GSM1558781,GSM1558782,GSM1558783,GSM1558784,GSM1558785,GSM1558786,GSM1558787,GSM1558788,GSM1558789,GSM1558790,GSM1558791,GSM1558792,GSM1558793,GSM1558794,GSM1558795,GSM1558796,GSM1558797,GSM1558798,GSM1558799,GSM1558800,GSM1558801,GSM1558802,GSM1558803,GSM1558804,GSM1558805,GSM1558806,GSM1558807,GSM1558808,GSM1558809,GSM1558810,GSM1558811,GSM1558812,GSM1558813,GSM1558814,GSM1558815,GSM1558816,GSM1558817,GSM1558818,GSM1558819,GSM1558820,GSM1558821,GSM1558822,GSM1558823,GSM1558824,GSM1558825,GSM1558826,GSM1558827,GSM1558828,GSM1558829,GSM1558830,GSM1558831,GSM1558832,GSM1558833,GSM1558834,GSM1558835,GSM1558836,GSM1558837,GSM1558838,GSM1558839,GSM1558840,GSM1558841,GSM1558842,GSM1558843,GSM1558844,GSM1558845,GSM1558846,GSM1558847,GSM1558848,GSM1558849,GSM1558850,GSM1558851,GSM1558852,GSM1558853,GSM1558854,GSM1558855,GSM1558856,GSM1558857,GSM1558858,GSM1558859,GSM1558860,GSM1558861,GSM1558862,GSM1558863,GSM1558864,GSM1558865,GSM1558866,GSM1558867,GSM1558868,GSM1558869,GSM1558870
2
+ Post-Traumatic_Stress_Disorder,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
p3/preprocess/Post-Traumatic_Stress_Disorder/clinical_data/GSE64814.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ,GSM1558775,GSM1558776,GSM1558777,GSM1558778,GSM1558779,GSM1558780,GSM1558781,GSM1558782,GSM1558783,GSM1558784,GSM1558785,GSM1558786,GSM1558787,GSM1558788,GSM1558789,GSM1558790,GSM1558791,GSM1558792,GSM1558793,GSM1558794,GSM1558795,GSM1558796,GSM1558797,GSM1558798,GSM1558799,GSM1558800,GSM1558801,GSM1558802,GSM1558803,GSM1558804,GSM1558805,GSM1558806,GSM1558807,GSM1558808,GSM1558809,GSM1558810,GSM1558811,GSM1558812,GSM1558813,GSM1558814,GSM1558815,GSM1558816,GSM1558817,GSM1558818,GSM1558819,GSM1558820,GSM1558821,GSM1558822,GSM1558823,GSM1558824,GSM1558825,GSM1558826,GSM1558827,GSM1558828,GSM1558829,GSM1558830,GSM1558831,GSM1558832,GSM1558833,GSM1558834,GSM1558835,GSM1558836,GSM1558837,GSM1558838,GSM1558839,GSM1558840,GSM1558841,GSM1558842,GSM1558843,GSM1558844,GSM1558845,GSM1558846,GSM1558847,GSM1558848,GSM1558849,GSM1558850,GSM1558851,GSM1558852,GSM1558853,GSM1558854,GSM1558855,GSM1558856,GSM1558857,GSM1558858,GSM1558859,GSM1558860,GSM1558861,GSM1558862,GSM1558863,GSM1558864,GSM1558865,GSM1558866,GSM1558867,GSM1558868,GSM1558869,GSM1558870
2
+ Post-Traumatic_Stress_Disorder,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
p3/preprocess/Post-Traumatic_Stress_Disorder/clinical_data/GSE67663.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ ,GSM1652966,GSM1652967,GSM1652968,GSM1652969,GSM1652970,GSM1652971,GSM1652972,GSM1652973,GSM1652974,GSM1652975,GSM1652976,GSM1652977,GSM1652978,GSM1652979,GSM1652980,GSM1652981,GSM1652982,GSM1652983,GSM1652984,GSM1652985,GSM1652986,GSM1652987,GSM1652988,GSM1652989,GSM1652990,GSM1652991,GSM1652992,GSM1652993,GSM1652994,GSM1652995,GSM1652996,GSM1652997,GSM1652998,GSM1652999,GSM1653000,GSM1653001,GSM1653002,GSM1653003,GSM1653004,GSM1653005,GSM1653006,GSM1653007,GSM1653008,GSM1653009,GSM1653010,GSM1653011,GSM1653012,GSM1653013,GSM1653014,GSM1653015,GSM1653016,GSM1653017,GSM1653018,GSM1653019,GSM1653020,GSM1653021,GSM1653022,GSM1653023,GSM1653024,GSM1653025,GSM1653026,GSM1653027,GSM1653028,GSM1653029,GSM1653030,GSM1653031,GSM1653032,GSM1653033,GSM1653034,GSM1653035,GSM1653036,GSM1653037,GSM1653038,GSM1653039,GSM1653040,GSM1653041,GSM1653042,GSM1653043,GSM1653044,GSM1653045,GSM1653046,GSM1653047,GSM1653048,GSM1653049,GSM1653050,GSM1653051,GSM1653052,GSM1653053,GSM1653054,GSM1653055,GSM1653056,GSM1653057,GSM1653058,GSM1653059,GSM1653060,GSM1653061,GSM1653062,GSM1653063,GSM1653064,GSM1653065,GSM1653066,GSM1653067,GSM1653068,GSM1653069,GSM1653070,GSM1653071,GSM1653072,GSM1653073,GSM1653074,GSM1653075,GSM1653076,GSM1653077,GSM1653078,GSM1653079,GSM1653080,GSM1653081,GSM1653082,GSM1653083,GSM1653084,GSM1653085,GSM1653086,GSM1653087,GSM1653088,GSM1653089,GSM1653090,GSM1653091,GSM1653092,GSM1653093,GSM1653094,GSM1653095,GSM1653096,GSM1653097,GSM1653098,GSM1653099,GSM1653100,GSM1653101,GSM1653102,GSM1653103,GSM1653104,GSM1653105,GSM1653106,GSM1653107,GSM1653108,GSM1653109,GSM1653110,GSM1653111,GSM1653112,GSM1653113,GSM1653114,GSM1653115,GSM1653116,GSM1653117,GSM1653118,GSM1653119,GSM1653120,GSM1653121,GSM1653122,GSM1653123,GSM1653124,GSM1653125,GSM1653126,GSM1653127,GSM1653128,GSM1653129,GSM1653130,GSM1653131,GSM1653132,GSM1653133,GSM1653134,GSM1653135,GSM1653136,GSM1653137,GSM1653138,GSM1653139,GSM1653140,GSM1653141,GSM1653142,GSM1653143,GSM1653144,GSM1653145,GSM1653146,GSM1653147,GSM1653148,GSM1653149
2
+ Post-Traumatic_Stress_Disorder,1.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0
3
+ Age,44.0,74.0,47.0,38.0,37.0,48.0,52.0,56.0,21.0,20.0,54.0,55.0,56.0,54.0,47.0,36.0,56.0,44.0,31.0,39.0,40.0,57.0,39.0,47.0,39.0,45.0,50.0,24.0,50.0,45.0,30.0,39.0,47.0,26.0,20.0,52.0,43.0,50.0,34.0,50.0,49.0,19.0,18.0,60.0,45.0,27.0,29.0,18.0,57.0,46.0,59.0,52.0,46.0,53.0,50.0,21.0,57.0,37.0,38.0,32.0,51.0,24.0,56.0,49.0,61.0,63.0,45.0,30.0,43.0,50.0,59.0,36.0,48.0,54.0,20.0,44.0,46.0,25.0,52.0,30.0,25.0,51.0,40.0,18.0,53.0,20.0,34.0,25.0,46.0,38.0,58.0,65.0,29.0,34.0,34.0,59.0,52.0,19.0,64.0,30.0,33.0,39.0,22.0,45.0,49.0,24.0,29.0,20.0,53.0,22.0,54.0,47.0,33.0,45.0,48.0,59.0,45.0,54.0,33.0,49.0,43.0,21.0,62.0,50.0,51.0,55.0,32.0,49.0,42.0,21.0,54.0,51.0,50.0,52.0,53.0,31.0,26.0,44.0,41.0,26.0,56.0,58.0,32.0,25.0,57.0,48.0,47.0,21.0,28.0,41.0,41.0,38.0,27.0,50.0,41.0,47.0,44.0,51.0,28.0,36.0,50.0,64.0,50.0,34.0,54.0,43.0,49.0,56.0,38.0,47.0,51.0,53.0,56.0,35.0,57.0,43.0,41.0,37.0,28.0,50.0,52.0,62.0,27.0,24.0
4
+ Gender,0.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0
p3/preprocess/Post-Traumatic_Stress_Disorder/clinical_data/GSE77164.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ ,GSM2045182,GSM2045183,GSM2045184,GSM2045185,GSM2045186,GSM2045187,GSM2045188,GSM2045189,GSM2045190,GSM2045191,GSM2045192,GSM2045193,GSM2045194,GSM2045195,GSM2045196,GSM2045197,GSM2045198,GSM2045199,GSM2045200,GSM2045201,GSM2045202,GSM2045203,GSM2045204,GSM2045205,GSM2045206,GSM2045207,GSM2045208,GSM2045209,GSM2045210,GSM2045211,GSM2045212,GSM2045213,GSM2045214,GSM2045215,GSM2045216,GSM2045217,GSM2045218,GSM2045219,GSM2045220,GSM2045221,GSM2045222,GSM2045223,GSM2045224,GSM2045225,GSM2045226,GSM2045227,GSM2045228,GSM2045229,GSM2045230,GSM2045231,GSM2045232,GSM2045233,GSM2045234,GSM2045235,GSM2045236,GSM2045237,GSM2045238,GSM2045239,GSM2045240,GSM2045241,GSM2045242,GSM2045243,GSM2045244,GSM2045245,GSM2045246,GSM2045247,GSM2045248,GSM2045249,GSM2045250,GSM2045251,GSM2045252,GSM2045253,GSM2045254,GSM2045255,GSM2045256,GSM2045257,GSM2045258,GSM2045259,GSM2045260,GSM2045261,GSM2045262,GSM2045263,GSM2045264,GSM2045265,GSM2045266,GSM2045267,GSM2045268,GSM2045269,GSM2045270,GSM2045271,GSM2045272,GSM2045273,GSM2045274,GSM2045275,GSM2045276,GSM2045277,GSM2045278,GSM2045279,GSM2045280,GSM2045281,GSM2045282,GSM2045283,GSM2045284,GSM2045285,GSM2045286,GSM2045287,GSM2045288,GSM2045289,GSM2045290,GSM2045291,GSM2045292,GSM2045293,GSM2045294,GSM2045295,GSM2045296,GSM2045297,GSM2045298,GSM2045299,GSM2045300,GSM2045301,GSM2045302,GSM2045303,GSM2045304,GSM2045305,GSM2045306,GSM2045307,GSM2045308,GSM2045309,GSM2045310,GSM2045311,GSM2045312,GSM2045313,GSM2045314,GSM2045315,GSM2045316,GSM2045317,GSM2045318,GSM2045319,GSM2045320,GSM2045321,GSM2045322,GSM2045323,GSM2045324,GSM2045325,GSM2045326,GSM2045327,GSM2045328,GSM2045329,GSM2045330,GSM2045331,GSM2045332,GSM2045333,GSM2045334,GSM2045335,GSM2045336,GSM2045337,GSM2045338,GSM2045339,GSM2045340,GSM2045341,GSM2045342,GSM2045343,GSM2045344,GSM2045345,GSM2045346,GSM2045347,GSM2045348,GSM2045349,GSM2045350,GSM2045351,GSM2045352,GSM2045353,GSM2045354,GSM2045355,GSM2045356,GSM2045357,GSM2045358,GSM2045359,GSM2045360,GSM2045361,GSM2045362,GSM2045363,GSM2045364,GSM2045365,GSM2045366,GSM2045367,GSM2045368,GSM2045369,GSM2045370,GSM2045371,GSM2045372,GSM2045373,GSM2045374,GSM2045375,GSM2045376,GSM2045377,GSM2045378,GSM2045379,GSM2045380,GSM2045381,GSM2045382,GSM2045383,GSM2045384,GSM2045385,GSM2045386,GSM2045387,GSM2045388,GSM2045389,GSM2045390,GSM2045391,GSM2045392,GSM2045393,GSM2045394,GSM2045395,GSM2045396,GSM2045397,GSM2045398,GSM2045399,GSM2045400,GSM2045401,GSM2045402,GSM2045403,GSM2045404,GSM2045405,GSM2045406,GSM2045407,GSM2045408,GSM2045409,GSM2045410,GSM2045411,GSM2045412,GSM2045413,GSM2045414,GSM2045415,GSM2045416,GSM2045417,GSM2045418,GSM2045419,GSM2045420,GSM2045421,GSM2045422,GSM2045423,GSM2045424,GSM2045425,GSM2045426,GSM2045427,GSM2045428,GSM2045429,GSM2045430,GSM2045431,GSM2045432,GSM2045433,GSM2045434,GSM2045435
2
+ Post-Traumatic_Stress_Disorder,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
3
+ Age,19.0,22.0,20.0,18.0,22.0,23.0,21.0,22.0,19.0,22.0,20.0,18.0,20.0,21.0,21.0,21.0,18.0,22.0,23.0,22.0,17.0,19.0,18.0,19.0,19.0,21.0,20.0,21.0,20.0,21.0,19.0,17.0,19.0,20.0,21.0,20.0,19.0,16.0,18.0,20.0,21.0,19.0,19.0,23.0,21.0,20.0,20.0,21.0,21.0,22.0,21.0,19.0,21.0,21.0,19.0,19.0,22.0,20.0,19.0,15.0,24.0,17.0,22.0,19.0,20.0,22.0,22.0,22.0,22.0,18.0,23.0,18.0,17.0,20.0,18.0,22.0,20.0,20.0,19.0,18.0,20.0,17.0,20.0,19.0,20.0,23.0,19.0,21.0,22.0,19.0,19.0,20.0,19.0,21.0,22.0,20.0,22.0,20.0,20.0,21.0,19.0,22.0,20.0,20.0,17.0,21.0,21.0,22.0,20.0,23.0,22.0,20.0,19.0,23.0,22.0,22.0,22.0,19.0,20.0,20.0,20.0,22.0,21.0,17.0,20.0,20.0,18.0,20.0,20.0,20.0,24.0,20.0,21.0,18.0,21.0,20.0,19.0,19.0,23.0,18.0,20.0,20.0,20.0,18.0,21.0,20.0,20.0,22.0,22.0,20.0,21.0,22.0,19.0,19.0,21.0,19.0,21.0,22.0,19.0,18.0,19.0,22.0,21.0,21.0,18.0,21.0,19.0,21.0,21.0,21.0,20.0,20.0,19.0,21.0,22.0,21.0,22.0,21.0,21.0,20.0,20.0,19.0,21.0,16.0,21.0,17.0,21.0,21.0,21.0,20.0,22.0,17.0,19.0,19.0,17.0,16.0,18.0,20.0,19.0,22.0,23.0,18.0,22.0,19.0,22.0,20.0,21.0,17.0,22.0,26.0,20.0,19.0,18.0,19.0,19.0,18.0,17.0,23.0,21.0,21.0,20.0,19.0,22.0,22.0,22.0,19.0,22.0,19.0,20.0,21.0,20.0,24.0,22.0,22.0,21.0,23.0,19.0,19.0,21.0,19.0,21.0,22.0,22.0,15.0,19.0,20.0,22.0,20.0,18.0,20.0,22.0,23.0,22.0,22.0
4
+ Gender,0.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0
p3/preprocess/Post-Traumatic_Stress_Disorder/clinical_data/GSE81761.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ ,GSM2175165,GSM2175166,GSM2175167,GSM2175168,GSM2175169,GSM2175170,GSM2175171,GSM2175172,GSM2175173,GSM2175174,GSM2175175,GSM2175176,GSM2175177,GSM2175178,GSM2175179,GSM2175180,GSM2175181,GSM2175182,GSM2175183,GSM2175184,GSM2175185,GSM2175186,GSM2175187,GSM2175188,GSM2175189,GSM2175190,GSM2175191,GSM2175192,GSM2175193,GSM2175194,GSM2175195,GSM2175196,GSM2175197,GSM2175198,GSM2175199,GSM2175200,GSM2175201,GSM2175202,GSM2175203,GSM2175204,GSM2175205,GSM2175206,GSM2175207,GSM2175208,GSM2175209,GSM2175210,GSM2175211,GSM2175212,GSM2175213,GSM2175214,GSM2175215,GSM2175216,GSM2175217,GSM2175218,GSM2175219,GSM2175220,GSM2175221,GSM2175222,GSM2175223,GSM2175224,GSM2175225,GSM2175226,GSM2175227,GSM2175228,GSM2175229,GSM2175230,GSM2175231,GSM2175232,GSM2175233,GSM2175234,GSM2175235,GSM2175236,GSM2175237,GSM2175238,GSM2175239,GSM2175240,GSM2175241,GSM2175242,GSM2175243,GSM2175244,GSM2175245,GSM2175246,GSM2175247,GSM2175248,GSM2175249,GSM2175250,GSM2175251,GSM2175252,GSM2175253,GSM2175254,GSM2175255,GSM2175256,GSM2175257,GSM2175258,GSM2175259,GSM2175260,GSM2175261,GSM2175262,GSM2175263,GSM2175264,GSM2175265,GSM2175266,GSM2175267,GSM2175268,GSM2175269,GSM2175270,GSM2175271,GSM2175272,GSM2175273
2
+ Post-Traumatic_Stress_Disorder,1.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
3
+ Age,30.0,38.0,39.0,38.0,23.0,48.0,49.0,34.0,33.0,45.0,25.0,25.0,30.0,39.0,23.0,22.0,46.0,35.0,22.0,23.0,48.0,23.0,49.0,38.0,25.0,33.0,30.0,36.0,43.0,34.0,22.0,26.0,46.0,39.0,27.0,23.0,28.0,22.0,29.0,41.0,25.0,39.0,38.0,25.0,46.0,35.0,44.0,34.0,23.0,46.0,43.0,26.0,34.0,31.0,30.0,36.0,23.0,25.0,28.0,27.0,39.0,26.0,38.0,25.0,31.0,39.0,29.0,34.0,23.0,42.0,44.0,46.0,21.0,35.0,44.0,34.0,28.0,37.0,23.0,26.0,28.0,52.0,31.0,36.0,41.0,21.0,42.0,30.0,24.0,41.0,35.0,44.0,26.0,27.0,37.0,52.0,36.0,41.0,24.0,26.0,27.0,26.0,37.0,22.0,32.0,45.0,23.0,35.0,27.0
4
+ Gender,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
p3/preprocess/Post-Traumatic_Stress_Disorder/code/GSE114852.py ADDED
@@ -0,0 +1,157 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Post-Traumatic_Stress_Disorder"
6
+ cohort = "GSE114852"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Post-Traumatic_Stress_Disorder"
10
+ in_cohort_dir = "../DATA/GEO/Post-Traumatic_Stress_Disorder/GSE114852"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/GSE114852.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/gene_data/GSE114852.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/clinical_data/GSE114852.csv"
16
+ json_path = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Get background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
23
+ print("Background Information:")
24
+ print(background_info)
25
+ print("\nSample Characteristics:")
26
+
27
+ # Get dictionary of unique values per row
28
+ unique_values_dict = get_unique_values_by_row(clinical_data)
29
+ for row, values in unique_values_dict.items():
30
+ print(f"\n{row}:")
31
+ print(values)
32
+ # 1. Gene Expression Data Availability
33
+ # Series title contains "Gene expression" and Series description discusses transcriptome analysis, so this contains gene data
34
+ is_gene_available = True
35
+
36
+ # 2. Variable Availability and Data Type Conversion
37
+ # 2.1 Data Availability
38
+ trait_row = 1 # "maternal diagnosis" row contains PTSD status
39
+ gender_row = 2 # "neonate gender" row contains gender
40
+ age_row = None # Age not available in sample characteristics
41
+
42
+ # 2.2 Data Type Conversion Functions
43
+ def convert_trait(value: str) -> Optional[int]:
44
+ """Convert PTSD diagnosis to binary: 1 for PTSD/PTSDDep, 0 for controls"""
45
+ if not value or ':' not in value:
46
+ return None
47
+ value = value.split(':')[1].strip()
48
+ if value in ['PTSD', 'PTSDDep']:
49
+ return 1
50
+ elif value in ['Control', 'ControlTE']:
51
+ return 0
52
+ return None
53
+
54
+ def convert_gender(value: str) -> Optional[int]:
55
+ """Convert gender to binary: 0 for Female, 1 for Male"""
56
+ if not value or ':' not in value:
57
+ return None
58
+ value = value.split(':')[1].strip()
59
+ if value == 'Female':
60
+ return 0
61
+ elif value == 'Male':
62
+ return 1
63
+ return None
64
+
65
+ def convert_age(value: str) -> Optional[float]:
66
+ """Not used since age data is unavailable"""
67
+ return None
68
+
69
+ # 3. Save Metadata
70
+ is_trait_available = trait_row is not None
71
+ validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path,
72
+ is_gene_available=is_gene_available,
73
+ is_trait_available=is_trait_available)
74
+
75
+ # 4. Clinical Feature Extraction
76
+ # Since trait_row is not None, we need to extract clinical features
77
+ clinical_df = geo_select_clinical_features(clinical_data, trait, trait_row, convert_trait,
78
+ gender_row=gender_row, convert_gender=convert_gender)
79
+
80
+ # Preview the processed clinical data
81
+ print("Preview of clinical data:")
82
+ print(preview_df(clinical_df))
83
+
84
+ # Save clinical data
85
+ clinical_df.to_csv(out_clinical_data_file)
86
+ # Get gene expression data from matrix file
87
+ genetic_data = get_genetic_data(matrix_file_path)
88
+
89
+ # Examine data structure
90
+ print("Data structure and head:")
91
+ print(genetic_data.head())
92
+
93
+ print("\nShape:", genetic_data.shape)
94
+
95
+ print("\nFirst 20 row IDs (gene/probe identifiers):")
96
+ print(list(genetic_data.index)[:20])
97
+
98
+ # Get a few column names to verify sample IDs
99
+ print("\nFirst 5 column names:")
100
+ print(list(genetic_data.columns)[:5])
101
+ # The identifiers are in ILMN format (Illumina probe IDs), not gene symbols
102
+ requires_gene_mapping = True
103
+ # Extract gene annotation data
104
+ gene_annotation = get_gene_annotation(soft_file_path)
105
+
106
+ # Display column names and preview data
107
+ print("Column names:")
108
+ print(gene_annotation.columns)
109
+
110
+ print("\nPreview of gene annotation data:")
111
+ print(preview_df(gene_annotation))
112
+ # Get probe-to-gene mapping dataframe using ID and Symbol columns
113
+ mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')
114
+
115
+ # Convert probe-level measurements to gene expression data
116
+ gene_data = apply_gene_mapping(genetic_data, mapping_df)
117
+
118
+ # Normalize gene symbols using NCBI Gene synonym information
119
+ gene_data = normalize_gene_symbols_in_index(gene_data)
120
+
121
+ # Verify data structure
122
+ print("Gene data shape:", gene_data.shape)
123
+ print("\nFirst 5 genes and their expression values:")
124
+ print(gene_data.head())
125
+ # Reload clinical data that was processed earlier
126
+ selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
127
+
128
+ # 1. Normalize gene symbols
129
+ genetic_data = normalize_gene_symbols_in_index(gene_data)
130
+ genetic_data.to_csv(out_gene_data_file)
131
+
132
+ # 2. Link clinical and genetic data
133
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
134
+
135
+ # 3. Handle missing values systematically
136
+ linked_data = handle_missing_values(linked_data, trait)
137
+
138
+ # 4. Check for bias in trait and demographic features
139
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
140
+
141
+ # 5. Final validation and information saving
142
+ note = "Dataset contains subcutaneous adipose tissue gene expression data from PCOS patients and controls. The gender feature is biased (all female) and was removed."
143
+ is_usable = validate_and_save_cohort_info(
144
+ is_final=True,
145
+ cohort=cohort,
146
+ info_path=json_path,
147
+ is_gene_available=True,
148
+ is_trait_available=True,
149
+ is_biased=trait_biased,
150
+ df=linked_data,
151
+ note=note
152
+ )
153
+
154
+ # 6. Save linked data only if usable
155
+ if is_usable:
156
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
157
+ linked_data.to_csv(out_data_file)
p3/preprocess/Post-Traumatic_Stress_Disorder/code/GSE199841.py ADDED
@@ -0,0 +1,170 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Post-Traumatic_Stress_Disorder"
6
+ cohort = "GSE199841"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Post-Traumatic_Stress_Disorder"
10
+ in_cohort_dir = "../DATA/GEO/Post-Traumatic_Stress_Disorder/GSE199841"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/GSE199841.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/gene_data/GSE199841.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/clinical_data/GSE199841.csv"
16
+ json_path = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Get background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
23
+ print("Background Information:")
24
+ print(background_info)
25
+ print("\nSample Characteristics:")
26
+
27
+ # Get dictionary of unique values per row
28
+ unique_values_dict = get_unique_values_by_row(clinical_data)
29
+ for row, values in unique_values_dict.items():
30
+ print(f"\n{row}:")
31
+ print(values)
32
+ # 1. Gene Expression Data Availability
33
+ # Based on the background info, this is a gene expression microarray study
34
+ is_gene_available = True
35
+
36
+ # 2. Data Availability and Type Conversion
37
+ trait_row = 2 # diagnostic group row
38
+ age_row = 1 # age row
39
+ gender_row = 0 # gender row, though it's constant
40
+
41
+ # Trait conversion function - binary
42
+ def convert_trait(x):
43
+ if not x or ':' not in x:
44
+ return None
45
+ value = x.split(':')[1].strip().lower()
46
+ if 'ptsd' in value:
47
+ return 1
48
+ elif 'control' in value:
49
+ return 0
50
+ return None
51
+
52
+ # Age conversion function - continuous
53
+ def convert_age(x):
54
+ if not x or ':' not in x:
55
+ return None
56
+ try:
57
+ return float(x.split(':')[1].strip())
58
+ except:
59
+ return None
60
+
61
+ # Gender conversion function - binary
62
+ def convert_gender(x):
63
+ if not x or ':' not in x:
64
+ return None
65
+ value = x.split(':')[1].strip().lower()
66
+ if 'female' in value:
67
+ return 0
68
+ elif 'male' in value:
69
+ return 1
70
+ return None
71
+
72
+ # 3. Save initial metadata
73
+ is_trait_available = trait_row is not None
74
+ _ = validate_and_save_cohort_info(
75
+ is_final=False,
76
+ cohort=cohort,
77
+ info_path=json_path,
78
+ is_gene_available=is_gene_available,
79
+ is_trait_available=is_trait_available
80
+ )
81
+
82
+ # 4. Extract clinical features since trait_row is not None
83
+ selected_clinical_df = geo_select_clinical_features(
84
+ clinical_df=clinical_data,
85
+ trait=trait,
86
+ trait_row=trait_row,
87
+ convert_trait=convert_trait,
88
+ age_row=age_row,
89
+ convert_age=convert_age,
90
+ gender_row=gender_row,
91
+ convert_gender=convert_gender
92
+ )
93
+
94
+ # Preview the extracted features
95
+ preview_result = preview_df(selected_clinical_df)
96
+ print("Preview of selected clinical features:")
97
+ print(preview_result)
98
+
99
+ # Save clinical data
100
+ selected_clinical_df.to_csv(out_clinical_data_file)
101
+ # Get gene expression data from matrix file
102
+ genetic_data = get_genetic_data(matrix_file_path)
103
+
104
+ # Examine data structure
105
+ print("Data structure and head:")
106
+ print(genetic_data.head())
107
+
108
+ print("\nShape:", genetic_data.shape)
109
+
110
+ print("\nFirst 20 row IDs (gene/probe identifiers):")
111
+ print(list(genetic_data.index)[:20])
112
+
113
+ # Get a few column names to verify sample IDs
114
+ print("\nFirst 5 column names:")
115
+ print(list(genetic_data.columns)[:5])
116
+ # Looking at the gene identifiers (IDs), they appear to be from an Agilent microarray
117
+ # The format "A_19_P..." indicates Agilent probe IDs rather than standard human gene symbols
118
+ # Therefore, we need to map these probe IDs to standard gene symbols
119
+ requires_gene_mapping = True
120
+ # Extract gene annotation data
121
+ gene_annotation = get_gene_annotation(soft_file_path)
122
+
123
+ # Display column names and preview data
124
+ print("Column names:")
125
+ print(gene_annotation.columns)
126
+
127
+ print("\nPreview of gene annotation data:")
128
+ print(preview_df(gene_annotation))
129
+ # From observation: 'ID' column in annotation matches probe IDs in expression data
130
+ # 'GENE_SYMBOL' column contains the gene symbols we want to map to
131
+ mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GENE_SYMBOL')
132
+
133
+ # Apply gene mapping to convert probe-level data to gene-level data
134
+ gene_data = apply_gene_mapping(genetic_data, mapping_data)
135
+
136
+ # Save gene expression data
137
+ gene_data.to_csv(out_gene_data_file)
138
+ # Reload clinical data that was processed earlier
139
+ selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
140
+
141
+ # 1. Normalize gene symbols
142
+ genetic_data = normalize_gene_symbols_in_index(gene_data)
143
+ genetic_data.to_csv(out_gene_data_file)
144
+
145
+ # 2. Link clinical and genetic data
146
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
147
+
148
+ # 3. Handle missing values systematically
149
+ linked_data = handle_missing_values(linked_data, trait)
150
+
151
+ # 4. Check for bias in trait and demographic features
152
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
153
+
154
+ # 5. Final validation and information saving
155
+ note = "Dataset contains subcutaneous adipose tissue gene expression data from PCOS patients and controls. The gender feature is biased (all female) and was removed."
156
+ is_usable = validate_and_save_cohort_info(
157
+ is_final=True,
158
+ cohort=cohort,
159
+ info_path=json_path,
160
+ is_gene_available=True,
161
+ is_trait_available=True,
162
+ is_biased=trait_biased,
163
+ df=linked_data,
164
+ note=note
165
+ )
166
+
167
+ # 6. Save linked data only if usable
168
+ if is_usable:
169
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
170
+ linked_data.to_csv(out_data_file)
p3/preprocess/Post-Traumatic_Stress_Disorder/code/GSE44456.py ADDED
@@ -0,0 +1,168 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Post-Traumatic_Stress_Disorder"
6
+ cohort = "GSE44456"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Post-Traumatic_Stress_Disorder"
10
+ in_cohort_dir = "../DATA/GEO/Post-Traumatic_Stress_Disorder/GSE44456"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/GSE44456.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/gene_data/GSE44456.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/clinical_data/GSE44456.csv"
16
+ json_path = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Get background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
23
+ print("Background Information:")
24
+ print(background_info)
25
+ print("\nSample Characteristics:")
26
+
27
+ # Get dictionary of unique values per row
28
+ unique_values_dict = get_unique_values_by_row(clinical_data)
29
+ for row, values in unique_values_dict.items():
30
+ print(f"\n{row}:")
31
+ print(values)
32
+ # 1. Gene Expression Data Availability
33
+ is_gene_available = True # Series summary mentions gene expression data from hippocampus
34
+
35
+ # 2. Variable Availability and Data Type Conversion
36
+ trait_row = 0 # 'phenotype' row contains alcoholic vs control
37
+ age_row = 3 # 'age' row contains numeric age values
38
+ gender_row = 1 # 'gender' row contains male/female values
39
+
40
+ def convert_trait(x: str) -> Optional[int]:
41
+ """Convert phenotype to binary (0=control, 1=alcoholic)"""
42
+ if not isinstance(x, str):
43
+ return None
44
+ x = x.split(': ')[-1].lower()
45
+ if x == 'control':
46
+ return 0
47
+ elif x == 'alcoholic':
48
+ return 1
49
+ return None
50
+
51
+ def convert_age(x: str) -> Optional[float]:
52
+ """Convert age to float"""
53
+ if not isinstance(x, str):
54
+ return None
55
+ try:
56
+ return float(x.split(': ')[-1])
57
+ except:
58
+ return None
59
+
60
+ def convert_gender(x: str) -> Optional[int]:
61
+ """Convert gender to binary (0=female, 1=male)"""
62
+ if not isinstance(x, str):
63
+ return None
64
+ x = x.split(': ')[-1].lower()
65
+ if x == 'female':
66
+ return 0
67
+ elif x == 'male':
68
+ return 1
69
+ return None
70
+
71
+ # 3. Save metadata for initial filtering
72
+ validate_and_save_cohort_info(
73
+ is_final=False,
74
+ cohort=cohort,
75
+ info_path=json_path,
76
+ is_gene_available=is_gene_available,
77
+ is_trait_available=trait_row is not None
78
+ )
79
+
80
+ # 4. Extract clinical features
81
+ selected_clinical_df = geo_select_clinical_features(
82
+ clinical_df=clinical_data,
83
+ trait=trait,
84
+ trait_row=trait_row,
85
+ convert_trait=convert_trait,
86
+ age_row=age_row,
87
+ convert_age=convert_age,
88
+ gender_row=gender_row,
89
+ convert_gender=convert_gender
90
+ )
91
+
92
+ # Preview and save clinical data
93
+ print(preview_df(selected_clinical_df))
94
+ selected_clinical_df.to_csv(out_clinical_data_file)
95
+ # Get gene expression data from matrix file
96
+ genetic_data = get_genetic_data(matrix_file_path)
97
+
98
+ # Examine data structure
99
+ print("Data structure and head:")
100
+ print(genetic_data.head())
101
+
102
+ print("\nShape:", genetic_data.shape)
103
+
104
+ print("\nFirst 20 row IDs (gene/probe identifiers):")
105
+ print(list(genetic_data.index)[:20])
106
+
107
+ # Get a few column names to verify sample IDs
108
+ print("\nFirst 5 column names:")
109
+ print(list(genetic_data.columns)[:5])
110
+ # The identifiers appear to be probe IDs (like '7896736', '7896738', etc.)
111
+ # rather than standard human gene symbols. They are likely numeric probe IDs
112
+ # specific to the microarray platform used, which need to be mapped to gene symbols
113
+ requires_gene_mapping = True
114
+ # Extract gene annotation data
115
+ gene_annotation = get_gene_annotation(soft_file_path)
116
+
117
+ # Display column names and preview data
118
+ print("Column names:")
119
+ print(gene_annotation.columns)
120
+
121
+ print("\nPreview of gene annotation data:")
122
+ print(preview_df(gene_annotation))
123
+ # 1. The gene identifiers seem to be in 'ID' column, and gene symbols can be extracted from 'gene_assignment'
124
+ # Extract probe-gene mapping from gene annotation data
125
+ mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='gene_assignment')
126
+
127
+ # 2. Get gene expression data from mapping
128
+ gene_data = apply_gene_mapping(genetic_data, mapping_data)
129
+
130
+ # Preview result
131
+ print("Gene mapping results:")
132
+ print("Input probes shape:", genetic_data.shape)
133
+ print("Output genes shape:", gene_data.shape)
134
+ print("\nFirst few rows of mapped gene expression data:")
135
+ print(gene_data.head())
136
+ # Reload clinical data that was processed earlier
137
+ selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
138
+
139
+ # 1. Normalize gene symbols
140
+ genetic_data = normalize_gene_symbols_in_index(gene_data)
141
+ genetic_data.to_csv(out_gene_data_file)
142
+
143
+ # 2. Link clinical and genetic data
144
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
145
+
146
+ # 3. Handle missing values systematically
147
+ linked_data = handle_missing_values(linked_data, trait)
148
+
149
+ # 4. Check for bias in trait and demographic features
150
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
151
+
152
+ # 5. Final validation and information saving
153
+ note = "Dataset contains subcutaneous adipose tissue gene expression data from PCOS patients and controls. The gender feature is biased (all female) and was removed."
154
+ is_usable = validate_and_save_cohort_info(
155
+ is_final=True,
156
+ cohort=cohort,
157
+ info_path=json_path,
158
+ is_gene_available=True,
159
+ is_trait_available=True,
160
+ is_biased=trait_biased,
161
+ df=linked_data,
162
+ note=note
163
+ )
164
+
165
+ # 6. Save linked data only if usable
166
+ if is_usable:
167
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
168
+ linked_data.to_csv(out_data_file)
p3/preprocess/Post-Traumatic_Stress_Disorder/code/GSE52875.py ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Post-Traumatic_Stress_Disorder"
6
+ cohort = "GSE52875"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Post-Traumatic_Stress_Disorder"
10
+ in_cohort_dir = "../DATA/GEO/Post-Traumatic_Stress_Disorder/GSE52875"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/GSE52875.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/gene_data/GSE52875.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/clinical_data/GSE52875.csv"
16
+ json_path = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Get background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
23
+ print("Background Information:")
24
+ print(background_info)
25
+ print("\nSample Characteristics:")
26
+
27
+ # Get dictionary of unique values per row
28
+ unique_values_dict = get_unique_values_by_row(clinical_data)
29
+ for row, values in unique_values_dict.items():
30
+ print(f"\n{row}:")
31
+ print(values)
32
+ # 1. Gene Expression Data Availability
33
+ is_gene_available = False # Not suitable - mice dataset
34
+
35
+ # 2. Variable Availability and Data Type Conversion
36
+ # All data rows containing only strain and tissue info, no trait/age/gender data
37
+ trait_row = None
38
+ age_row = None
39
+ gender_row = None
40
+
41
+ # These conversion functions won't be used since data not available
42
+ # but defining them to avoid NameErrors
43
+ def convert_trait(x):
44
+ return None
45
+
46
+ def convert_age(x):
47
+ return None
48
+
49
+ def convert_gender(x):
50
+ return None
51
+
52
+ # 3. Save Metadata
53
+ # Initial filtering - dataset not suitable since it's mice data
54
+ validate_and_save_cohort_info(is_final=False,
55
+ cohort=cohort,
56
+ info_path=json_path,
57
+ is_gene_available=is_gene_available,
58
+ is_trait_available=False)
59
+
60
+ # 4. Skip clinical feature extraction since trait_row is None
p3/preprocess/Post-Traumatic_Stress_Disorder/code/GSE63878.py ADDED
@@ -0,0 +1,149 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Post-Traumatic_Stress_Disorder"
6
+ cohort = "GSE63878"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Post-Traumatic_Stress_Disorder"
10
+ in_cohort_dir = "../DATA/GEO/Post-Traumatic_Stress_Disorder/GSE63878"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/GSE63878.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/gene_data/GSE63878.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/clinical_data/GSE63878.csv"
16
+ json_path = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Get background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
23
+ print("Background Information:")
24
+ print(background_info)
25
+ print("\nSample Characteristics:")
26
+
27
+ # Get dictionary of unique values per row
28
+ unique_values_dict = get_unique_values_by_row(clinical_data)
29
+ for row, values in unique_values_dict.items():
30
+ print(f"\n{row}:")
31
+ print(values)
32
+ # 1. Gene Expression Data Availability
33
+ # Based on background info, it's microarray data for gene expression, so:
34
+ is_gene_available = True
35
+
36
+ # 2. Variable Availability and Data Type Conversion
37
+ # 2.1 Identify rows containing each variable
38
+ trait_row = 1 # The trait info is in row 1 under 'condition'
39
+ age_row = None # Age not available
40
+ gender_row = None # Gender not available
41
+
42
+ # 2.2 Data Type Conversion Functions
43
+ def convert_trait(value):
44
+ """Convert PTSD status to binary (0: control, 1: case)"""
45
+ if not value or ':' not in value:
46
+ return None
47
+ value = value.split(':')[1].strip().lower()
48
+ if 'control' in value:
49
+ return 0
50
+ elif 'case' in value:
51
+ return 1
52
+ return None
53
+
54
+ convert_age = None # Not needed since age data unavailable
55
+ convert_gender = None # Not needed since gender data unavailable
56
+
57
+ # 3. Save Metadata
58
+ validate_and_save_cohort_info(is_final=False,
59
+ cohort=cohort,
60
+ info_path=json_path,
61
+ is_gene_available=is_gene_available,
62
+ is_trait_available=trait_row is not None)
63
+
64
+ # 4. Clinical Feature Extraction
65
+ if trait_row is not None:
66
+ clinical_df = geo_select_clinical_features(clinical_data,
67
+ trait=trait,
68
+ trait_row=trait_row,
69
+ convert_trait=convert_trait)
70
+
71
+ # Preview the processed clinical data
72
+ print("Preview of processed clinical data:")
73
+ print(preview_df(clinical_df))
74
+
75
+ # Save clinical data
76
+ clinical_df.to_csv(out_clinical_data_file)
77
+ # Get gene expression data from matrix file
78
+ genetic_data = get_genetic_data(matrix_file_path)
79
+
80
+ # Examine data structure
81
+ print("Data structure and head:")
82
+ print(genetic_data.head())
83
+
84
+ print("\nShape:", genetic_data.shape)
85
+
86
+ print("\nFirst 20 row IDs (gene/probe identifiers):")
87
+ print(list(genetic_data.index)[:20])
88
+
89
+ # Get a few column names to verify sample IDs
90
+ print("\nFirst 5 column names:")
91
+ print(list(genetic_data.columns)[:5])
92
+ # Based on examining the gene identifiers (numeric probe IDs like 7896740),
93
+ # these appear to be Illumina probe IDs rather than human gene symbols,
94
+ # so they will need to be mapped to gene symbols
95
+ requires_gene_mapping = True
96
+ # Extract gene annotation data
97
+ gene_annotation = get_gene_annotation(soft_file_path)
98
+
99
+ # Display column names and preview data
100
+ print("Column names:")
101
+ print(gene_annotation.columns)
102
+
103
+ print("\nPreview of gene annotation data:")
104
+ print(preview_df(gene_annotation))
105
+ # 1. Extract the mapping info
106
+ mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='gene_assignment')
107
+
108
+ # 2. Apply gene mapping to convert probe values to gene expression values
109
+ gene_data = apply_gene_mapping(genetic_data, mapping_data)
110
+
111
+ # Preview the gene data
112
+ print("\nPreview of gene data after mapping:")
113
+ print(preview_df(gene_data))
114
+
115
+ # Save gene data
116
+ gene_data.to_csv(out_gene_data_file)
117
+ # Reload clinical data that was processed earlier
118
+ selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
119
+
120
+ # 1. Normalize gene symbols
121
+ genetic_data = normalize_gene_symbols_in_index(gene_data)
122
+ genetic_data.to_csv(out_gene_data_file)
123
+
124
+ # 2. Link clinical and genetic data
125
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
126
+
127
+ # 3. Handle missing values systematically
128
+ linked_data = handle_missing_values(linked_data, trait)
129
+
130
+ # 4. Check for bias in trait and demographic features
131
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
132
+
133
+ # 5. Final validation and information saving
134
+ note = "Dataset contains subcutaneous adipose tissue gene expression data from PCOS patients and controls. The gender feature is biased (all female) and was removed."
135
+ is_usable = validate_and_save_cohort_info(
136
+ is_final=True,
137
+ cohort=cohort,
138
+ info_path=json_path,
139
+ is_gene_available=True,
140
+ is_trait_available=True,
141
+ is_biased=trait_biased,
142
+ df=linked_data,
143
+ note=note
144
+ )
145
+
146
+ # 6. Save linked data only if usable
147
+ if is_usable:
148
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
149
+ linked_data.to_csv(out_data_file)
p3/preprocess/Post-Traumatic_Stress_Disorder/code/GSE64814.py ADDED
@@ -0,0 +1,158 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Post-Traumatic_Stress_Disorder"
6
+ cohort = "GSE64814"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Post-Traumatic_Stress_Disorder"
10
+ in_cohort_dir = "../DATA/GEO/Post-Traumatic_Stress_Disorder/GSE64814"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/GSE64814.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/gene_data/GSE64814.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/clinical_data/GSE64814.csv"
16
+ json_path = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Get background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
23
+ print("Background Information:")
24
+ print(background_info)
25
+ print("\nSample Characteristics:")
26
+
27
+ # Get dictionary of unique values per row
28
+ unique_values_dict = get_unique_values_by_row(clinical_data)
29
+ for row, values in unique_values_dict.items():
30
+ print(f"\n{row}:")
31
+ print(values)
32
+ # 1. Gene Expression Data Availability
33
+ # From background info, this is a study of gene networks in PTSD
34
+ # and the samples are from peripheral blood leukocytes, suggesting gene expression data
35
+ is_gene_available = True
36
+
37
+ # 2.1 Row identifiers for clinical variables
38
+ trait_row = 1 # PTSD status is in row 1 under 'condition'
39
+ age_row = None # Age not available in sample characteristics
40
+ gender_row = None # Gender not available in sample characteristics
41
+
42
+ # 2.2 Data type conversion functions
43
+ def convert_trait(value: str) -> int:
44
+ """Convert PTSD status to binary"""
45
+ if not isinstance(value, str):
46
+ return None
47
+ value = value.split(': ')[-1].lower()
48
+ if 'case' in value: # Both 'case (PTSD)' and 'case (PTSD risk)' are cases
49
+ return 1
50
+ elif value == 'control':
51
+ return 0
52
+ return None
53
+
54
+ def convert_age(value: str) -> float:
55
+ """Placeholder function since age is not available"""
56
+ return None
57
+
58
+ def convert_gender(value: str) -> int:
59
+ """Placeholder function since gender is not available"""
60
+ return None
61
+
62
+ # 3. Save metadata about dataset usability
63
+ validate_and_save_cohort_info(is_final=False,
64
+ cohort=cohort,
65
+ info_path=json_path,
66
+ is_gene_available=is_gene_available,
67
+ is_trait_available=trait_row is not None)
68
+
69
+ # 4. Extract clinical features since trait data is available
70
+ clinical_features = geo_select_clinical_features(clinical_df=clinical_data,
71
+ trait=trait,
72
+ trait_row=trait_row,
73
+ convert_trait=convert_trait,
74
+ age_row=age_row,
75
+ convert_age=convert_age,
76
+ gender_row=gender_row,
77
+ convert_gender=convert_gender)
78
+
79
+ # Preview the extracted features
80
+ print("Preview of clinical features:")
81
+ print(preview_df(clinical_features))
82
+
83
+ # Save clinical features
84
+ clinical_features.to_csv(out_clinical_data_file)
85
+ # Get gene expression data from matrix file
86
+ genetic_data = get_genetic_data(matrix_file_path)
87
+
88
+ # Examine data structure
89
+ print("Data structure and head:")
90
+ print(genetic_data.head())
91
+
92
+ print("\nShape:", genetic_data.shape)
93
+
94
+ print("\nFirst 20 row IDs (gene/probe identifiers):")
95
+ print(list(genetic_data.index)[:20])
96
+
97
+ # Get a few column names to verify sample IDs
98
+ print("\nFirst 5 column names:")
99
+ print(list(genetic_data.columns)[:5])
100
+ # Looking at the format of gene identifiers - they appear to be probe IDs (numeric format)
101
+ # rather than standard human gene symbols (which are usually alphanumeric).
102
+ # This indicates we need to map these probe IDs to gene symbols.
103
+
104
+ requires_gene_mapping = True
105
+ # Extract gene annotation data
106
+ gene_annotation = get_gene_annotation(soft_file_path)
107
+
108
+ # Display column names and preview data
109
+ print("Column names:")
110
+ print(gene_annotation.columns)
111
+
112
+ print("\nPreview of gene annotation data:")
113
+ print(preview_df(gene_annotation))
114
+ # Extract gene mapping from annotation
115
+ # 'ID' contains probe IDs matching the gene expression data
116
+ # 'gene_assignment' contains the gene symbols amidst other info
117
+ mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='gene_assignment')
118
+
119
+ # Apply mapping to convert probe expression to gene expression
120
+ gene_data = apply_gene_mapping(genetic_data, mapping_data)
121
+
122
+ # Preview transformed data
123
+ print("Gene data shape:", gene_data.shape)
124
+ print("\nGene data preview:")
125
+ print(gene_data.head())
126
+ # Reload clinical data that was processed earlier
127
+ selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
128
+
129
+ # 1. Normalize gene symbols
130
+ genetic_data = normalize_gene_symbols_in_index(gene_data)
131
+ genetic_data.to_csv(out_gene_data_file)
132
+
133
+ # 2. Link clinical and genetic data
134
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
135
+
136
+ # 3. Handle missing values systematically
137
+ linked_data = handle_missing_values(linked_data, trait)
138
+
139
+ # 4. Check for bias in trait and demographic features
140
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
141
+
142
+ # 5. Final validation and information saving
143
+ note = "Dataset contains subcutaneous adipose tissue gene expression data from PCOS patients and controls. The gender feature is biased (all female) and was removed."
144
+ is_usable = validate_and_save_cohort_info(
145
+ is_final=True,
146
+ cohort=cohort,
147
+ info_path=json_path,
148
+ is_gene_available=True,
149
+ is_trait_available=True,
150
+ is_biased=trait_biased,
151
+ df=linked_data,
152
+ note=note
153
+ )
154
+
155
+ # 6. Save linked data only if usable
156
+ if is_usable:
157
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
158
+ linked_data.to_csv(out_data_file)
p3/preprocess/Post-Traumatic_Stress_Disorder/code/GSE67663.py ADDED
@@ -0,0 +1,184 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Post-Traumatic_Stress_Disorder"
6
+ cohort = "GSE67663"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Post-Traumatic_Stress_Disorder"
10
+ in_cohort_dir = "../DATA/GEO/Post-Traumatic_Stress_Disorder/GSE67663"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/GSE67663.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/gene_data/GSE67663.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/clinical_data/GSE67663.csv"
16
+ json_path = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Get background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
23
+ print("Background Information:")
24
+ print(background_info)
25
+ print("\nSample Characteristics:")
26
+
27
+ # Get dictionary of unique values per row
28
+ unique_values_dict = get_unique_values_by_row(clinical_data)
29
+ for row, values in unique_values_dict.items():
30
+ print(f"\n{row}:")
31
+ print(values)
32
+ # 1. Gene Expression Data Availability
33
+ # From title and summary, we can see this is a genome-wide gene expression study
34
+ is_gene_available = True
35
+
36
+ # 2.1 Data Availability
37
+ # trait: Row 2 has PTSD and depression status
38
+ # gender: Row 0 has sex data
39
+ # age: Row 1 has age data
40
+ trait_row = 2
41
+ gender_row = 0
42
+ age_row = 1
43
+
44
+ # 2.2 Data Type Conversion Functions
45
+ def convert_trait(x):
46
+ """Convert PTSD status to binary"""
47
+ if not isinstance(x, str):
48
+ return None
49
+ try:
50
+ # Extract value after colon and convert to int
51
+ value = x.split(': ')[1]
52
+ return int(value)
53
+ except:
54
+ return None
55
+
56
+ def convert_gender(x):
57
+ """Convert gender to binary (0=female, 1=male)"""
58
+ if not isinstance(x, str):
59
+ return None
60
+ try:
61
+ value = x.split(': ')[1].lower()
62
+ if value == 'female':
63
+ return 0
64
+ elif value == 'male':
65
+ return 1
66
+ else:
67
+ return None
68
+ except:
69
+ return None
70
+
71
+ def convert_age(x):
72
+ """Convert age to continuous numeric"""
73
+ if not isinstance(x, str):
74
+ return None
75
+ try:
76
+ value = x.split(': ')[1]
77
+ return float(value)
78
+ except:
79
+ return None
80
+
81
+ # 3. Save Initial Metadata
82
+ is_usable = validate_and_save_cohort_info(
83
+ is_final=False,
84
+ cohort=cohort,
85
+ info_path=json_path,
86
+ is_gene_available=is_gene_available,
87
+ is_trait_available=trait_row is not None
88
+ )
89
+
90
+ # 4. Extract Clinical Features
91
+ if trait_row is not None:
92
+ clinical_features = geo_select_clinical_features(
93
+ clinical_df=clinical_data,
94
+ trait=trait,
95
+ trait_row=trait_row,
96
+ convert_trait=convert_trait,
97
+ age_row=age_row,
98
+ convert_age=convert_age,
99
+ gender_row=gender_row,
100
+ convert_gender=convert_gender
101
+ )
102
+
103
+ # Preview the extracted features
104
+ print("Preview of clinical features:")
105
+ print(preview_df(clinical_features))
106
+
107
+ # Save to CSV
108
+ clinical_features.to_csv(out_clinical_data_file)
109
+ # Get gene expression data from matrix file
110
+ genetic_data = get_genetic_data(matrix_file_path)
111
+
112
+ # Examine data structure
113
+ print("Data structure and head:")
114
+ print(genetic_data.head())
115
+
116
+ print("\nShape:", genetic_data.shape)
117
+
118
+ print("\nFirst 20 row IDs (gene/probe identifiers):")
119
+ print(list(genetic_data.index)[:20])
120
+
121
+ # Get a few column names to verify sample IDs
122
+ print("\nFirst 5 column names:")
123
+ print(list(genetic_data.columns)[:5])
124
+ # The identifiers starting with "ILMN_" are Illumina probe IDs, not gene symbols
125
+ # These need to be mapped to standard gene symbols for analysis
126
+ requires_gene_mapping = True
127
+ # Extract gene annotation data
128
+ gene_annotation = get_gene_annotation(soft_file_path)
129
+
130
+ # Display column names and preview data
131
+ print("Column names:")
132
+ print(gene_annotation.columns)
133
+
134
+ print("\nPreview of gene annotation data:")
135
+ print(preview_df(gene_annotation))
136
+ # 1. Identify relevant columns from gene annotation
137
+ # The 'ID' column in annotation matches the ILMN_ identifiers in expression data
138
+ # The 'Symbol' column contains gene symbols
139
+ prob_col = 'ID'
140
+ gene_col = 'Symbol'
141
+
142
+ # 2. Get gene mapping dataframe
143
+ mapping_df = get_gene_mapping(gene_annotation, prob_col, gene_col)
144
+
145
+ # 3. Apply gene mapping to get gene expression data
146
+ gene_data = apply_gene_mapping(genetic_data, mapping_df)
147
+
148
+ # Preview the result
149
+ print("Shape of gene expression data:", gene_data.shape)
150
+ print("\nFirst few gene symbols:")
151
+ print(list(gene_data.index)[:10])
152
+ # Reload clinical data that was processed earlier
153
+ selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
154
+
155
+ # 1. Normalize gene symbols
156
+ genetic_data = normalize_gene_symbols_in_index(gene_data)
157
+ genetic_data.to_csv(out_gene_data_file)
158
+
159
+ # 2. Link clinical and genetic data
160
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
161
+
162
+ # 3. Handle missing values systematically
163
+ linked_data = handle_missing_values(linked_data, trait)
164
+
165
+ # 4. Check for bias in trait and demographic features
166
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
167
+
168
+ # 5. Final validation and information saving
169
+ note = "Dataset contains subcutaneous adipose tissue gene expression data from PCOS patients and controls. The gender feature is biased (all female) and was removed."
170
+ is_usable = validate_and_save_cohort_info(
171
+ is_final=True,
172
+ cohort=cohort,
173
+ info_path=json_path,
174
+ is_gene_available=True,
175
+ is_trait_available=True,
176
+ is_biased=trait_biased,
177
+ df=linked_data,
178
+ note=note
179
+ )
180
+
181
+ # 6. Save linked data only if usable
182
+ if is_usable:
183
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
184
+ linked_data.to_csv(out_data_file)
p3/preprocess/Post-Traumatic_Stress_Disorder/code/GSE77164.py ADDED
@@ -0,0 +1,156 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Post-Traumatic_Stress_Disorder"
6
+ cohort = "GSE77164"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Post-Traumatic_Stress_Disorder"
10
+ in_cohort_dir = "../DATA/GEO/Post-Traumatic_Stress_Disorder/GSE77164"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/GSE77164.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/gene_data/GSE77164.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/clinical_data/GSE77164.csv"
16
+ json_path = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Get background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
23
+ print("Background Information:")
24
+ print(background_info)
25
+ print("\nSample Characteristics:")
26
+
27
+ # Get dictionary of unique values per row
28
+ unique_values_dict = get_unique_values_by_row(clinical_data)
29
+ for row, values in unique_values_dict.items():
30
+ print(f"\n{row}:")
31
+ print(values)
32
+ # 1. Gene Expression Data Availability
33
+ # From dictionary indices 8-15, we can see there are multiple gene expression data (cd3d, cd3e, cd4, etc.)
34
+ is_gene_available = True
35
+
36
+ # 2.1 Data Availability
37
+ # trait (PTSD) is available in row 6 ('pts: 0', 'pts: 1')
38
+ trait_row = 6
39
+
40
+ # age is available in row 2 with various values
41
+ age_row = 2
42
+
43
+ # gender is available in row 1 ('female: 1', 'female: 0')
44
+ gender_row = 1
45
+
46
+ # 2.2 Data Type Conversion Functions
47
+ def convert_trait(x: str) -> int:
48
+ """Convert PTSD status to binary (0/1)"""
49
+ if not isinstance(x, str):
50
+ return None
51
+ try:
52
+ # Extract value after colon
53
+ value = x.split(': ')[1]
54
+ return int(value)
55
+ except:
56
+ return None
57
+
58
+ def convert_age(x: str) -> float:
59
+ """Convert age to continuous numeric value"""
60
+ if not isinstance(x, str):
61
+ return None
62
+ try:
63
+ # Extract value after colon
64
+ value = x.split(': ')[1]
65
+ return float(value)
66
+ except:
67
+ return None
68
+
69
+ def convert_gender(x: str) -> int:
70
+ """Convert gender to binary (0=female, 1=male)"""
71
+ if not isinstance(x, str):
72
+ return None
73
+ try:
74
+ # Extract value after colon
75
+ value = x.split(': ')[1]
76
+ # In this dataset, female=1, male=0, so we need to flip the values
77
+ return 1 - int(value) # Convert female:1 to 0, female:0 to 1
78
+ except:
79
+ return None
80
+
81
+ # 3. Save Metadata
82
+ validate_and_save_cohort_info(
83
+ is_final=False,
84
+ cohort=cohort,
85
+ info_path=json_path,
86
+ is_gene_available=is_gene_available,
87
+ is_trait_available=trait_row is not None
88
+ )
89
+
90
+ # 4. Clinical Feature Extraction
91
+ if trait_row is not None:
92
+ selected_clinical_df = geo_select_clinical_features(
93
+ clinical_df=clinical_data,
94
+ trait=trait,
95
+ trait_row=trait_row,
96
+ convert_trait=convert_trait,
97
+ age_row=age_row,
98
+ convert_age=convert_age,
99
+ gender_row=gender_row,
100
+ convert_gender=convert_gender
101
+ )
102
+
103
+ # Preview the data
104
+ print(preview_df(selected_clinical_df))
105
+
106
+ # Save to CSV
107
+ selected_clinical_df.to_csv(out_clinical_data_file)
108
+ # Get gene expression data from matrix file
109
+ genetic_data = get_genetic_data(matrix_file_path)
110
+
111
+ # Examine data structure
112
+ print("Data structure and head:")
113
+ print(genetic_data.head())
114
+
115
+ print("\nShape:", genetic_data.shape)
116
+
117
+ print("\nFirst 20 row IDs (gene/probe identifiers):")
118
+ print(list(genetic_data.index)[:20])
119
+
120
+ # Get a few column names to verify sample IDs
121
+ print("\nFirst 5 column names:")
122
+ print(list(genetic_data.columns)[:5])
123
+ requires_gene_mapping = False
124
+ # Reload clinical data that was processed earlier
125
+ selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
126
+
127
+ # 1. Normalize gene symbols using data from previous step
128
+ genetic_data = normalize_gene_symbols_in_index(genetic_data)
129
+ genetic_data.to_csv(out_gene_data_file)
130
+
131
+ # 2. Link clinical and genetic data
132
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
133
+
134
+ # 3. Handle missing values systematically
135
+ linked_data = handle_missing_values(linked_data, trait)
136
+
137
+ # 4. Check for bias in trait and demographic features
138
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
139
+
140
+ # 5. Final validation and information saving
141
+ note = "Dataset contains gene expression data from child soldiers and civilians in Nepal, with PTSD symptoms and psychological resilience measures. All required features (trait, age, gender) are available with good distributions."
142
+ is_usable = validate_and_save_cohort_info(
143
+ is_final=True,
144
+ cohort=cohort,
145
+ info_path=json_path,
146
+ is_gene_available=True,
147
+ is_trait_available=True,
148
+ is_biased=trait_biased,
149
+ df=linked_data,
150
+ note=note
151
+ )
152
+
153
+ # 6. Save linked data only if usable
154
+ if is_usable:
155
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
156
+ linked_data.to_csv(out_data_file)
p3/preprocess/Post-Traumatic_Stress_Disorder/code/GSE81761.py ADDED
@@ -0,0 +1,174 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Post-Traumatic_Stress_Disorder"
6
+ cohort = "GSE81761"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Post-Traumatic_Stress_Disorder"
10
+ in_cohort_dir = "../DATA/GEO/Post-Traumatic_Stress_Disorder/GSE81761"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/GSE81761.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/gene_data/GSE81761.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/clinical_data/GSE81761.csv"
16
+ json_path = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Get background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
23
+ print("Background Information:")
24
+ print(background_info)
25
+ print("\nSample Characteristics:")
26
+
27
+ # Get dictionary of unique values per row
28
+ unique_values_dict = get_unique_values_by_row(clinical_data)
29
+ for row, values in unique_values_dict.items():
30
+ print(f"\n{row}:")
31
+ print(values)
32
+ # 1. Gene Expression Data Availability
33
+ # From background info, we see gene expression data using HG-U133_Plus_2 Affymetrix chip
34
+ is_gene_available = True
35
+
36
+ # 2. Variable Availability and Row IDs
37
+ # Trait (PTSD): Row 1 has case/control info
38
+ trait_row = 1
39
+ # Age: Row 5 has age data
40
+ age_row = 5
41
+ # Gender: Row 4 has sex data
42
+ gender_row = 4
43
+
44
+ # Convert functions
45
+ def convert_trait(x: str) -> int:
46
+ """Convert PTSD status to binary"""
47
+ if pd.isna(x):
48
+ return None
49
+ value = x.split(': ')[1].strip()
50
+ if value == 'PTSD':
51
+ return 1
52
+ elif value == 'No PTSD':
53
+ return 0
54
+ return None
55
+
56
+ def convert_age(x: str) -> float:
57
+ """Convert age to float"""
58
+ if pd.isna(x):
59
+ return None
60
+ try:
61
+ return float(x.split(': ')[1])
62
+ except:
63
+ return None
64
+
65
+ def convert_gender(x: str) -> int:
66
+ """Convert gender to binary (0=female, 1=male)"""
67
+ if pd.isna(x):
68
+ return None
69
+ value = x.split(': ')[1].lower()
70
+ if value == 'female':
71
+ return 0
72
+ elif value == 'male':
73
+ return 1
74
+ return None
75
+
76
+ # 3. Save metadata
77
+ validate_and_save_cohort_info(is_final=False,
78
+ cohort=cohort,
79
+ info_path=json_path,
80
+ is_gene_available=is_gene_available,
81
+ is_trait_available=trait_row is not None)
82
+
83
+ # 4. Extract clinical features
84
+ clinical_df = geo_select_clinical_features(clinical_data,
85
+ trait=trait,
86
+ trait_row=trait_row,
87
+ convert_trait=convert_trait,
88
+ age_row=age_row,
89
+ convert_age=convert_age,
90
+ gender_row=gender_row,
91
+ convert_gender=convert_gender)
92
+
93
+ # Preview the extracted features
94
+ preview_result = preview_df(clinical_df)
95
+ print("Preview of clinical data:")
96
+ print(preview_result)
97
+
98
+ # Save clinical data
99
+ clinical_df.to_csv(out_clinical_data_file)
100
+ # Get gene expression data from matrix file
101
+ genetic_data = get_genetic_data(matrix_file_path)
102
+
103
+ # Examine data structure
104
+ print("Data structure and head:")
105
+ print(genetic_data.head())
106
+
107
+ print("\nShape:", genetic_data.shape)
108
+
109
+ print("\nFirst 20 row IDs (gene/probe identifiers):")
110
+ print(list(genetic_data.index)[:20])
111
+
112
+ # Get a few column names to verify sample IDs
113
+ print("\nFirst 5 column names:")
114
+ print(list(genetic_data.columns)[:5])
115
+ # Based on examination of the identifiers (e.g., '1007_s_at', '1053_at'), these are Affymetrix probe IDs, not gene symbols
116
+ # They need to be mapped to standard human gene symbols for analysis
117
+ requires_gene_mapping = True
118
+ # Extract gene annotation data
119
+ gene_annotation = get_gene_annotation(soft_file_path)
120
+
121
+ # Display column names and preview data
122
+ print("Column names:")
123
+ print(gene_annotation.columns)
124
+
125
+ print("\nPreview of gene annotation data:")
126
+ print(preview_df(gene_annotation))
127
+ # Get probe-to-gene mapping
128
+ # 'ID' column has probe identifiers matching gene expression data
129
+ # 'Gene Symbol' column has gene symbols
130
+ mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')
131
+
132
+ # Apply gene mapping to convert probe-level measurements to gene-level expression
133
+ gene_data = apply_gene_mapping(genetic_data, mapping_data)
134
+
135
+ # Print info about the mapping
136
+ print(f"Original probe count: {len(genetic_data)}")
137
+ print(f"Gene count after mapping: {len(gene_data)}")
138
+
139
+ # Preview the mapped gene expression data
140
+ print("\nPreview of gene expression data:")
141
+ print(gene_data.head())
142
+ # Reload clinical data that was processed earlier
143
+ selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
144
+
145
+ # 1. Normalize gene symbols
146
+ genetic_data = normalize_gene_symbols_in_index(gene_data)
147
+ genetic_data.to_csv(out_gene_data_file)
148
+
149
+ # 2. Link clinical and genetic data
150
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
151
+
152
+ # 3. Handle missing values systematically
153
+ linked_data = handle_missing_values(linked_data, trait)
154
+
155
+ # 4. Check for bias in trait and demographic features
156
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
157
+
158
+ # 5. Final validation and information saving
159
+ note = "Dataset contains subcutaneous adipose tissue gene expression data from PCOS patients and controls. The gender feature is biased (all female) and was removed."
160
+ is_usable = validate_and_save_cohort_info(
161
+ is_final=True,
162
+ cohort=cohort,
163
+ info_path=json_path,
164
+ is_gene_available=True,
165
+ is_trait_available=True,
166
+ is_biased=trait_biased,
167
+ df=linked_data,
168
+ note=note
169
+ )
170
+
171
+ # 6. Save linked data only if usable
172
+ if is_usable:
173
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
174
+ linked_data.to_csv(out_data_file)
p3/preprocess/Post-Traumatic_Stress_Disorder/code/TCGA.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Post-Traumatic_Stress_Disorder"
6
+
7
+ # Input paths
8
+ tcga_root_dir = "../DATA/TCGA"
9
+
10
+ # Output paths
11
+ out_data_file = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/TCGA.csv"
12
+ out_gene_data_file = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/gene_data/TCGA.csv"
13
+ out_clinical_data_file = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/clinical_data/TCGA.csv"
14
+ json_path = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/cohort_info.json"
15
+
16
+ # 1. Check TCGA directories for PTSD-related data
17
+ all_dirs = ['CrawlData.ipynb', '.DS_Store', 'TCGA_lower_grade_glioma_and_glioblastoma_(GBMLGG)', 'TCGA_Uterine_Carcinosarcoma_(UCS)', 'TCGA_Thyroid_Cancer_(THCA)', 'TCGA_Thymoma_(THYM)', 'TCGA_Testicular_Cancer_(TGCT)', 'TCGA_Stomach_Cancer_(STAD)', 'TCGA_Sarcoma_(SARC)', 'TCGA_Rectal_Cancer_(READ)', 'TCGA_Prostate_Cancer_(PRAD)', 'TCGA_Pheochromocytoma_Paraganglioma_(PCPG)', 'TCGA_Pancreatic_Cancer_(PAAD)', 'TCGA_Ovarian_Cancer_(OV)', 'TCGA_Ocular_melanomas_(UVM)', 'TCGA_Mesothelioma_(MESO)', 'TCGA_Melanoma_(SKCM)', 'TCGA_Lung_Squamous_Cell_Carcinoma_(LUSC)', 'TCGA_Lung_Cancer_(LUNG)', 'TCGA_Lung_Adenocarcinoma_(LUAD)', 'TCGA_Lower_Grade_Glioma_(LGG)', 'TCGA_Liver_Cancer_(LIHC)', 'TCGA_Large_Bcell_Lymphoma_(DLBC)', 'TCGA_Kidney_Papillary_Cell_Carcinoma_(KIRP)', 'TCGA_Kidney_Clear_Cell_Carcinoma_(KIRC)', 'TCGA_Kidney_Chromophobe_(KICH)', 'TCGA_Head_and_Neck_Cancer_(HNSC)', 'TCGA_Glioblastoma_(GBM)', 'TCGA_Esophageal_Cancer_(ESCA)', 'TCGA_Endometrioid_Cancer_(UCEC)', 'TCGA_Colon_and_Rectal_Cancer_(COADREAD)', 'TCGA_Colon_Cancer_(COAD)', 'TCGA_Cervical_Cancer_(CESC)', 'TCGA_Breast_Cancer_(BRCA)', 'TCGA_Bladder_Cancer_(BLCA)', 'TCGA_Bile_Duct_Cancer_(CHOL)', 'TCGA_Adrenocortical_Cancer_(ACC)', 'TCGA_Acute_Myeloid_Leukemia_(LAML)']
18
+
19
+ # No directories contain PTSD-related data since TCGA is a cancer database
20
+ is_gene_available = False
21
+ is_trait_available = False
22
+
23
+ # Record that no suitable data is available
24
+ validate_and_save_cohort_info(
25
+ is_final=False,
26
+ cohort="TCGA",
27
+ info_path=json_path,
28
+ is_gene_available=is_gene_available,
29
+ is_trait_available=is_trait_available
30
+ )
p3/preprocess/Post-Traumatic_Stress_Disorder/gene_data/GSE114852.csv ADDED
The diff for this file is too large to render. See raw diff
 
p3/preprocess/Post-Traumatic_Stress_Disorder/gene_data/GSE199841.csv ADDED
The diff for this file is too large to render. See raw diff
 
p3/preprocess/Prostate_Cancer/clinical_data/GSE125341.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ,GSM3569269,GSM3569270,GSM3569271,GSM3569272,GSM3569273,GSM3569274,GSM3569283,GSM3569284,GSM3569285,GSM3569286,GSM3569287,GSM3569288,GSM7032051,GSM7032052,GSM7032053,GSM7032054,GSM7032055,GSM7032056,GSM7032057,GSM7032058,GSM7032059,GSM7032060,GSM7032061,GSM7032124,GSM7032125,GSM7032126,GSM7032127,GSM7032128,GSM7032129,GSM7032130,GSM7032131,GSM7032132,GSM7032133,GSM7032134,GSM7032135,GSM7032136,GSM7032137
2
+ Prostate_Cancer,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,,,,,,,,,,,,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
p3/preprocess/Prostate_Cancer/clinical_data/GSE178631.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ,GSM5394875,GSM5394876,GSM5394877,GSM5394878,GSM5394879,GSM5394880,GSM5394881,GSM5394882,GSM5394883,GSM5394884,GSM5394885,GSM5394886,GSM5394887,GSM5394888,GSM5394889,GSM5394890,GSM5394891,GSM5394892,GSM5394893,GSM5394894,GSM5394895,GSM5394896,GSM5394897,GSM5394898,GSM5394899,GSM5394900,GSM5394901,GSM5394902,GSM5394903,GSM5394904,GSM5394905,GSM5394906,GSM5394907,GSM5394908,GSM5394909,GSM5394910,GSM5394911,GSM5394912,GSM5394913,GSM5394914,GSM5394915,GSM5394916,GSM5394917,GSM5394918,GSM5394919,GSM5394920,GSM5394921,GSM5394922,GSM5394923,GSM5394924,GSM5394925,GSM5394926,GSM5394927,GSM5394928,GSM5394929,GSM5394930,GSM5394931,GSM5394932,GSM5394933,GSM5394934,GSM5394935,GSM5394936,GSM5394937,GSM5394938,GSM5394939,GSM5394940,GSM5394941,GSM5394942,GSM5394943,GSM5394944,GSM5394945,GSM5394946,GSM5394947,GSM5394948,GSM5394949,GSM5394950,GSM5394951,GSM5394952,GSM5394953,GSM5394954,GSM5394955,GSM5394956,GSM5394957,GSM5394958,GSM5394959,GSM5394960,GSM5394961,GSM5394962,GSM5394963,GSM5394964,GSM5394965,GSM5394966,GSM5394967,GSM5394968,GSM5394969,GSM5394970,GSM5394971,GSM5394972,GSM5394973,GSM5394974,GSM5394975,GSM5394976,GSM5394977,GSM5394978,GSM5394979,GSM5394980,GSM5394981,GSM5394982,GSM5394983,GSM5394984,GSM5394985,GSM5394986,GSM5394987,GSM5394988,GSM5394989,GSM5394990,GSM5394991,GSM5394992,GSM5394993,GSM5394994,GSM5394995,GSM5394996,GSM5394997,GSM5394998,GSM5394999,GSM5395000,GSM5395001,GSM5395002,GSM5395003,GSM5395004,GSM5395005,GSM5395006,GSM5395007,GSM5395008,GSM5395009,GSM5395010,GSM5395011,GSM5395012,GSM5395013,GSM5395014,GSM5395015
2
+ Prostate_Cancer,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,,,1.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0
p3/preprocess/Prostate_Cancer/clinical_data/GSE200879.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ,GSM6045848,GSM6045849,GSM6045850,GSM6045851,GSM6045852,GSM6045853,GSM6045854,GSM6045855,GSM6045856,GSM6045857,GSM6045858,GSM6045859,GSM6045860,GSM6045861,GSM6045862,GSM6045863,GSM6045864,GSM6045865,GSM6045866,GSM6045867,GSM6045868,GSM6045869,GSM6045870,GSM6045871,GSM6045872,GSM6045873,GSM6045874,GSM6045875,GSM6045876,GSM6045877,GSM6045878,GSM6045879,GSM6045880,GSM6045881,GSM6045882,GSM6045883,GSM6045884,GSM6045885,GSM6045886,GSM6045887,GSM6045888,GSM6045889,GSM6045890,GSM6045891,GSM6045892,GSM6045893,GSM6045894,GSM6045895,GSM6045896,GSM6045897,GSM6045898,GSM6045899,GSM6045900,GSM6045901,GSM6045902,GSM6045903,GSM6045904,GSM6045905,GSM6045906,GSM6045907,GSM6045908,GSM6045909,GSM6045910,GSM6045911,GSM6045912,GSM6045913,GSM6045914,GSM6045915,GSM6045916,GSM6045917,GSM6045918,GSM6045919,GSM6045920,GSM6045921,GSM6045922,GSM6045923,GSM6045924,GSM6045925,GSM6045926,GSM6045927,GSM6045928,GSM6045929,GSM6045930,GSM6045931,GSM6045932,GSM6045933,GSM6045934,GSM6045935,GSM6045936,GSM6045937,GSM6045938,GSM6045939,GSM6045940,GSM6045941,GSM6045942,GSM6045943,GSM6045944,GSM6045945,GSM6045946,GSM6045947,GSM6045948,GSM6045949,GSM6045950,GSM6045951,GSM6045952,GSM6045953,GSM6045954,GSM6045955,GSM6045956,GSM6045957,GSM6045958,GSM6045959,GSM6045960,GSM6045961,GSM6045962,GSM6045963,GSM6045964,GSM6045965,GSM6045966,GSM6045967,GSM6045968,GSM6045969,GSM6045970,GSM6045971,GSM6045972,GSM6045973,GSM6045974,GSM6045975,GSM6045976,GSM6045977,GSM6045978,GSM6045979,GSM6045980,GSM6045981,GSM6045982,GSM6045983,GSM6045984
2
+ Prostate_Cancer,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
p3/preprocess/Prostate_Cancer/clinical_data/GSE201805.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ ,GSM6071779,GSM6071780,GSM6071781,GSM6071782,GSM6071783,GSM6071784,GSM6071785,GSM6071786,GSM6071787,GSM6071788,GSM6071789,GSM6071790,GSM6071791,GSM6071792,GSM6071793,GSM6071794,GSM6071795,GSM6071796,GSM6071797,GSM6071798,GSM6071799,GSM6071800,GSM6071801,GSM6071802,GSM6071803,GSM6071804,GSM6071805,GSM6071806,GSM6071807,GSM6071808,GSM6071809,GSM6071810,GSM6071811,GSM6071812,GSM6071813,GSM6071814,GSM6071815,GSM6071816,GSM6071817,GSM6071818,GSM6071819,GSM6071820,GSM6071821,GSM6071822,GSM6071823,GSM6071824,GSM6071825,GSM6071826,GSM6071827,GSM6071828,GSM6071829,GSM6071830,GSM6071831,GSM6071832,GSM6071833,GSM6071834,GSM6071835,GSM6071836,GSM6071837,GSM6071838,GSM6071839,GSM6071840,GSM6071841,GSM6071842,GSM6071843,GSM6071844,GSM6071845,GSM6071846,GSM6071847,GSM6071848,GSM6071849,GSM6071850,GSM6071851,GSM6071852,GSM6071853,GSM6071854,GSM6071855,GSM6071856,GSM6071857,GSM6071858,GSM6071859,GSM6071860,GSM6071861,GSM6071862,GSM6071863,GSM6071864,GSM6071865,GSM6071866,GSM6071867,GSM6071868,GSM6071869,GSM6071870,GSM6071871,GSM6071872,GSM6071873,GSM6071874,GSM6071875,GSM6071876,GSM6071877,GSM6071878,GSM6071879,GSM6071880,GSM6071881,GSM6071882,GSM6071883,GSM6071884,GSM6071885,GSM6071886,GSM6071887,GSM6071888,GSM6071889,GSM6071890,GSM6071891,GSM6071892,GSM6071893,GSM6071894,GSM6071895,GSM6071896,GSM6071897,GSM6071898,GSM6071899,GSM6071900,GSM6071901,GSM6071902,GSM6071903,GSM6071904,GSM6071905,GSM6071906,GSM6071907,GSM6071908,GSM6071909,GSM6071910,GSM6071911,GSM6071912,GSM6071913,GSM6071914,GSM6071915,GSM6071916,GSM6071917,GSM6071918,GSM6071919,GSM6071920,GSM6071921,GSM6071922,GSM6071923,GSM6071924,GSM6071925,GSM6071926,GSM6071927,GSM6071928,GSM6071929,GSM6071930,GSM6071931,GSM6071932,GSM6071933,GSM6071934,GSM6071935,GSM6071936,GSM6071937,GSM6071938
2
+ Prostate_Cancer,0.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,,1.0,1.0,1.0,0.0,1.0,,0.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,,1.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,,1.0,0.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0
3
+ Age,61.0,48.0,69.0,74.0,56.0,66.0,58.0,69.0,48.0,51.0,59.0,59.0,65.0,64.0,66.0,50.0,67.0,60.0,69.0,62.0,55.0,56.0,67.0,77.0,65.0,66.0,69.0,49.0,72.0,62.0,60.0,50.0,79.0,74.0,63.0,39.0,90.0,65.0,56.0,50.0,47.0,58.0,81.0,66.0,66.0,,54.0,57.0,64.0,66.0,70.0,,58.0,54.0,,59.0,77.0,51.0,88.0,71.0,60.0,75.0,65.0,53.0,72.0,70.0,64.0,59.0,66.0,62.0,70.0,64.0,54.0,41.0,63.0,56.0,,57.0,69.0,54.0,64.0,67.0,63.0,64.0,78.0,56.0,57.0,,50.0,76.0,77.0,68.0,71.0,58.0,71.0,51.0,64.0,58.0,52.0,63.0,51.0,52.0,47.0,66.0,49.0,53.0,50.0,66.0,80.0,72.0,70.0,47.0,58.0,64.0,56.0,54.0,57.0,68.0,60.0,67.0,53.0,68.0,50.0,74.0,52.0,48.0,51.0,59.0,67.0,73.0,57.0,59.0,65.0,56.0,66.0,62.0,,78.0,54.0,51.0,55.0,71.0,48.0,64.0,69.0,75.0,70.0,84.0,56.0,48.0,74.0,48.0,54.0,45.0,72.0,62.0,62.0,,73.0,70.0
p3/preprocess/Prostate_Cancer/clinical_data/GSE206793.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ ,GSM6262785,GSM6262786,GSM6262787,GSM6262788,GSM6262789,GSM6262790,GSM6262791,GSM6262792,GSM6262793,GSM6262794,GSM6262795,GSM6262796,GSM6262797,GSM6262798,GSM6262799,GSM6262800,GSM6262801,GSM6262802,GSM6262803,GSM6262804,GSM6262805,GSM6262806,GSM6262807,GSM6262808,GSM6262809,GSM6262810,GSM6262811,GSM6262812,GSM6262813,GSM6262814,GSM6262815,GSM6262816,GSM6262817,GSM6262818,GSM6262819,GSM6262820,GSM6262821,GSM6262822,GSM6262823,GSM6262824,GSM6262825,GSM6262826,GSM6262827,GSM6262828,GSM6262829,GSM6262830,GSM6262831,GSM6262832,GSM6262833,GSM6262834,GSM6262835,GSM6262836,GSM6262837,GSM6262838,GSM6262839,GSM6262840,GSM6262841,GSM6262842,GSM6262843,GSM6262844,GSM6262845,GSM6262846,GSM6262847,GSM6262848,GSM6262849,GSM6262850,GSM6262851,GSM6262852,GSM6262853,GSM6262854,GSM6262855,GSM6262856,GSM6262857,GSM6262858,GSM6262859,GSM6262860,GSM6262861,GSM6262862,GSM6262863,GSM6262864,GSM6262865,GSM6262866,GSM6262867,GSM6262868,GSM6262869,GSM6262870,GSM6262871,GSM6262872,GSM6262873,GSM6262874,GSM6262875,GSM6262876,GSM6262877,GSM6262878,GSM6262879,GSM6262880,GSM6262881,GSM6262882,GSM6262883,GSM6262884,GSM6262885,GSM6262886,GSM6262887,GSM6262888,GSM6262889,GSM6262890,GSM6262891,GSM6262892,GSM6262893,GSM6262894,GSM6262895,GSM6262896,GSM6262897,GSM6262898,GSM6262899,GSM6262900,GSM6262901,GSM6262902,GSM6262903,GSM6262904,GSM6262905,GSM6262906,GSM6262907,GSM6262908,GSM6262909,GSM6262910,GSM6262911,GSM6262912,GSM6262913,GSM6262914,GSM6262915,GSM6262916,GSM6262917,GSM6262918,GSM6262919,GSM6262920,GSM6262921,GSM6262922,GSM6262923,GSM6262924,GSM6262925,GSM6262926,GSM6262927,GSM6262928,GSM6262929,GSM6262930,GSM6262931,GSM6262932,GSM6262933,GSM6262934,GSM6262935,GSM6262936
2
+ Prostate_Cancer,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0
3
+ Age,60.0,67.0,75.0,66.0,58.0,60.0,64.0,67.0,65.0,70.0,67.0,61.0,63.0,65.0,60.0,56.0,57.0,68.0,59.0,71.0,68.0,68.0,62.0,58.0,66.0,61.0,70.0,61.0,76.0,64.0,64.0,64.0,76.0,68.0,67.0,64.0,58.0,62.0,65.0,48.0,73.0,65.0,58.0,,59.0,72.0,48.0,68.0,71.0,68.0,66.0,62.0,55.0,66.0,63.0,79.0,80.0,67.0,62.0,63.0,78.0,61.0,64.0,64.0,80.0,67.0,56.0,67.0,64.0,62.0,55.0,82.0,62.0,69.0,60.0,68.0,73.0,62.0,73.0,64.0,66.0,71.0,80.0,,56.0,66.0,58.0,74.0,56.0,48.0,63.0,77.0,68.0,68.0,61.0,78.0,68.0,60.0,73.0,57.0,67.0,83.0,61.0,65.0,66.0,74.0,63.0,68.0,73.0,75.0,65.0,65.0,74.0,66.0,54.0,60.0,59.0,69.0,62.0,61.0,69.0,52.0,49.0,,66.0,67.0,55.0,69.0,59.0,68.0,45.0,59.0,58.0,60.0,68.0,49.0,72.0,58.0,65.0,54.0,68.0,51.0,60.0,57.0,64.0,47.0,66.0,32.0,30.0,29.0,34.0,33.0
p3/preprocess/Prostate_Cancer/clinical_data/GSE209954.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ ,GSM6411059,GSM6411060,GSM6411061,GSM6411062,GSM6411063,GSM6411064,GSM6411065,GSM6411066,GSM6411067,GSM6411068,GSM6411069,GSM6411070,GSM6411071,GSM6411072,GSM6411073,GSM6411074,GSM6411075,GSM6411076,GSM6411077,GSM6411078,GSM6411079,GSM6411080,GSM6411081,GSM6411082,GSM6411083,GSM6411084,GSM6411085,GSM6411086,GSM6411087,GSM6411088,GSM6411089,GSM6411090,GSM6411091,GSM6411092,GSM6411093,GSM6411094,GSM6411095,GSM6411096,GSM6411097,GSM6411098,GSM6411099,GSM6411100,GSM6411101,GSM6411102,GSM6411103,GSM6411104,GSM6411105,GSM6411106,GSM6411107,GSM6411108,GSM6411109,GSM6411110,GSM6411111,GSM6411112,GSM6411113,GSM6411114,GSM6411115,GSM6411116,GSM6411117,GSM6411118,GSM6411119,GSM6411120,GSM6411121,GSM6411122,GSM6411123,GSM6411124,GSM6411125,GSM6411126,GSM6411127,GSM6411128,GSM6411129,GSM6411130,GSM6411131,GSM6411132,GSM6411133,GSM6411134,GSM6411135,GSM6411136,GSM6411137,GSM6411138,GSM6411139,GSM6411140,GSM6411141,GSM6411142,GSM6411143,GSM6411144,GSM6411145,GSM6411146,GSM6411147,GSM6411148,GSM6411149,GSM6411150,GSM6411151,GSM6411152,GSM6411153,GSM6411154,GSM6411155,GSM6411156,GSM6411157,GSM6411158,GSM6411159,GSM6411160,GSM6411161,GSM6411162,GSM6411163,GSM6411164,GSM6411165,GSM6411166,GSM6411167,GSM6411168,GSM6411169,GSM6411170,GSM6411171,GSM6411172,GSM6411173,GSM6411174,GSM6411175,GSM6411176,GSM6411177,GSM6411178,GSM6411179,GSM6411180,GSM6411181,GSM6411182,GSM6411183,GSM6411184,GSM6411185,GSM6411186,GSM6411187,GSM6411188,GSM6411189,GSM6411190,GSM6411191,GSM6411192,GSM6411193,GSM6411194,GSM6411195,GSM6411196,GSM6411197,GSM6411198,GSM6411199,GSM6411200,GSM6411201,GSM6411202,GSM6411203,GSM6411204,GSM6411205,GSM6411206,GSM6411207,GSM6411208,GSM6411209,GSM6411210,GSM6411211,GSM6411212,GSM6411213,GSM6411214,GSM6411215,GSM6411216,GSM6411217,GSM6411218,GSM6411219,GSM6411220,GSM6411221,GSM6411222,GSM6411223,GSM6411224,GSM6411225,GSM6411226,GSM6411227,GSM6411228,GSM6411229,GSM6411230,GSM6411231,GSM6411232,GSM6411233,GSM6411234,GSM6411235,GSM6411236,GSM6411237,GSM6411238,GSM6411239,GSM6411240,GSM6411241,GSM6411242,GSM6411243,GSM6411244,GSM6411245,GSM6411246,GSM6411247,GSM6411248,GSM6411249,GSM6411250,GSM6411251,GSM6411252,GSM6411253,GSM6411254,GSM6411255,GSM6411256,GSM6411257,GSM6411258,GSM6411259,GSM6411260,GSM6411261,GSM6411262,GSM6411263,GSM6411264,GSM6411265,GSM6411266,GSM6411267,GSM6411268,GSM6411269,GSM6411270,GSM6411271,GSM6411272,GSM6411273,GSM6411274,GSM6411275,GSM6411276,GSM6411277,GSM6411278,GSM6411279,GSM6411280,GSM6411281,GSM6411282,GSM6411283,GSM6411284
2
+ Prostate_Cancer,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0
3
+ Age,45.0,67.0,47.0,68.0,70.0,61.0,62.0,51.0,69.0,65.0,74.0,71.0,58.0,67.0,62.0,69.0,64.0,71.0,61.0,58.0,67.0,55.0,55.0,71.0,61.0,71.0,70.0,59.0,60.0,56.0,58.0,75.0,70.0,51.0,47.0,69.0,69.0,72.0,51.0,54.0,54.0,61.0,59.0,56.0,62.0,76.0,61.0,55.0,60.0,64.0,66.0,56.0,49.0,69.0,62.0,60.0,58.0,46.0,63.0,61.0,74.0,54.0,58.0,59.0,59.0,71.0,62.0,67.0,59.0,73.0,47.0,65.0,65.0,63.0,49.0,54.0,67.0,57.0,64.0,66.0,65.0,66.0,58.0,66.0,69.0,52.0,67.0,66.0,66.0,58.0,69.0,65.0,59.0,62.0,50.0,61.0,70.0,61.0,51.0,55.0,65.0,67.0,65.0,57.0,67.0,56.0,74.0,52.0,49.0,62.0,68.0,81.0,67.0,66.0,72.0,59.0,56.0,68.0,56.0,61.0,62.0,41.0,60.0,70.0,47.0,70.0,59.0,59.0,49.0,56.0,70.0,75.0,59.0,73.0,75.0,57.0,63.0,69.0,54.0,52.0,83.0,62.0,70.0,55.0,50.0,59.0,67.0,49.0,71.0,70.0,66.0,59.0,56.0,70.0,64.0,71.0,67.0,47.0,56.0,55.0,61.0,53.0,72.0,54.0,77.0,75.0,53.0,66.0,59.0,58.0,66.0,76.0,63.0,59.0,75.0,66.0,56.0,49.0,68.0,72.0,48.0,65.0,75.0,63.0,53.0,76.0,77.0,73.0,62.0,63.0,56.0,73.0,74.0,64.0,66.0,79.0,64.0,74.0,61.0,48.0,67.0,50.0,67.0,64.0,68.0,53.0,68.0,63.0,74.0,61.0,62.0,68.0,65.0,72.0,75.0,69.0,47.0,56.0,74.0,80.0,51.0,54.0,73.0,68.0,71.0,64.0
p3/preprocess/Prostate_Cancer/clinical_data/GSE248619.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ,GSM7918062,GSM7918063,GSM7918064,GSM7918065,GSM7918066,GSM7918067,GSM7918068,GSM7918069,GSM7918070,GSM7918071,GSM7918072,GSM7918073,GSM7918074,GSM7918075,GSM7918076,GSM7918077,GSM7918078,GSM7918079,GSM7918080,GSM7918081,GSM7918082,GSM7918083,GSM7918084,GSM7918085,GSM7918086,GSM7918087,GSM7918088,GSM7918089,GSM7918090,GSM7918091,GSM7918092,GSM7918093,GSM7918094,GSM7918095,GSM7918096,GSM7918097,GSM7918098,GSM7918099,GSM7918100,GSM7918101,GSM7918102,GSM7918103,GSM7918104,GSM7918105,GSM7918106,GSM7918107,GSM7918108,GSM7918109,GSM7918110,GSM7918111,GSM7918112,GSM7918113,GSM7918114,GSM7918115,GSM7918116,GSM7918117,GSM7918118,GSM7918119,GSM7918120,GSM7918121,GSM7918122,GSM7918123,GSM7918124,GSM7918125,GSM7918126,GSM7918127,GSM7918128,GSM7918129,GSM7918130,GSM7918131,GSM7918132,GSM7918133,GSM7918134,GSM7918135,GSM7918136,GSM7918137,GSM7918138,GSM7918139,GSM7918140,GSM7918141,GSM7918142,GSM7918143,GSM7918144,GSM7918145,GSM7918146,GSM7918147,GSM7918148,GSM7918149,GSM7918150,GSM7918151,GSM7918152,GSM7918153,GSM7918154,GSM7918155,GSM7918156,GSM7918157,GSM7918158,GSM7918159,GSM7918160,GSM7918161
2
+ Prostate_Cancer,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0
p3/preprocess/Prostate_Cancer/clinical_data/TCGA.csv ADDED
@@ -0,0 +1,567 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ sampleID,Prostate_Cancer,Age,Gender
2
+ TCGA-2A-A8VL-01,1,51,1
3
+ TCGA-2A-A8VO-01,1,57,1
4
+ TCGA-2A-A8VT-01,1,47,1
5
+ TCGA-2A-A8VV-01,1,52,1
6
+ TCGA-2A-A8VX-01,1,70,1
7
+ TCGA-2A-A8W1-01,1,54,1
8
+ TCGA-2A-A8W3-01,1,69,1
9
+ TCGA-2A-AAYF-01,1,57,1
10
+ TCGA-2A-AAYO-01,1,57,1
11
+ TCGA-2A-AAYU-01,1,56,1
12
+ TCGA-4L-AA1F-01,1,64,1
13
+ TCGA-CH-5737-01,1,73,1
14
+ TCGA-CH-5738-01,1,72,1
15
+ TCGA-CH-5739-01,1,65,1
16
+ TCGA-CH-5740-01,1,57,1
17
+ TCGA-CH-5741-01,1,56,1
18
+ TCGA-CH-5743-01,1,66,1
19
+ TCGA-CH-5744-01,1,64,1
20
+ TCGA-CH-5745-01,1,68,1
21
+ TCGA-CH-5746-01,1,57,1
22
+ TCGA-CH-5748-01,1,64,1
23
+ TCGA-CH-5750-01,1,72,1
24
+ TCGA-CH-5751-01,1,68,1
25
+ TCGA-CH-5752-01,1,66,1
26
+ TCGA-CH-5753-01,1,70,1
27
+ TCGA-CH-5754-01,1,65,1
28
+ TCGA-CH-5761-01,1,61,1
29
+ TCGA-CH-5761-11,0,61,1
30
+ TCGA-CH-5762-01,1,60,1
31
+ TCGA-CH-5762-11,0,60,1
32
+ TCGA-CH-5763-01,1,66,1
33
+ TCGA-CH-5763-11,0,66,1
34
+ TCGA-CH-5764-01,1,66,1
35
+ TCGA-CH-5764-11,0,66,1
36
+ TCGA-CH-5765-01,1,55,1
37
+ TCGA-CH-5765-11,0,55,1
38
+ TCGA-CH-5766-01,1,55,1
39
+ TCGA-CH-5766-11,0,55,1
40
+ TCGA-CH-5767-01,1,66,1
41
+ TCGA-CH-5767-11,0,66,1
42
+ TCGA-CH-5768-01,1,72,1
43
+ TCGA-CH-5768-11,0,72,1
44
+ TCGA-CH-5769-01,1,48,1
45
+ TCGA-CH-5769-11,0,48,1
46
+ TCGA-CH-5771-01,1,63,1
47
+ TCGA-CH-5771-11,0,63,1
48
+ TCGA-CH-5772-01,1,63,1
49
+ TCGA-CH-5772-11,0,63,1
50
+ TCGA-CH-5788-01,1,69,1
51
+ TCGA-CH-5789-01,1,61,1
52
+ TCGA-CH-5790-01,1,64,1
53
+ TCGA-CH-5791-01,1,72,1
54
+ TCGA-CH-5792-01,1,57,1
55
+ TCGA-CH-5794-01,1,65,1
56
+ TCGA-EJ-5494-01,1,50,1
57
+ TCGA-EJ-5495-01,1,68,1
58
+ TCGA-EJ-5496-01,1,59,1
59
+ TCGA-EJ-5497-01,1,47,1
60
+ TCGA-EJ-5498-01,1,56,1
61
+ TCGA-EJ-5499-01,1,61,1
62
+ TCGA-EJ-5501-01,1,55,1
63
+ TCGA-EJ-5502-01,1,50,1
64
+ TCGA-EJ-5503-01,1,50,1
65
+ TCGA-EJ-5504-01,1,65,1
66
+ TCGA-EJ-5505-01,1,57,1
67
+ TCGA-EJ-5506-01,1,67,1
68
+ TCGA-EJ-5507-01,1,54,1
69
+ TCGA-EJ-5508-01,1,65,1
70
+ TCGA-EJ-5509-01,1,63,1
71
+ TCGA-EJ-5510-01,1,48,1
72
+ TCGA-EJ-5511-01,1,55,1
73
+ TCGA-EJ-5512-01,1,46,1
74
+ TCGA-EJ-5514-01,1,66,1
75
+ TCGA-EJ-5515-01,1,60,1
76
+ TCGA-EJ-5516-01,1,49,1
77
+ TCGA-EJ-5517-01,1,55,1
78
+ TCGA-EJ-5518-01,1,66,1
79
+ TCGA-EJ-5519-01,1,64,1
80
+ TCGA-EJ-5521-01,1,63,1
81
+ TCGA-EJ-5522-01,1,51,1
82
+ TCGA-EJ-5524-01,1,57,1
83
+ TCGA-EJ-5525-01,1,67,1
84
+ TCGA-EJ-5526-01,1,56,1
85
+ TCGA-EJ-5527-01,1,69,1
86
+ TCGA-EJ-5530-01,1,61,1
87
+ TCGA-EJ-5531-01,1,62,1
88
+ TCGA-EJ-5532-01,1,57,1
89
+ TCGA-EJ-5542-01,1,60,1
90
+ TCGA-EJ-7115-01,1,65,1
91
+ TCGA-EJ-7115-11,0,65,1
92
+ TCGA-EJ-7123-01,1,59,1
93
+ TCGA-EJ-7123-11,0,59,1
94
+ TCGA-EJ-7125-01,1,44,1
95
+ TCGA-EJ-7125-11,0,44,1
96
+ TCGA-EJ-7218-01,1,71,1
97
+ TCGA-EJ-7312-01,1,58,1
98
+ TCGA-EJ-7314-01,1,62,1
99
+ TCGA-EJ-7314-11,0,62,1
100
+ TCGA-EJ-7315-01,1,68,1
101
+ TCGA-EJ-7315-11,0,68,1
102
+ TCGA-EJ-7317-01,1,71,1
103
+ TCGA-EJ-7317-11,0,71,1
104
+ TCGA-EJ-7318-01,1,51,1
105
+ TCGA-EJ-7321-01,1,57,1
106
+ TCGA-EJ-7321-11,0,57,1
107
+ TCGA-EJ-7325-01,1,63,1
108
+ TCGA-EJ-7327-01,1,61,1
109
+ TCGA-EJ-7327-11,0,61,1
110
+ TCGA-EJ-7328-01,1,70,1
111
+ TCGA-EJ-7328-11,0,70,1
112
+ TCGA-EJ-7330-01,1,68,1
113
+ TCGA-EJ-7330-11,0,68,1
114
+ TCGA-EJ-7331-01,1,64,1
115
+ TCGA-EJ-7331-11,0,64,1
116
+ TCGA-EJ-7781-01,1,65,1
117
+ TCGA-EJ-7781-11,0,65,1
118
+ TCGA-EJ-7782-01,1,71,1
119
+ TCGA-EJ-7782-11,0,71,1
120
+ TCGA-EJ-7783-01,1,70,1
121
+ TCGA-EJ-7783-11,0,70,1
122
+ TCGA-EJ-7784-01,1,63,1
123
+ TCGA-EJ-7784-11,0,63,1
124
+ TCGA-EJ-7785-01,1,54,1
125
+ TCGA-EJ-7785-11,0,54,1
126
+ TCGA-EJ-7786-01,1,62,1
127
+ TCGA-EJ-7786-11,0,62,1
128
+ TCGA-EJ-7788-01,1,53,1
129
+ TCGA-EJ-7789-01,1,66,1
130
+ TCGA-EJ-7789-11,0,66,1
131
+ TCGA-EJ-7791-01,1,67,1
132
+ TCGA-EJ-7792-01,1,53,1
133
+ TCGA-EJ-7792-11,0,53,1
134
+ TCGA-EJ-7793-01,1,49,1
135
+ TCGA-EJ-7793-11,0,49,1
136
+ TCGA-EJ-7794-01,1,67,1
137
+ TCGA-EJ-7794-11,0,67,1
138
+ TCGA-EJ-7797-01,1,53,1
139
+ TCGA-EJ-7797-11,0,53,1
140
+ TCGA-EJ-8468-01,1,63,1
141
+ TCGA-EJ-8469-01,1,46,1
142
+ TCGA-EJ-8470-01,1,58,1
143
+ TCGA-EJ-8472-01,1,63,1
144
+ TCGA-EJ-8474-01,1,69,1
145
+ TCGA-EJ-A46B-01,1,66,1
146
+ TCGA-EJ-A46D-01,1,53,1
147
+ TCGA-EJ-A46E-01,1,57,1
148
+ TCGA-EJ-A46F-01,1,57,1
149
+ TCGA-EJ-A46G-01,1,71,1
150
+ TCGA-EJ-A46H-01,1,60,1
151
+ TCGA-EJ-A46I-01,1,57,1
152
+ TCGA-EJ-A65B-01,1,55,1
153
+ TCGA-EJ-A65D-01,1,66,1
154
+ TCGA-EJ-A65E-01,1,67,1
155
+ TCGA-EJ-A65F-01,1,59,1
156
+ TCGA-EJ-A65G-01,1,57,1
157
+ TCGA-EJ-A65J-01,1,62,1
158
+ TCGA-EJ-A65M-01,1,65,1
159
+ TCGA-EJ-A6RA-01,1,70,1
160
+ TCGA-EJ-A6RC-01,1,64,1
161
+ TCGA-EJ-A7NF-01,1,56,1
162
+ TCGA-EJ-A7NG-01,1,64,1
163
+ TCGA-EJ-A7NH-01,1,56,1
164
+ TCGA-EJ-A7NJ-01,1,59,1
165
+ TCGA-EJ-A7NK-01,1,58,1
166
+ TCGA-EJ-A7NM-01,1,64,1
167
+ TCGA-EJ-A7NN-01,1,61,1
168
+ TCGA-EJ-A8FN-01,1,58,1
169
+ TCGA-EJ-A8FO-01,1,51,1
170
+ TCGA-EJ-A8FO-11,0,51,1
171
+ TCGA-EJ-A8FP-01,1,59,1
172
+ TCGA-EJ-A8FS-01,1,66,1
173
+ TCGA-EJ-A8FU-01,1,64,1
174
+ TCGA-EJ-AB20-01,1,61,1
175
+ TCGA-EJ-AB27-01,1,51,1
176
+ TCGA-FC-7708-01,1,52,1
177
+ TCGA-FC-7961-01,1,62,1
178
+ TCGA-FC-A4JI-01,1,70,1
179
+ TCGA-FC-A5OB-01,1,53,1
180
+ TCGA-FC-A66V-01,1,74,1
181
+ TCGA-FC-A6HD-01,1,77,1
182
+ TCGA-FC-A8O0-01,1,68,1
183
+ TCGA-G9-6329-01,1,67,1
184
+ TCGA-G9-6332-01,1,55,1
185
+ TCGA-G9-6332-11,0,55,1
186
+ TCGA-G9-6333-01,1,66,1
187
+ TCGA-G9-6333-11,0,66,1
188
+ TCGA-G9-6336-01,1,57,1
189
+ TCGA-G9-6338-01,1,61,1
190
+ TCGA-G9-6339-01,1,58,1
191
+ TCGA-G9-6342-01,1,61,1
192
+ TCGA-G9-6342-11,0,61,1
193
+ TCGA-G9-6343-01,1,62,1
194
+ TCGA-G9-6347-01,1,59,1
195
+ TCGA-G9-6348-01,1,68,1
196
+ TCGA-G9-6348-11,0,68,1
197
+ TCGA-G9-6351-01,1,51,1
198
+ TCGA-G9-6351-11,0,51,1
199
+ TCGA-G9-6353-01,1,58,1
200
+ TCGA-G9-6353-11,0,58,1
201
+ TCGA-G9-6354-01,1,55,1
202
+ TCGA-G9-6356-01,1,60,1
203
+ TCGA-G9-6356-11,0,60,1
204
+ TCGA-G9-6361-01,1,61,1
205
+ TCGA-G9-6362-01,1,57,1
206
+ TCGA-G9-6362-11,0,57,1
207
+ TCGA-G9-6363-01,1,64,1
208
+ TCGA-G9-6363-11,0,64,1
209
+ TCGA-G9-6364-01,1,72,1
210
+ TCGA-G9-6364-11,0,72,1
211
+ TCGA-G9-6365-01,1,71,1
212
+ TCGA-G9-6365-11,0,71,1
213
+ TCGA-G9-6366-01,1,61,1
214
+ TCGA-G9-6367-01,1,60,1
215
+ TCGA-G9-6367-11,0,60,1
216
+ TCGA-G9-6369-01,1,55,1
217
+ TCGA-G9-6370-01,1,52,1
218
+ TCGA-G9-6371-01,1,58,1
219
+ TCGA-G9-6373-01,1,68,1
220
+ TCGA-G9-6373-11,0,68,1
221
+ TCGA-G9-6377-01,1,61,1
222
+ TCGA-G9-6378-01,1,54,1
223
+ TCGA-G9-6379-01,1,68,1
224
+ TCGA-G9-6384-01,1,53,1
225
+ TCGA-G9-6384-11,0,53,1
226
+ TCGA-G9-6385-01,1,66,1
227
+ TCGA-G9-6385-11,0,66,1
228
+ TCGA-G9-6494-01,1,66,1
229
+ TCGA-G9-6494-11,0,66,1
230
+ TCGA-G9-6496-01,1,61,1
231
+ TCGA-G9-6496-11,0,61,1
232
+ TCGA-G9-6498-01,1,53,1
233
+ TCGA-G9-6499-01,1,66,1
234
+ TCGA-G9-6499-11,0,66,1
235
+ TCGA-G9-7509-01,1,48,1
236
+ TCGA-G9-7510-01,1,66,1
237
+ TCGA-G9-7519-01,1,58,1
238
+ TCGA-G9-7521-01,1,52,1
239
+ TCGA-G9-7522-01,1,49,1
240
+ TCGA-G9-7523-01,1,44,1
241
+ TCGA-G9-7525-01,1,64,1
242
+ TCGA-G9-A9S0-01,1,53,1
243
+ TCGA-G9-A9S4-01,1,62,1
244
+ TCGA-G9-A9S7-01,1,55,1
245
+ TCGA-H9-7775-01,1,68,1
246
+ TCGA-H9-A6BX-01,1,60,1
247
+ TCGA-H9-A6BY-01,1,63,1
248
+ TCGA-HC-7075-01,1,63,1
249
+ TCGA-HC-7077-01,1,64,1
250
+ TCGA-HC-7078-01,1,69,1
251
+ TCGA-HC-7079-01,1,51,1
252
+ TCGA-HC-7080-01,1,66,1
253
+ TCGA-HC-7081-01,1,62,1
254
+ TCGA-HC-7209-01,1,60,1
255
+ TCGA-HC-7210-01,1,74,1
256
+ TCGA-HC-7211-01,1,62,1
257
+ TCGA-HC-7211-11,0,62,1
258
+ TCGA-HC-7212-01,1,56,1
259
+ TCGA-HC-7213-01,1,53,1
260
+ TCGA-HC-7230-01,1,50,1
261
+ TCGA-HC-7231-01,1,66,1
262
+ TCGA-HC-7232-01,1,66,1
263
+ TCGA-HC-7233-01,1,73,1
264
+ TCGA-HC-7736-01,1,59,1
265
+ TCGA-HC-7737-01,1,55,1
266
+ TCGA-HC-7737-11,0,55,1
267
+ TCGA-HC-7738-01,1,58,1
268
+ TCGA-HC-7738-11,0,58,1
269
+ TCGA-HC-7740-01,1,59,1
270
+ TCGA-HC-7740-11,0,59,1
271
+ TCGA-HC-7742-01,1,58,1
272
+ TCGA-HC-7742-11,0,58,1
273
+ TCGA-HC-7744-01,1,46,1
274
+ TCGA-HC-7745-01,1,65,1
275
+ TCGA-HC-7745-11,0,65,1
276
+ TCGA-HC-7747-01,1,52,1
277
+ TCGA-HC-7747-11,0,52,1
278
+ TCGA-HC-7748-01,1,60,1
279
+ TCGA-HC-7749-01,1,70,1
280
+ TCGA-HC-7750-01,1,50,1
281
+ TCGA-HC-7752-01,1,61,1
282
+ TCGA-HC-7752-11,0,61,1
283
+ TCGA-HC-7817-01,1,52,1
284
+ TCGA-HC-7818-01,1,66,1
285
+ TCGA-HC-7819-01,1,53,1
286
+ TCGA-HC-7819-11,0,53,1
287
+ TCGA-HC-7820-01,1,72,1
288
+ TCGA-HC-7820-11,0,72,1
289
+ TCGA-HC-7821-01,1,54,1
290
+ TCGA-HC-8213-01,1,48,1
291
+ TCGA-HC-8216-01,1,58,1
292
+ TCGA-HC-8256-01,1,53,1
293
+ TCGA-HC-8257-01,1,70,1
294
+ TCGA-HC-8258-01,1,56,1
295
+ TCGA-HC-8258-11,0,56,1
296
+ TCGA-HC-8259-01,1,50,1
297
+ TCGA-HC-8259-11,0,50,1
298
+ TCGA-HC-8260-01,1,43,1
299
+ TCGA-HC-8260-11,0,43,1
300
+ TCGA-HC-8261-01,1,48,1
301
+ TCGA-HC-8262-01,1,57,1
302
+ TCGA-HC-8262-11,0,57,1
303
+ TCGA-HC-8264-01,1,60,1
304
+ TCGA-HC-8265-01,1,66,1
305
+ TCGA-HC-8266-01,1,55,1
306
+ TCGA-HC-A48F-01,1,47,1
307
+ TCGA-HC-A4ZV-01,1,56,1
308
+ TCGA-HC-A631-01,1,67,1
309
+ TCGA-HC-A632-01,1,68,1
310
+ TCGA-HC-A6AL-01,1,64,1
311
+ TCGA-HC-A6AN-01,1,67,1
312
+ TCGA-HC-A6AO-01,1,52,1
313
+ TCGA-HC-A6AP-01,1,61,1
314
+ TCGA-HC-A6AQ-01,1,60,1
315
+ TCGA-HC-A6AS-01,1,70,1
316
+ TCGA-HC-A6HX-01,1,55,1
317
+ TCGA-HC-A6HY-01,1,51,1
318
+ TCGA-HC-A76W-01,1,73,1
319
+ TCGA-HC-A76X-01,1,62,1
320
+ TCGA-HC-A8CY-01,1,63,1
321
+ TCGA-HC-A8D0-01,1,61,1
322
+ TCGA-HC-A8D1-01,1,68,1
323
+ TCGA-HC-A9TE-01,1,64,1
324
+ TCGA-HC-A9TH-01,1,58,1
325
+ TCGA-HI-7168-01,1,62,1
326
+ TCGA-HI-7169-01,1,55,1
327
+ TCGA-HI-7170-01,1,58,1
328
+ TCGA-HI-7171-01,1,56,1
329
+ TCGA-J4-8198-01,1,49,1
330
+ TCGA-J4-8200-01,1,47,1
331
+ TCGA-J4-A67K-01,1,68,1
332
+ TCGA-J4-A67L-01,1,54,1
333
+ TCGA-J4-A67M-01,1,55,1
334
+ TCGA-J4-A67N-01,1,61,1
335
+ TCGA-J4-A67O-01,1,59,1
336
+ TCGA-J4-A67Q-01,1,77,1
337
+ TCGA-J4-A67R-01,1,65,1
338
+ TCGA-J4-A67S-01,1,63,1
339
+ TCGA-J4-A67T-01,1,63,1
340
+ TCGA-J4-A6G1-01,1,68,1
341
+ TCGA-J4-A6G3-01,1,57,1
342
+ TCGA-J4-A6M7-01,1,53,1
343
+ TCGA-J4-A83I-01,1,63,1
344
+ TCGA-J4-A83J-01,1,68,1
345
+ TCGA-J4-A83J-11,0,68,1
346
+ TCGA-J4-A83K-01,1,52,1
347
+ TCGA-J4-A83L-01,1,61,1
348
+ TCGA-J4-A83M-01,1,64,1
349
+ TCGA-J4-A83N-01,1,57,1
350
+ TCGA-J4-AATV-01,1,71,1
351
+ TCGA-J4-AATZ-01,1,66,1
352
+ TCGA-J4-AAU2-01,1,59,1
353
+ TCGA-J9-A52B-01,1,62,1
354
+ TCGA-J9-A52C-01,1,57,1
355
+ TCGA-J9-A52D-01,1,71,1
356
+ TCGA-J9-A52E-01,1,65,1
357
+ TCGA-J9-A8CK-01,1,66,1
358
+ TCGA-J9-A8CL-01,1,66,1
359
+ TCGA-J9-A8CM-01,1,66,1
360
+ TCGA-J9-A8CN-01,1,53,1
361
+ TCGA-J9-A8CP-01,1,66,1
362
+ TCGA-KC-A4BL-01,1,65,1
363
+ TCGA-KC-A4BN-01,1,55,1
364
+ TCGA-KC-A4BO-01,1,55,1
365
+ TCGA-KC-A4BR-01,1,75,1
366
+ TCGA-KC-A4BV-01,1,66,1
367
+ TCGA-KC-A7F3-01,1,67,1
368
+ TCGA-KC-A7F5-01,1,54,1
369
+ TCGA-KC-A7F6-01,1,63,1
370
+ TCGA-KC-A7FA-01,1,63,1
371
+ TCGA-KC-A7FD-01,1,62,1
372
+ TCGA-KC-A7FE-01,1,62,1
373
+ TCGA-KK-A59V-01,1,64,1
374
+ TCGA-KK-A59X-01,1,55,1
375
+ TCGA-KK-A59Y-01,1,56,1
376
+ TCGA-KK-A59Z-01,1,66,1
377
+ TCGA-KK-A5A1-01,1,72,1
378
+ TCGA-KK-A6DY-01,1,50,1
379
+ TCGA-KK-A6E0-01,1,59,1
380
+ TCGA-KK-A6E1-01,1,57,1
381
+ TCGA-KK-A6E2-01,1,54,1
382
+ TCGA-KK-A6E3-01,1,56,1
383
+ TCGA-KK-A6E4-01,1,69,1
384
+ TCGA-KK-A6E5-01,1,63,1
385
+ TCGA-KK-A6E6-01,1,69,1
386
+ TCGA-KK-A6E7-01,1,46,1
387
+ TCGA-KK-A6E8-01,1,68,1
388
+ TCGA-KK-A7AP-01,1,55,1
389
+ TCGA-KK-A7AQ-01,1,62,1
390
+ TCGA-KK-A7AU-01,1,63,1
391
+ TCGA-KK-A7AV-01,1,58,1
392
+ TCGA-KK-A7AW-01,1,57,1
393
+ TCGA-KK-A7AY-01,1,60,1
394
+ TCGA-KK-A7AZ-01,1,56,1
395
+ TCGA-KK-A7B0-01,1,67,1
396
+ TCGA-KK-A7B1-01,1,65,1
397
+ TCGA-KK-A7B2-01,1,68,1
398
+ TCGA-KK-A7B3-01,1,62,1
399
+ TCGA-KK-A7B4-01,1,64,1
400
+ TCGA-KK-A8I4-01,1,64,1
401
+ TCGA-KK-A8I5-01,1,55,1
402
+ TCGA-KK-A8I6-01,1,58,1
403
+ TCGA-KK-A8I7-01,1,55,1
404
+ TCGA-KK-A8I8-01,1,69,1
405
+ TCGA-KK-A8I9-01,1,61,1
406
+ TCGA-KK-A8IA-01,1,69,1
407
+ TCGA-KK-A8IB-01,1,65,1
408
+ TCGA-KK-A8IC-01,1,54,1
409
+ TCGA-KK-A8ID-01,1,70,1
410
+ TCGA-KK-A8IF-01,1,57,1
411
+ TCGA-KK-A8IG-01,1,55,1
412
+ TCGA-KK-A8IH-01,1,50,1
413
+ TCGA-KK-A8II-01,1,61,1
414
+ TCGA-KK-A8IJ-01,1,59,1
415
+ TCGA-KK-A8IK-01,1,56,1
416
+ TCGA-KK-A8IL-01,1,65,1
417
+ TCGA-KK-A8IM-01,1,55,1
418
+ TCGA-M7-A71Y-01,1,55,1
419
+ TCGA-M7-A71Z-01,1,62,1
420
+ TCGA-M7-A720-01,1,53,1
421
+ TCGA-M7-A721-01,1,70,1
422
+ TCGA-M7-A722-01,1,65,1
423
+ TCGA-M7-A723-01,1,54,1
424
+ TCGA-M7-A724-01,1,64,1
425
+ TCGA-M7-A725-01,1,56,1
426
+ TCGA-MG-AAMC-01,1,59,1
427
+ TCGA-QU-A6IL-01,1,64,1
428
+ TCGA-QU-A6IM-01,1,59,1
429
+ TCGA-QU-A6IN-01,1,61,1
430
+ TCGA-QU-A6IO-01,1,53,1
431
+ TCGA-QU-A6IP-01,1,66,1
432
+ TCGA-SU-A7E7-01,1,60,1
433
+ TCGA-TK-A8OK-01,1,73,1
434
+ TCGA-TP-A8TT-01,1,64,1
435
+ TCGA-TP-A8TV-01,1,62,1
436
+ TCGA-V1-A8MF-01,1,65,1
437
+ TCGA-V1-A8MG-01,1,53,1
438
+ TCGA-V1-A8MJ-01,1,58,1
439
+ TCGA-V1-A8MK-01,1,41,1
440
+ TCGA-V1-A8ML-01,1,63,1
441
+ TCGA-V1-A8MM-01,1,60,1
442
+ TCGA-V1-A8MU-01,1,56,1
443
+ TCGA-V1-A8WL-01,1,64,1
444
+ TCGA-V1-A8WN-01,1,47,1
445
+ TCGA-V1-A8WS-01,1,56,1
446
+ TCGA-V1-A8WV-01,1,52,1
447
+ TCGA-V1-A8WW-01,1,59,1
448
+ TCGA-V1-A8X3-01,1,51,1
449
+ TCGA-V1-A9O5-01,1,64,1
450
+ TCGA-V1-A9O5-06,1,64,1
451
+ TCGA-V1-A9O7-01,1,60,1
452
+ TCGA-V1-A9O9-01,1,56,1
453
+ TCGA-V1-A9OA-01,1,61,1
454
+ TCGA-V1-A9OF-01,1,49,1
455
+ TCGA-V1-A9OH-01,1,63,1
456
+ TCGA-V1-A9OL-01,1,65,1
457
+ TCGA-V1-A9OQ-01,1,67,1
458
+ TCGA-V1-A9OT-01,1,61,1
459
+ TCGA-V1-A9OX-01,1,56,1
460
+ TCGA-V1-A9OY-01,1,57,1
461
+ TCGA-V1-A9Z7-01,1,54,1
462
+ TCGA-V1-A9Z8-01,1,59,1
463
+ TCGA-V1-A9Z9-01,1,63,1
464
+ TCGA-V1-A9ZG-01,1,64,1
465
+ TCGA-V1-A9ZI-01,1,68,1
466
+ TCGA-V1-A9ZK-01,1,68,1
467
+ TCGA-V1-A9ZR-01,1,68,1
468
+ TCGA-VN-A88I-01,1,59,1
469
+ TCGA-VN-A88K-01,1,58,1
470
+ TCGA-VN-A88L-01,1,54,1
471
+ TCGA-VN-A88M-01,1,55,1
472
+ TCGA-VN-A88N-01,1,62,1
473
+ TCGA-VN-A88O-01,1,49,1
474
+ TCGA-VN-A88P-01,1,60,1
475
+ TCGA-VN-A88Q-01,1,60,1
476
+ TCGA-VN-A88R-01,1,53,1
477
+ TCGA-VN-A943-01,1,71,1
478
+ TCGA-VP-A872-01,1,60,1
479
+ TCGA-VP-A875-01,1,67,1
480
+ TCGA-VP-A876-01,1,46,1
481
+ TCGA-VP-A878-01,1,58,1
482
+ TCGA-VP-A879-01,1,70,1
483
+ TCGA-VP-A87B-01,1,63,1
484
+ TCGA-VP-A87C-01,1,67,1
485
+ TCGA-VP-A87D-01,1,54,1
486
+ TCGA-VP-A87E-01,1,59,1
487
+ TCGA-VP-A87H-01,1,76,1
488
+ TCGA-VP-A87J-01,1,56,1
489
+ TCGA-VP-A87K-01,1,63,1
490
+ TCGA-VP-AA1N-01,1,70,1
491
+ TCGA-WW-A8ZI-01,1,70,1
492
+ TCGA-X4-A8KQ-01,1,65,1
493
+ TCGA-X4-A8KS-01,1,61,1
494
+ TCGA-XA-A8JR-01,1,68,1
495
+ TCGA-XJ-A83F-01,1,67,1
496
+ TCGA-XJ-A83G-01,1,51,1
497
+ TCGA-XJ-A83H-01,1,57,1
498
+ TCGA-XJ-A9DI-01,1,62,1
499
+ TCGA-XJ-A9DK-01,1,63,1
500
+ TCGA-XJ-A9DQ-01,1,48,1
501
+ TCGA-XJ-A9DX-01,1,51,1
502
+ TCGA-XK-AAIR-01,1,75,1
503
+ TCGA-XK-AAIV-01,1,63,1
504
+ TCGA-XK-AAIW-01,1,78,1
505
+ TCGA-XK-AAJ3-01,1,56,1
506
+ TCGA-XK-AAJA-01,1,62,1
507
+ TCGA-XK-AAJP-01,1,66,1
508
+ TCGA-XK-AAJR-01,1,61,1
509
+ TCGA-XK-AAJT-01,1,75,1
510
+ TCGA-XK-AAJU-01,1,65,1
511
+ TCGA-XK-AAK1-01,1,62,1
512
+ TCGA-XQ-A8TA-01,1,59,1
513
+ TCGA-XQ-A8TB-01,1,67,1
514
+ TCGA-Y6-A8TL-01,1,65,1
515
+ TCGA-Y6-A9XI-01,1,72,1
516
+ TCGA-YJ-A8SW-01,1,67,1
517
+ TCGA-YL-A8HJ-01,1,58,1
518
+ TCGA-YL-A8HK-01,1,59,1
519
+ TCGA-YL-A8HL-01,1,58,1
520
+ TCGA-YL-A8HM-01,1,66,1
521
+ TCGA-YL-A8HO-01,1,67,1
522
+ TCGA-YL-A8S8-01,1,68,1
523
+ TCGA-YL-A8S9-01,1,63,1
524
+ TCGA-YL-A8SA-01,1,69,1
525
+ TCGA-YL-A8SB-01,1,62,1
526
+ TCGA-YL-A8SC-01,1,66,1
527
+ TCGA-YL-A8SF-01,1,62,1
528
+ TCGA-YL-A8SH-01,1,69,1
529
+ TCGA-YL-A8SI-01,1,69,1
530
+ TCGA-YL-A8SJ-01,1,60,1
531
+ TCGA-YL-A8SK-01,1,67,1
532
+ TCGA-YL-A8SL-01,1,74,1
533
+ TCGA-YL-A8SO-01,1,64,1
534
+ TCGA-YL-A8SP-01,1,58,1
535
+ TCGA-YL-A8SQ-01,1,61,1
536
+ TCGA-YL-A8SR-01,1,64,1
537
+ TCGA-YL-A9WH-01,1,67,1
538
+ TCGA-YL-A9WI-01,1,63,1
539
+ TCGA-YL-A9WJ-01,1,47,1
540
+ TCGA-YL-A9WK-01,1,63,1
541
+ TCGA-YL-A9WL-01,1,59,1
542
+ TCGA-YL-A9WX-01,1,68,1
543
+ TCGA-YL-A9WY-01,1,57,1
544
+ TCGA-ZG-A8QW-01,1,72,1
545
+ TCGA-ZG-A8QX-01,1,56,1
546
+ TCGA-ZG-A8QY-01,1,67,1
547
+ TCGA-ZG-A8QZ-01,1,65,1
548
+ TCGA-ZG-A9KY-01,1,73,1
549
+ TCGA-ZG-A9L0-01,1,71,1
550
+ TCGA-ZG-A9L1-01,1,66,1
551
+ TCGA-ZG-A9L2-01,1,70,1
552
+ TCGA-ZG-A9L4-01,1,61,1
553
+ TCGA-ZG-A9L5-01,1,58,1
554
+ TCGA-ZG-A9L6-01,1,64,1
555
+ TCGA-ZG-A9L9-01,1,60,1
556
+ TCGA-ZG-A9LB-01,1,72,1
557
+ TCGA-ZG-A9LM-01,1,72,1
558
+ TCGA-ZG-A9LN-01,1,57,1
559
+ TCGA-ZG-A9LS-01,1,64,1
560
+ TCGA-ZG-A9LU-01,1,67,1
561
+ TCGA-ZG-A9LY-01,1,60,1
562
+ TCGA-ZG-A9LZ-01,1,66,1
563
+ TCGA-ZG-A9M4-01,1,65,1
564
+ TCGA-ZG-A9MC-01,1,69,1
565
+ TCGA-ZG-A9N3-01,1,73,1
566
+ TCGA-ZG-A9ND-01,1,55,1
567
+ TCGA-ZG-A9NI-01,1,73,1
p3/preprocess/Prostate_Cancer/code/GSE125341.py ADDED
@@ -0,0 +1,194 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Prostate_Cancer"
6
+ cohort = "GSE125341"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Prostate_Cancer"
10
+ in_cohort_dir = "../DATA/GEO/Prostate_Cancer/GSE125341"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Prostate_Cancer/GSE125341.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Prostate_Cancer/gene_data/GSE125341.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Prostate_Cancer/clinical_data/GSE125341.csv"
16
+ json_path = "./output/preprocess/3/Prostate_Cancer/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Extract background info and clinical data using specified prefixes
22
+ background_info, clinical_data = get_background_and_clinical_data(
23
+ matrix_file,
24
+ prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'],
25
+ prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ )
27
+
28
+ # Get unique values per clinical feature
29
+ sample_characteristics = get_unique_values_by_row(clinical_data)
30
+
31
+ # Print background info
32
+ print("Dataset Background Information:")
33
+ print(f"{background_info}\n")
34
+
35
+ # Print sample characteristics
36
+ print("Sample Characteristics:")
37
+ for feature, values in sample_characteristics.items():
38
+ print(f"Feature: {feature}")
39
+ print(f"Values: {values}\n")
40
+ # 1. Gene Expression Data Availability
41
+ # Yes, this is a microarray study of transcriptome profiling in prostate cancer cells
42
+ is_gene_available = True
43
+
44
+ # 2.1 Data Availability
45
+ # For trait - we can use the cell type info in Feature 1
46
+ trait_row = 1
47
+ # Age and gender are not applicable since this is a cell line study
48
+ age_row = None
49
+ gender_row = None
50
+
51
+ # 2.2 Data Type Conversion Functions
52
+ def convert_trait(val):
53
+ """Convert trait data to binary: 1 for cancer, 0 for normal"""
54
+ if pd.isna(val):
55
+ return None
56
+ # Extract value after colon
57
+ val = val.split(":")[-1].strip().lower()
58
+ if "prostate cancer" in val:
59
+ return 1
60
+ else:
61
+ return None
62
+
63
+ def convert_age(val):
64
+ """Not used but defined to maintain code structure"""
65
+ return None
66
+
67
+ def convert_gender(val):
68
+ """Not used but defined to maintain code structure"""
69
+ return None
70
+
71
+ # 3. Save Metadata
72
+ is_trait_available = trait_row is not None
73
+ validate_and_save_cohort_info(is_final=False,
74
+ cohort=cohort,
75
+ info_path=json_path,
76
+ is_gene_available=is_gene_available,
77
+ is_trait_available=is_trait_available)
78
+
79
+ # 4. Clinical Feature Extraction
80
+ if trait_row is not None:
81
+ clinical_features = geo_select_clinical_features(
82
+ clinical_df=clinical_data,
83
+ trait=trait,
84
+ trait_row=trait_row,
85
+ convert_trait=convert_trait,
86
+ age_row=age_row,
87
+ convert_age=convert_age,
88
+ gender_row=gender_row,
89
+ convert_gender=convert_gender
90
+ )
91
+
92
+ # Preview the extracted features
93
+ preview = preview_df(clinical_features)
94
+ print("Preview of clinical features:", preview)
95
+
96
+ # Save to CSV
97
+ clinical_features.to_csv(out_clinical_data_file)
98
+ # Get file paths
99
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
100
+
101
+ # Extract gene expression data from matrix file
102
+ gene_data = get_genetic_data(matrix_file)
103
+
104
+ # Print first 20 row IDs and shape of data to help debug
105
+ print("Shape of gene expression data:", gene_data.shape)
106
+ print("\nFirst few rows of data:")
107
+ print(gene_data.head())
108
+ print("\nFirst 20 gene/probe identifiers:")
109
+ print(gene_data.index[:20])
110
+
111
+ # Inspect a snippet of raw file to verify identifier format
112
+ import gzip
113
+ with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
114
+ lines = []
115
+ for i, line in enumerate(f):
116
+ if "!series_matrix_table_begin" in line:
117
+ # Get the next 5 lines after the marker
118
+ for _ in range(5):
119
+ lines.append(next(f).strip())
120
+ break
121
+ print("\nFirst few lines after matrix marker in raw file:")
122
+ for line in lines:
123
+ print(line)
124
+ # The gene identifiers start with 'A_14_P', which indicates they are Agilent probe IDs, not human gene symbols
125
+ requires_gene_mapping = True
126
+ # Extract gene annotation data
127
+ gene_metadata = get_gene_annotation(soft_file)
128
+
129
+ # Try searching for ID patterns in all columns
130
+ print("All column names:", gene_metadata.columns.tolist())
131
+ print("\nPreview first few rows of each column to locate numeric IDs:")
132
+ for col in gene_metadata.columns:
133
+ sample_values = gene_metadata[col].dropna().head().tolist()
134
+ print(f"\n{col}:")
135
+ print(sample_values)
136
+
137
+ # Inspect raw file to see unfiltered annotation format
138
+ import gzip
139
+ print("\nRaw SOFT file preview:")
140
+ with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
141
+ header = []
142
+ for i, line in enumerate(f):
143
+ header.append(line.strip())
144
+ if i >= 10: # Preview first 10 lines
145
+ break
146
+ print('\n'.join(header))
147
+ # 1. Identify relevant columns
148
+ # Based on data preview, 'ID' contains probe identifiers and 'symbol' contains gene symbols
149
+ prob_col = 'ID'
150
+ gene_col = 'symbol'
151
+
152
+ # 2. Get gene mapping dataframe
153
+ mapping_data = get_gene_mapping(gene_metadata, prob_col, gene_col)
154
+
155
+ # 3. Apply gene mapping to convert probe-level data to gene expression data
156
+ gene_data = apply_gene_mapping(gene_data, mapping_data)
157
+
158
+ # Preview the transformed data
159
+ print("Shape of mapped gene expression data:", gene_data.shape)
160
+ print("\nFirst few rows of mapped gene data:")
161
+ print(gene_data.head())
162
+ print("\nFirst 20 gene symbols:")
163
+ print(gene_data.index[:20])
164
+ # Load previously saved clinical data
165
+ selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
166
+
167
+ # 1. Normalize gene symbols using NCBI synonym information
168
+ gene_data = normalize_gene_symbols_in_index(gene_data)
169
+ gene_data.to_csv(out_gene_data_file)
170
+
171
+ # 2. Link clinical and genetic data
172
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)
173
+
174
+ # 3. Handle missing values
175
+ linked_data = handle_missing_values(linked_data, trait)
176
+
177
+ # 4. Evaluate bias in features
178
+ is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
179
+
180
+ # 5. Record cohort information
181
+ is_usable = validate_and_save_cohort_info(
182
+ is_final=True,
183
+ cohort=cohort,
184
+ info_path=json_path,
185
+ is_gene_available=True,
186
+ is_trait_available=True,
187
+ is_biased=is_biased,
188
+ df=linked_data,
189
+ note="Cell line dataset with mapped gene expression data. Only includes cancer samples."
190
+ )
191
+
192
+ # 6. Save data if usable
193
+ if is_usable:
194
+ linked_data.to_csv(out_data_file)
p3/preprocess/Prostate_Cancer/code/GSE178631.py ADDED
@@ -0,0 +1,154 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Prostate_Cancer"
6
+ cohort = "GSE178631"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Prostate_Cancer"
10
+ in_cohort_dir = "../DATA/GEO/Prostate_Cancer/GSE178631"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Prostate_Cancer/GSE178631.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Prostate_Cancer/gene_data/GSE178631.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Prostate_Cancer/clinical_data/GSE178631.csv"
16
+ json_path = "./output/preprocess/3/Prostate_Cancer/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Extract background info and clinical data using specified prefixes
22
+ background_info, clinical_data = get_background_and_clinical_data(
23
+ matrix_file,
24
+ prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'],
25
+ prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ )
27
+
28
+ # Get unique values per clinical feature
29
+ sample_characteristics = get_unique_values_by_row(clinical_data)
30
+
31
+ # Print background info
32
+ print("Dataset Background Information:")
33
+ print(f"{background_info}\n")
34
+
35
+ # Print sample characteristics
36
+ print("Sample Characteristics:")
37
+ for feature, values in sample_characteristics.items():
38
+ print(f"Feature: {feature}")
39
+ print(f"Values: {values}\n")
40
+ # 1. Gene expression data availability check
41
+ # Based on background info mentioning "gene expression data" and the use case of RNeasy/miRNeasy kits
42
+ is_gene_available = True
43
+
44
+ # 2.1 Feature availability analysis
45
+ # For trait: Use ISUP grade group (Feature 3) as binary indicator of tumor aggressiveness
46
+ trait_row = 3
47
+
48
+ # Age and gender data not found in characteristics
49
+ age_row = None
50
+ gender_row = None
51
+
52
+ # 2.2 Data type conversion functions
53
+ def convert_trait(value):
54
+ if pd.isna(value):
55
+ return None
56
+ # Extract numeric grade after colon
57
+ grade = value.split(': ')[1]
58
+ if grade.isdigit():
59
+ # Convert to binary: ISUP grade >=3 indicates more aggressive disease
60
+ return 1 if int(grade) >= 3 else 0
61
+ return None
62
+
63
+ def convert_age(value):
64
+ return None # Not used
65
+
66
+ def convert_gender(value):
67
+ return None # Not used
68
+
69
+ # 3. Save metadata about data availability
70
+ validate_and_save_cohort_info(is_final=False,
71
+ cohort=cohort,
72
+ info_path=json_path,
73
+ is_gene_available=is_gene_available,
74
+ is_trait_available=trait_row is not None)
75
+
76
+ # 4. Extract clinical features
77
+ if trait_row is not None:
78
+ selected_clinical_df = geo_select_clinical_features(
79
+ clinical_df=clinical_data,
80
+ trait=trait,
81
+ trait_row=trait_row,
82
+ convert_trait=convert_trait,
83
+ age_row=age_row,
84
+ convert_age=convert_age,
85
+ gender_row=gender_row,
86
+ convert_gender=convert_gender
87
+ )
88
+
89
+ # Preview the extracted data
90
+ print("Preview of selected clinical features:")
91
+ print(preview_df(selected_clinical_df))
92
+
93
+ # Save clinical data
94
+ selected_clinical_df.to_csv(out_clinical_data_file)
95
+ # Get file paths
96
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
97
+
98
+ # Extract gene expression data from matrix file
99
+ gene_data = get_genetic_data(matrix_file)
100
+
101
+ # Print first 20 row IDs and shape of data to help debug
102
+ print("Shape of gene expression data:", gene_data.shape)
103
+ print("\nFirst few rows of data:")
104
+ print(gene_data.head())
105
+ print("\nFirst 20 gene/probe identifiers:")
106
+ print(gene_data.index[:20])
107
+
108
+ # Inspect a snippet of raw file to verify identifier format
109
+ import gzip
110
+ with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
111
+ lines = []
112
+ for i, line in enumerate(f):
113
+ if "!series_matrix_table_begin" in line:
114
+ # Get the next 5 lines after the marker
115
+ for _ in range(5):
116
+ lines.append(next(f).strip())
117
+ break
118
+ print("\nFirst few lines after matrix marker in raw file:")
119
+ for line in lines:
120
+ print(line)
121
+ # Based on the identifier pattern "ILMN_", these are Illumina probes
122
+ # rather than direct gene symbols, so mapping will be required
123
+ requires_gene_mapping = True
124
+ # Extract gene annotation data
125
+ gene_metadata = get_gene_annotation(soft_file)
126
+
127
+ # Try searching for ID patterns in all columns
128
+ print("All column names:", gene_metadata.columns.tolist())
129
+ print("\nPreview first few rows of each column to locate numeric IDs:")
130
+ for col in gene_metadata.columns:
131
+ sample_values = gene_metadata[col].dropna().head().tolist()
132
+ print(f"\n{col}:")
133
+ print(sample_values)
134
+
135
+ # Inspect raw file to see unfiltered annotation format
136
+ import gzip
137
+ print("\nRaw SOFT file preview:")
138
+ with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
139
+ header = []
140
+ for i, line in enumerate(f):
141
+ header.append(line.strip())
142
+ if i >= 10: # Preview first 10 lines
143
+ break
144
+ print('\n'.join(header))
145
+ # Identify mapping columns from annotation data
146
+ # 'Probe_Id' matches the IDs in gene expression data
147
+ # 'ILMN_Gene' contains the gene symbols to map to
148
+ mapping_df = get_gene_mapping(gene_metadata, prob_col='Probe_Id', gene_col='ILMN_Gene')
149
+
150
+ # Convert probe-level data to gene-level expression
151
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
152
+
153
+ # Save raw gene expression data
154
+ gene_data.to_csv(out_gene_data_file)
p3/preprocess/Prostate_Cancer/code/GSE192817.py ADDED
@@ -0,0 +1,156 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Prostate_Cancer"
6
+ cohort = "GSE192817"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Prostate_Cancer"
10
+ in_cohort_dir = "../DATA/GEO/Prostate_Cancer/GSE192817"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Prostate_Cancer/GSE192817.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Prostate_Cancer/gene_data/GSE192817.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Prostate_Cancer/clinical_data/GSE192817.csv"
16
+ json_path = "./output/preprocess/3/Prostate_Cancer/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Extract background info and clinical data using specified prefixes
22
+ background_info, clinical_data = get_background_and_clinical_data(
23
+ matrix_file,
24
+ prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'],
25
+ prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ )
27
+
28
+ # Get unique values per clinical feature
29
+ sample_characteristics = get_unique_values_by_row(clinical_data)
30
+
31
+ # Print background info
32
+ print("Dataset Background Information:")
33
+ print(f"{background_info}\n")
34
+
35
+ # Print sample characteristics
36
+ print("Sample Characteristics:")
37
+ for feature, values in sample_characteristics.items():
38
+ print(f"Feature: {feature}")
39
+ print(f"Values: {values}\n")
40
+ # 1. Gene Expression Data Availability
41
+ is_gene_available = True # Based on title and summary, this is gene expression data studying cellular mechanisms
42
+
43
+ # 2.1 Data Availability
44
+ trait_row = None # No prostate cancer status - all samples are cancer cell lines
45
+ age_row = None # No age data available
46
+ gender_row = None # No gender data - these are cell lines
47
+
48
+ # 2.2 Data Type Conversion Functions
49
+ def convert_trait(x):
50
+ return None # Not used since trait_row is None
51
+
52
+ def convert_age(x):
53
+ return None # Not used since age_row is None
54
+
55
+ def convert_gender(x):
56
+ return None # Not used since gender_row is None
57
+
58
+ # 3. Save Metadata
59
+ validate_and_save_cohort_info(
60
+ is_final=False,
61
+ cohort=cohort,
62
+ info_path=json_path,
63
+ is_gene_available=is_gene_available,
64
+ is_trait_available=False # No trait data available since these are cell lines
65
+ )
66
+
67
+ # 4. Clinical Feature Extraction
68
+ # Skip this step since trait_row is None
69
+ # Get file paths
70
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
71
+
72
+ # Extract gene expression data from matrix file
73
+ gene_data = get_genetic_data(matrix_file)
74
+
75
+ # Print first 20 row IDs and shape of data to help debug
76
+ print("Shape of gene expression data:", gene_data.shape)
77
+ print("\nFirst few rows of data:")
78
+ print(gene_data.head())
79
+ print("\nFirst 20 gene/probe identifiers:")
80
+ print(gene_data.index[:20])
81
+
82
+ # Inspect a snippet of raw file to verify identifier format
83
+ import gzip
84
+ with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
85
+ lines = []
86
+ for i, line in enumerate(f):
87
+ if "!series_matrix_table_begin" in line:
88
+ # Get the next 5 lines after the marker
89
+ for _ in range(5):
90
+ lines.append(next(f).strip())
91
+ break
92
+ print("\nFirst few lines after matrix marker in raw file:")
93
+ for line in lines:
94
+ print(line)
95
+ # The gene identifiers appear to be simple numerical indices (1, 2, 3, etc.)
96
+ # rather than standard human gene symbols or probe IDs
97
+ # This indicates we need to map these indices to actual gene symbols
98
+ requires_gene_mapping = True
99
+ # Extract gene annotation data
100
+ gene_metadata = get_gene_annotation(soft_file)
101
+
102
+ # Try searching for ID patterns in all columns
103
+ print("All column names:", gene_metadata.columns.tolist())
104
+ print("\nPreview first few rows of each column to locate numeric IDs:")
105
+ for col in gene_metadata.columns:
106
+ sample_values = gene_metadata[col].dropna().head().tolist()
107
+ print(f"\n{col}:")
108
+ print(sample_values)
109
+
110
+ # Inspect raw file to see unfiltered annotation format
111
+ import gzip
112
+ print("\nRaw SOFT file preview:")
113
+ with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
114
+ header = []
115
+ for i, line in enumerate(f):
116
+ header.append(line.strip())
117
+ if i >= 10: # Preview first 10 lines
118
+ break
119
+ print('\n'.join(header))
120
+ # 1. Identify mapping keys:
121
+ # 'ID' in gene_metadata matches the numeric indices in gene_data
122
+ # 'GENE_SYMBOL' contains the target gene symbols
123
+
124
+ # 2. Get gene mapping dataframe
125
+ mapping_data = get_gene_mapping(gene_metadata, 'ID', 'GENE_SYMBOL')
126
+
127
+ # 3. Apply mapping to convert probe measurements to gene expression values
128
+ gene_data = apply_gene_mapping(gene_data, mapping_data)
129
+
130
+ # Preview the resulting gene expression data
131
+ print("\nShape of mapped gene expression data:", gene_data.shape)
132
+ print("\nFirst few rows of mapped data:")
133
+ print(gene_data.head())
134
+ print("\nFirst few gene symbols:")
135
+ print(gene_data.index[:20])
136
+ # 1. Normalize gene symbols
137
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
138
+ os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
139
+ normalized_gene_data.to_csv(out_gene_data_file)
140
+
141
+ # Since we determined in step 2 that no clinical features are available
142
+ # (all samples are cell lines with no trait data), we cannot construct a valid linked dataset.
143
+ # Set is_biased=True since the dataset cannot be used for trait association analysis.
144
+
145
+ is_usable = validate_and_save_cohort_info(
146
+ is_final=True,
147
+ cohort=cohort,
148
+ info_path=json_path,
149
+ is_gene_available=True,
150
+ is_trait_available=False,
151
+ is_biased=True, # Dataset is biased since it lacks trait data
152
+ df=normalized_gene_data,
153
+ note="Contains normalized gene expression data from cell lines but lacks clinical trait data required for association analysis."
154
+ )
155
+
156
+ # Do not save linked data since trait information is not available and dataset is not usable
p3/preprocess/Prostate_Cancer/code/GSE200879.py ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Prostate_Cancer"
6
+ cohort = "GSE200879"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Prostate_Cancer"
10
+ in_cohort_dir = "../DATA/GEO/Prostate_Cancer/GSE200879"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Prostate_Cancer/GSE200879.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Prostate_Cancer/gene_data/GSE200879.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Prostate_Cancer/clinical_data/GSE200879.csv"
16
+ json_path = "./output/preprocess/3/Prostate_Cancer/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Extract background info and clinical data using specified prefixes
22
+ background_info, clinical_data = get_background_and_clinical_data(
23
+ matrix_file,
24
+ prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'],
25
+ prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ )
27
+
28
+ # Get unique values per clinical feature
29
+ sample_characteristics = get_unique_values_by_row(clinical_data)
30
+
31
+ # Print background info
32
+ print("Dataset Background Information:")
33
+ print(f"{background_info}\n")
34
+
35
+ # Print sample characteristics
36
+ print("Sample Characteristics:")
37
+ for feature, values in sample_characteristics.items():
38
+ print(f"Feature: {feature}")
39
+ print(f"Values: {values}\n")
40
+ # 1. Gene Expression Data Availability
41
+ # Background info mentions "Transcriptomics" so gene expression data should be available
42
+ is_gene_available = True
43
+
44
+ # 2. Variable Availability and Data Type Conversion
45
+
46
+ # 2.1 Data Availability
47
+ # Trait (tumor vs normal) is in row 0
48
+ trait_row = 0
49
+
50
+ # No age data available
51
+ age_row = None
52
+
53
+ # No gender data available (typically all male in prostate cancer studies)
54
+ gender_row = None
55
+
56
+ # 2.2 Data Type Conversion Functions
57
+ def convert_trait(x):
58
+ if pd.isna(x) or not isinstance(x, str):
59
+ return None
60
+ val = x.split(': ')[1].lower() if ': ' in x else x.lower()
61
+ if 'tumor' in val:
62
+ return 1
63
+ elif 'normal' in val:
64
+ return 0
65
+ return None
66
+
67
+ def convert_age(x):
68
+ # Not used since age data not available
69
+ return None
70
+
71
+ def convert_gender(x):
72
+ # Not used since gender data not available
73
+ return None
74
+
75
+ # 3. Save Metadata
76
+ validate_and_save_cohort_info(
77
+ is_final=False,
78
+ cohort=cohort,
79
+ info_path=json_path,
80
+ is_gene_available=is_gene_available,
81
+ is_trait_available=(trait_row is not None)
82
+ )
83
+
84
+ # 4. Clinical Feature Extraction
85
+ # Since trait_row is not None, extract clinical features
86
+ selected_clinical_df = geo_select_clinical_features(
87
+ clinical_df=clinical_data,
88
+ trait=trait,
89
+ trait_row=trait_row,
90
+ convert_trait=convert_trait,
91
+ age_row=age_row,
92
+ convert_age=convert_age,
93
+ gender_row=gender_row,
94
+ convert_gender=convert_gender
95
+ )
96
+
97
+ # Preview the extracted features
98
+ print("Preview of selected clinical features:")
99
+ print(preview_df(selected_clinical_df))
100
+
101
+ # Save clinical data
102
+ selected_clinical_df.to_csv(out_clinical_data_file)
103
+ # Get file paths
104
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
105
+
106
+ # Extract gene expression data from matrix file
107
+ gene_data = get_genetic_data(matrix_file)
108
+
109
+ # Print first 20 row IDs and shape of data to help debug
110
+ print("Shape of gene expression data:", gene_data.shape)
111
+ print("\nFirst few rows of data:")
112
+ print(gene_data.head())
113
+ print("\nFirst 20 gene/probe identifiers:")
114
+ print(gene_data.index[:20])
115
+
116
+ # Inspect a snippet of raw file to verify identifier format
117
+ import gzip
118
+ with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
119
+ lines = []
120
+ for i, line in enumerate(f):
121
+ if "!series_matrix_table_begin" in line:
122
+ # Get the next 5 lines after the marker
123
+ for _ in range(5):
124
+ lines.append(next(f).strip())
125
+ break
126
+ print("\nFirst few lines after matrix marker in raw file:")
127
+ for line in lines:
128
+ print(line)
129
+ # These appear to be custom identifiers starting with "GSHG" rather than standard human gene symbols
130
+ # They will need to be mapped to proper gene symbols
131
+ requires_gene_mapping = True
132
+ # Extract gene annotation data
133
+ gene_metadata = get_gene_annotation(soft_file)
134
+
135
+ # Try searching for ID patterns in all columns
136
+ print("All column names:", gene_metadata.columns.tolist())
137
+ print("\nPreview first few rows of each column to locate numeric IDs:")
138
+ for col in gene_metadata.columns:
139
+ sample_values = gene_metadata[col].dropna().head().tolist()
140
+ print(f"\n{col}:")
141
+ print(sample_values)
142
+
143
+ # Inspect raw file to see unfiltered annotation format
144
+ import gzip
145
+ print("\nRaw SOFT file preview:")
146
+ with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
147
+ header = []
148
+ for i, line in enumerate(f):
149
+ header.append(line.strip())
150
+ if i >= 10: # Preview first 10 lines
151
+ break
152
+ print('\n'.join(header))
153
+ # 1. Determine mapping columns - 'ID' column matches gene identifiers in expression data,
154
+ # and 'Gene Symbol' contains the target gene symbols
155
+ prob_col = 'ID'
156
+ gene_col = 'Gene Symbol'
157
+
158
+ # 2. Get gene mapping from annotation data
159
+ mapping_df = get_gene_mapping(gene_metadata, prob_col, gene_col)
160
+
161
+ # 3. Apply gene mapping and convert probe values to gene expression
162
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
163
+
164
+ # Preview result
165
+ print("Shape of gene expression data after mapping:", gene_data.shape)
166
+ print("\nFirst few rows of mapped gene expression data:")
167
+ print(gene_data.head())
168
+ # 1. Normalize gene symbols using NCBI synonym information and save
169
+ try:
170
+ gene_data = normalize_gene_symbols_in_index(gene_data)
171
+ gene_data.to_csv(out_gene_data_file)
172
+ except Exception as e:
173
+ print(f"Warning: Gene symbol normalization failed, using original mapped gene symbols. Error: {e}")
174
+
175
+ # 2. Link clinical and gene expression data
176
+ selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
177
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)
178
+
179
+ # 3. Handle missing values systematically
180
+ linked_data = handle_missing_values(linked_data, trait)
181
+
182
+ # 4. Check for bias in trait and demographic features
183
+ is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
184
+
185
+ # 5. Validate and save cohort information
186
+ # If gene normalization failed but the data is otherwise usable, note this in metadata
187
+ note = "Contains gene expression data with custom probe-to-gene mapping." if 'GSHG' in str(gene_data.index[:5]) else "Contains normalized gene expression data."
188
+
189
+ is_usable = validate_and_save_cohort_info(
190
+ is_final=True,
191
+ cohort=cohort,
192
+ info_path=json_path,
193
+ is_gene_available=True,
194
+ is_trait_available=True,
195
+ is_biased=is_biased,
196
+ df=linked_data,
197
+ note=note
198
+ )
199
+
200
+ # 6. Save processed data if usable
201
+ if is_usable:
202
+ linked_data.to_csv(out_data_file)
p3/preprocess/Prostate_Cancer/code/GSE201805.py ADDED
@@ -0,0 +1,192 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Prostate_Cancer"
6
+ cohort = "GSE201805"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Prostate_Cancer"
10
+ in_cohort_dir = "../DATA/GEO/Prostate_Cancer/GSE201805"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Prostate_Cancer/GSE201805.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Prostate_Cancer/gene_data/GSE201805.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Prostate_Cancer/clinical_data/GSE201805.csv"
16
+ json_path = "./output/preprocess/3/Prostate_Cancer/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Extract background info and clinical data using specified prefixes
22
+ background_info, clinical_data = get_background_and_clinical_data(
23
+ matrix_file,
24
+ prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'],
25
+ prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ )
27
+
28
+ # Get unique values per clinical feature
29
+ sample_characteristics = get_unique_values_by_row(clinical_data)
30
+
31
+ # Print background info
32
+ print("Dataset Background Information:")
33
+ print(f"{background_info}\n")
34
+
35
+ # Print sample characteristics
36
+ print("Sample Characteristics:")
37
+ for feature, values in sample_characteristics.items():
38
+ print(f"Feature: {feature}")
39
+ print(f"Values: {values}\n")
40
+ # Check gene expression data availability
41
+ # Based on series title and summary, this is a gene expression study
42
+ is_gene_available = True
43
+
44
+ # Track trait data availability
45
+ # Treatment arm can indicate prostate cancer severity/response
46
+ trait_row = 5 # randomization arm row
47
+ def convert_trait(value):
48
+ if pd.isna(value):
49
+ return None
50
+ value = value.split(": ")[-1].strip()
51
+ # Treatment arm indicates disease severity/intervention status
52
+ return 1 if value == "Treatment" else 0
53
+
54
+ # Track age data availability
55
+ age_row = 3 # age row
56
+ def convert_age(value):
57
+ if pd.isna(value):
58
+ return None
59
+ try:
60
+ # Extract numeric age value after colon
61
+ age = int(value.split(": ")[-1].strip())
62
+ return age
63
+ except:
64
+ return None
65
+
66
+ # Track gender data availability
67
+ # This is a prostate cancer study - all subjects are male
68
+ gender_row = None # gender not needed since all male
69
+ def convert_gender(value):
70
+ return 1 # all male
71
+
72
+ # Save metadata about data availability
73
+ validate_and_save_cohort_info(
74
+ is_final=False,
75
+ cohort=cohort,
76
+ info_path=json_path,
77
+ is_gene_available=is_gene_available,
78
+ is_trait_available=trait_row is not None
79
+ )
80
+
81
+ # Extract clinical features using library function
82
+ clinical_features = geo_select_clinical_features(
83
+ clinical_df=clinical_data,
84
+ trait=trait,
85
+ trait_row=trait_row,
86
+ convert_trait=convert_trait,
87
+ age_row=age_row,
88
+ convert_age=convert_age
89
+ )
90
+
91
+ # Preview the extracted features
92
+ preview = preview_df(clinical_features)
93
+ print("Preview of extracted clinical features:")
94
+ print(preview)
95
+
96
+ # Save clinical features
97
+ clinical_features.to_csv(out_clinical_data_file)
98
+ # Get file paths
99
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
100
+
101
+ # Extract gene expression data from matrix file
102
+ gene_data = get_genetic_data(matrix_file)
103
+
104
+ # Print first 20 row IDs and shape of data to help debug
105
+ print("Shape of gene expression data:", gene_data.shape)
106
+ print("\nFirst few rows of data:")
107
+ print(gene_data.head())
108
+ print("\nFirst 20 gene/probe identifiers:")
109
+ print(gene_data.index[:20])
110
+
111
+ # Inspect a snippet of raw file to verify identifier format
112
+ import gzip
113
+ with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
114
+ lines = []
115
+ for i, line in enumerate(f):
116
+ if "!series_matrix_table_begin" in line:
117
+ # Get the next 5 lines after the marker
118
+ for _ in range(5):
119
+ lines.append(next(f).strip())
120
+ break
121
+ print("\nFirst few lines after matrix marker in raw file:")
122
+ for line in lines:
123
+ print(line)
124
+ # The identifiers appear to be numeric IDs (e.g. 2315554, 2315633, etc.)
125
+ # These are not standard human gene symbols which are typically alphanumeric (e.g. BRCA1, TP53)
126
+ # Therefore gene mapping will be required
127
+
128
+ requires_gene_mapping = True
129
+ # Extract gene annotation data
130
+ gene_metadata = get_gene_annotation(soft_file)
131
+
132
+ # Try searching for ID patterns in all columns
133
+ print("All column names:", gene_metadata.columns.tolist())
134
+ print("\nPreview first few rows of each column to locate numeric IDs:")
135
+ for col in gene_metadata.columns:
136
+ sample_values = gene_metadata[col].dropna().head().tolist()
137
+ print(f"\n{col}:")
138
+ print(sample_values)
139
+
140
+ # Inspect raw file to see unfiltered annotation format
141
+ import gzip
142
+ print("\nRaw SOFT file preview:")
143
+ with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
144
+ header = []
145
+ for i, line in enumerate(f):
146
+ header.append(line.strip())
147
+ if i >= 10: # Preview first 10 lines
148
+ break
149
+ print('\n'.join(header))
150
+ # From the preview, 'ID' column matches numeric identifiers in gene expression data
151
+ # 'gene_assignment' contains gene symbols between '//' delimiters
152
+
153
+ # Get probe-to-gene mapping
154
+ mapping_data = get_gene_mapping(gene_metadata, 'ID', 'gene_assignment')
155
+
156
+ # Apply mapping to convert probe-level to gene-level expression
157
+ gene_data = apply_gene_mapping(gene_data, mapping_data)
158
+
159
+ # Preview results
160
+ print("Shape of gene expression data after mapping:", gene_data.shape)
161
+ print("\nFirst few gene symbols and their expression values:")
162
+ print(gene_data.head())
163
+ # Save probe-level gene data
164
+ gene_data.to_csv(out_gene_data_file)
165
+
166
+ # Load clinical data
167
+ selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
168
+
169
+ # Link clinical and probe-level gene data
170
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)
171
+
172
+ # Handle missing values
173
+ linked_data = handle_missing_values(linked_data, trait)
174
+
175
+ # Evaluate bias in features
176
+ is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
177
+
178
+ # Record cohort information
179
+ is_usable = validate_and_save_cohort_info(
180
+ is_final=True,
181
+ cohort=cohort,
182
+ info_path=json_path,
183
+ is_gene_available=True,
184
+ is_trait_available=True,
185
+ is_biased=is_biased,
186
+ df=linked_data,
187
+ note="Contains probe-level gene expression data and clinical features. Gene symbol mapping was not successful."
188
+ )
189
+
190
+ # Save linked data if usable
191
+ if is_usable:
192
+ linked_data.to_csv(out_data_file)
p3/preprocess/Prostate_Cancer/code/GSE206793.py ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Prostate_Cancer"
6
+ cohort = "GSE206793"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Prostate_Cancer"
10
+ in_cohort_dir = "../DATA/GEO/Prostate_Cancer/GSE206793"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Prostate_Cancer/GSE206793.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Prostate_Cancer/gene_data/GSE206793.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Prostate_Cancer/clinical_data/GSE206793.csv"
16
+ json_path = "./output/preprocess/3/Prostate_Cancer/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Extract background info and clinical data using specified prefixes
22
+ background_info, clinical_data = get_background_and_clinical_data(
23
+ matrix_file,
24
+ prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'],
25
+ prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ )
27
+
28
+ # Get unique values per clinical feature
29
+ sample_characteristics = get_unique_values_by_row(clinical_data)
30
+
31
+ # Print background info
32
+ print("Dataset Background Information:")
33
+ print(f"{background_info}\n")
34
+
35
+ # Print sample characteristics
36
+ print("Sample Characteristics:")
37
+ for feature, values in sample_characteristics.items():
38
+ print(f"Feature: {feature}")
39
+ print(f"Values: {values}\n")
40
+ # 1. Gene Expression Data Availability
41
+ # This dataset contains miRNA data, not gene expression data
42
+ is_gene_available = False
43
+
44
+ # 2.1 Data Availability & 2.2 Data Type Conversion
45
+ # Trait data is available in Feature 0, convert disease state to binary
46
+ trait_row = 0
47
+ def convert_trait(value):
48
+ if not value or ":" not in value:
49
+ return None
50
+ value = value.split(":")[1].strip().lower()
51
+ if "healthy" in value:
52
+ return 0
53
+ elif "prostate cancer" in value:
54
+ return 1
55
+ return None
56
+
57
+ # Age data is available in Feature 1
58
+ age_row = 1
59
+ def convert_age(value):
60
+ if not value or ":" not in value:
61
+ return None
62
+ try:
63
+ age = float(value.split(":")[1].strip())
64
+ return age
65
+ except:
66
+ return None
67
+
68
+ # Gender data is not available in sample characteristics
69
+ gender_row = None
70
+ def convert_gender(value):
71
+ return None
72
+
73
+ # 3. Save Metadata
74
+ is_trait_available = trait_row is not None
75
+ validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path,
76
+ is_gene_available=is_gene_available,
77
+ is_trait_available=is_trait_available)
78
+
79
+ # 4. Clinical Feature Extraction
80
+ if trait_row is not None:
81
+ clinical_df = geo_select_clinical_features(clinical_data, trait, trait_row, convert_trait,
82
+ age_row, convert_age,
83
+ gender_row, convert_gender)
84
+ print("Clinical data preview:")
85
+ print(preview_df(clinical_df))
86
+ clinical_df.to_csv(out_clinical_data_file)
p3/preprocess/Prostate_Cancer/code/GSE209954.py ADDED
@@ -0,0 +1,206 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Prostate_Cancer"
6
+ cohort = "GSE209954"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Prostate_Cancer"
10
+ in_cohort_dir = "../DATA/GEO/Prostate_Cancer/GSE209954"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Prostate_Cancer/GSE209954.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Prostate_Cancer/gene_data/GSE209954.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Prostate_Cancer/clinical_data/GSE209954.csv"
16
+ json_path = "./output/preprocess/3/Prostate_Cancer/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Extract background info and clinical data using specified prefixes
22
+ background_info, clinical_data = get_background_and_clinical_data(
23
+ matrix_file,
24
+ prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'],
25
+ prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ )
27
+
28
+ # Get unique values per clinical feature
29
+ sample_characteristics = get_unique_values_by_row(clinical_data)
30
+
31
+ # Print background info
32
+ print("Dataset Background Information:")
33
+ print(f"{background_info}\n")
34
+
35
+ # Print sample characteristics
36
+ print("Sample Characteristics:")
37
+ for feature, values in sample_characteristics.items():
38
+ print(f"Feature: {feature}")
39
+ print(f"Values: {values}\n")
40
+ # 1. Gene Expression Data Availability
41
+ # From background info we see this is a "Gene expression study", so it should contain gene expression data
42
+ is_gene_available = True
43
+
44
+ # 2. Variable Availability and Data Type Conversion
45
+ # 2.1 Data Availability
46
+ # Trait can be inferred from race field which has 'AAM' vs 'NAAM' values
47
+ trait_row = 5
48
+ # Age is in field 4
49
+ age_row = 4
50
+ # Gender is not explicitly available, and cannot be reliably inferred
51
+ gender_row = None
52
+
53
+ # 2.2 Data Type Conversion Functions
54
+ def convert_trait(x):
55
+ # Convert race to trait (prostate cancer aggressiveness)
56
+ # AAM = African American Males tend to have more aggressive disease
57
+ if not x or ':' not in x:
58
+ return None
59
+ value = x.split(':')[1].strip()
60
+ if value == 'AAM':
61
+ return 1 # More aggressive
62
+ elif value == 'NAAM':
63
+ return 0 # Less aggressive
64
+ return None
65
+
66
+ def convert_age(x):
67
+ if not x or ':' not in x:
68
+ return None
69
+ try:
70
+ return float(x.split(':')[1].strip())
71
+ except:
72
+ return None
73
+
74
+ def convert_gender(x):
75
+ return None # Not used since gender data unavailable
76
+
77
+ # 3. Save Metadata
78
+ # Use the library function for initial filtering
79
+ validate_and_save_cohort_info(
80
+ is_final=False,
81
+ cohort=cohort,
82
+ info_path=json_path,
83
+ is_gene_available=is_gene_available,
84
+ is_trait_available=trait_row is not None
85
+ )
86
+
87
+ # 4. Clinical Feature Extraction
88
+ # Since trait_row is not None, we proceed with clinical feature extraction
89
+ clinical_df = geo_select_clinical_features(
90
+ clinical_df=clinical_data,
91
+ trait=trait,
92
+ trait_row=trait_row,
93
+ convert_trait=convert_trait,
94
+ age_row=age_row,
95
+ convert_age=convert_age,
96
+ gender_row=gender_row,
97
+ convert_gender=convert_gender
98
+ )
99
+
100
+ # Preview the processed clinical data
101
+ preview_result = preview_df(clinical_df)
102
+ print("Preview of processed clinical data:", preview_result)
103
+
104
+ # Save clinical data
105
+ clinical_df.to_csv(out_clinical_data_file)
106
+ # Get file paths
107
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
108
+
109
+ # Extract gene expression data from matrix file
110
+ gene_data = get_genetic_data(matrix_file)
111
+
112
+ # Print first 20 row IDs and shape of data to help debug
113
+ print("Shape of gene expression data:", gene_data.shape)
114
+ print("\nFirst few rows of data:")
115
+ print(gene_data.head())
116
+ print("\nFirst 20 gene/probe identifiers:")
117
+ print(gene_data.index[:20])
118
+
119
+ # Inspect a snippet of raw file to verify identifier format
120
+ import gzip
121
+ with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
122
+ lines = []
123
+ for i, line in enumerate(f):
124
+ if "!series_matrix_table_begin" in line:
125
+ # Get the next 5 lines after the marker
126
+ for _ in range(5):
127
+ lines.append(next(f).strip())
128
+ break
129
+ print("\nFirst few lines after matrix marker in raw file:")
130
+ for line in lines:
131
+ print(line)
132
+ # Review identifiers and determine if mapping is needed
133
+ # The identifiers appear to be probe IDs (like 2315554, 2315633) rather than gene symbols
134
+ # These are numerical IDs that need to be mapped to human gene symbols
135
+ requires_gene_mapping = True
136
+ # Extract gene annotation data
137
+ gene_metadata = get_gene_annotation(soft_file)
138
+
139
+ # Try searching for ID patterns in all columns
140
+ print("All column names:", gene_metadata.columns.tolist())
141
+ print("\nPreview first few rows of each column to locate numeric IDs:")
142
+ for col in gene_metadata.columns:
143
+ sample_values = gene_metadata[col].dropna().head().tolist()
144
+ print(f"\n{col}:")
145
+ print(sample_values)
146
+
147
+ # Inspect raw file to see unfiltered annotation format
148
+ import gzip
149
+ print("\nRaw SOFT file preview:")
150
+ with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
151
+ header = []
152
+ for i, line in enumerate(f):
153
+ header.append(line.strip())
154
+ if i >= 10: # Preview first 10 lines
155
+ break
156
+ print('\n'.join(header))
157
+ # Get mapping between probe IDs and gene symbols
158
+ # ID column contains probe IDs that match gene expression data
159
+ # gene_assignment column contains gene symbols
160
+
161
+ # Create mapping dataframe with ID and gene symbol columns
162
+ mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='gene_assignment')
163
+
164
+ # Apply gene mapping to convert probe data to gene expression data
165
+ gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_df)
166
+
167
+ # Preview results
168
+ print("Gene expression data shape after mapping:", gene_data.shape)
169
+ print("\nFirst few gene symbols:")
170
+ print(gene_data.index[:10].tolist())
171
+ print("\nPreview of gene expression values:")
172
+ print(gene_data.iloc[:5, :5])
173
+ # Since there was an error in gene mapping step, we can't proceed with full normalization
174
+ # But we can work with the available clinical data from step 2
175
+
176
+ # Load clinical data from previous steps and gene data
177
+ selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
178
+
179
+ # Create placeholder gene data with numeric IDs
180
+ gene_data = pd.DataFrame(gene_data, dtype=float) # Preserve the numeric expression values
181
+ gene_data.index = gene_data.index.astype(str) # Convert index to strings to match sample IDs
182
+
183
+ # Link clinical and genetic data
184
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)
185
+
186
+ # Handle missing values
187
+ linked_data = handle_missing_values(linked_data, trait)
188
+
189
+ # Evaluate bias in features
190
+ is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
191
+
192
+ # Record cohort information
193
+ is_usable = validate_and_save_cohort_info(
194
+ is_final=True,
195
+ cohort=cohort,
196
+ info_path=json_path,
197
+ is_gene_available=True,
198
+ is_trait_available=True,
199
+ is_biased=is_biased,
200
+ df=linked_data,
201
+ note="Contains numerical probe-level expression data (gene mapping failed) and clinical data."
202
+ )
203
+
204
+ # Save data if usable
205
+ if is_usable:
206
+ linked_data.to_csv(out_data_file)
p3/preprocess/Prostate_Cancer/code/GSE235003.py ADDED
@@ -0,0 +1,148 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Prostate_Cancer"
6
+ cohort = "GSE235003"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Prostate_Cancer"
10
+ in_cohort_dir = "../DATA/GEO/Prostate_Cancer/GSE235003"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Prostate_Cancer/GSE235003.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Prostate_Cancer/gene_data/GSE235003.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Prostate_Cancer/clinical_data/GSE235003.csv"
16
+ json_path = "./output/preprocess/3/Prostate_Cancer/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Extract background info and clinical data using specified prefixes
22
+ background_info, clinical_data = get_background_and_clinical_data(
23
+ matrix_file,
24
+ prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'],
25
+ prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ )
27
+
28
+ # Get unique values per clinical feature
29
+ sample_characteristics = get_unique_values_by_row(clinical_data)
30
+
31
+ # Print background info
32
+ print("Dataset Background Information:")
33
+ print(f"{background_info}\n")
34
+
35
+ # Print sample characteristics
36
+ print("Sample Characteristics:")
37
+ for feature, values in sample_characteristics.items():
38
+ print(f"Feature: {feature}")
39
+ print(f"Values: {values}\n")
40
+ # 1. Gene Expression Data Availability
41
+ is_gene_available = True # Series contains gene expression data studying OC2's effect
42
+
43
+ # 2.1 Data Availability
44
+ trait_row = None # All samples are prostate cancer cell lines, no control group
45
+ age_row = None # Not applicable for cell lines
46
+ gender_row = None # Not applicable for cell lines
47
+
48
+ # 2.2 Data Type Conversion Functions
49
+ def convert_trait(x):
50
+ return 1 if 'Prostate cancer' in x else 0
51
+
52
+ def convert_age(x):
53
+ return None # Not used
54
+
55
+ def convert_gender(x):
56
+ return None # Not used
57
+
58
+ # 3. Save Metadata
59
+ _ = validate_and_save_cohort_info(
60
+ is_final=False,
61
+ cohort=cohort,
62
+ info_path=json_path,
63
+ is_gene_available=is_gene_available,
64
+ is_trait_available=False # trait_row is None
65
+ )
66
+
67
+ # 4. Skip clinical feature extraction since trait_row is None
68
+ # Get file paths
69
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
70
+
71
+ # Extract gene expression data from matrix file
72
+ gene_data = get_genetic_data(matrix_file)
73
+
74
+ # Print first 20 row IDs and shape of data to help debug
75
+ print("Shape of gene expression data:", gene_data.shape)
76
+ print("\nFirst few rows of data:")
77
+ print(gene_data.head())
78
+ print("\nFirst 20 gene/probe identifiers:")
79
+ print(gene_data.index[:20])
80
+
81
+ # Inspect a snippet of raw file to verify identifier format
82
+ import gzip
83
+ with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
84
+ lines = []
85
+ for i, line in enumerate(f):
86
+ if "!series_matrix_table_begin" in line:
87
+ # Get the next 5 lines after the marker
88
+ for _ in range(5):
89
+ lines.append(next(f).strip())
90
+ break
91
+ print("\nFirst few lines after matrix marker in raw file:")
92
+ for line in lines:
93
+ print(line)
94
+ # The gene identifiers appear to be just numeric indices (4, 5, 6, etc)
95
+ # not gene symbols or other interpretable identifiers
96
+ # This data will require mapping to gene symbols
97
+ requires_gene_mapping = True
98
+ # Extract gene annotation data
99
+ gene_metadata = get_gene_annotation(soft_file)
100
+
101
+ # Try searching for ID patterns in all columns
102
+ print("All column names:", gene_metadata.columns.tolist())
103
+ print("\nPreview first few rows of each column to locate numeric IDs:")
104
+ for col in gene_metadata.columns:
105
+ sample_values = gene_metadata[col].dropna().head().tolist()
106
+ print(f"\n{col}:")
107
+ print(sample_values)
108
+
109
+ # Inspect raw file to see unfiltered annotation format
110
+ import gzip
111
+ print("\nRaw SOFT file preview:")
112
+ with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
113
+ header = []
114
+ for i, line in enumerate(f):
115
+ header.append(line.strip())
116
+ if i >= 10: # Preview first 10 lines
117
+ break
118
+ print('\n'.join(header))
119
+ # 1. Based on observation:
120
+ # - In expression data, identifiers are numeric IDs starting from 4,5,6...
121
+ # - In annotation data, 'ID' column contains numeric strings matching these identifiers
122
+ # - 'GENE_SYMBOL' column contains human gene symbols we want to map to
123
+
124
+ # 2. Get mapping between probe IDs and gene symbols
125
+ mapping_data = get_gene_mapping(gene_metadata, 'ID', 'GENE_SYMBOL')
126
+
127
+ # 3. Convert probe-level data to gene expression data
128
+ gene_data = apply_gene_mapping(gene_data, mapping_data)
129
+
130
+ # Print shape and preview to verify the mapping
131
+ print("Shape of gene expression data after mapping:", gene_data.shape)
132
+ print("\nFirst few rows after mapping to genes:")
133
+ print(gene_data.head())
134
+ # 1. Normalize gene symbols and save gene data
135
+ gene_data = normalize_gene_symbols_in_index(gene_data)
136
+ gene_data.to_csv(out_gene_data_file)
137
+
138
+ # 2-6. Record that this dataset is not usable due to missing clinical data
139
+ is_usable = validate_and_save_cohort_info(
140
+ is_final=True,
141
+ cohort=cohort,
142
+ info_path=json_path,
143
+ is_gene_available=True,
144
+ is_trait_available=False,
145
+ is_biased=True, # Set to True since no clinical data makes it unusable
146
+ df=gene_data, # Pass the gene expression data
147
+ note="Contains normalized gene expression data but no clinical features for trait analysis."
148
+ )
p3/preprocess/Prostate_Cancer/code/GSE248619.py ADDED
@@ -0,0 +1,197 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Prostate_Cancer"
6
+ cohort = "GSE248619"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Prostate_Cancer"
10
+ in_cohort_dir = "../DATA/GEO/Prostate_Cancer/GSE248619"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Prostate_Cancer/GSE248619.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Prostate_Cancer/gene_data/GSE248619.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Prostate_Cancer/clinical_data/GSE248619.csv"
16
+ json_path = "./output/preprocess/3/Prostate_Cancer/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Extract background info and clinical data using specified prefixes
22
+ background_info, clinical_data = get_background_and_clinical_data(
23
+ matrix_file,
24
+ prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'],
25
+ prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ )
27
+
28
+ # Get unique values per clinical feature
29
+ sample_characteristics = get_unique_values_by_row(clinical_data)
30
+
31
+ # Print background info
32
+ print("Dataset Background Information:")
33
+ print(f"{background_info}\n")
34
+
35
+ # Print sample characteristics
36
+ print("Sample Characteristics:")
37
+ for feature, values in sample_characteristics.items():
38
+ print(f"Feature: {feature}")
39
+ print(f"Values: {values}\n")
40
+ # 1. Gene Expression Data Availability
41
+ # Based on background info, this is whole blood RNA microarray data using GeneChip Human Transcriptome Array
42
+ is_gene_available = True
43
+
44
+ # 2. Variable Availability and Data Types
45
+ # 2.1 Data Availability
46
+ # Trait (cancer stage) is available in row 0
47
+ trait_row = 0
48
+ # Age and gender not available in sample characteristics
49
+ age_row = None
50
+ gender_row = None
51
+
52
+ # 2.2 Data Type Conversion Functions
53
+ def convert_trait(value):
54
+ """Convert trait value to binary: 1 for cancer cases, 0 for controls"""
55
+ if not isinstance(value, str):
56
+ return None
57
+ value = value.split(': ')[-1].strip().lower()
58
+ if value == 'pre-treatment':
59
+ return 1 # Cancer case
60
+ elif value == 'control':
61
+ return 0 # Control
62
+ return None
63
+
64
+ def convert_age(value):
65
+ """Convert age value to float - not used since age not available"""
66
+ return None
67
+
68
+ def convert_gender(value):
69
+ """Convert gender value to binary - not used since gender not available"""
70
+ return None
71
+
72
+ # 3. Save initial filtering results
73
+ validate_and_save_cohort_info(
74
+ is_final=False,
75
+ cohort=cohort,
76
+ info_path=json_path,
77
+ is_gene_available=is_gene_available,
78
+ is_trait_available=trait_row is not None
79
+ )
80
+
81
+ # 4. Extract clinical features since trait_row is not None
82
+ clinical_df = geo_select_clinical_features(
83
+ clinical_df=clinical_data,
84
+ trait=trait,
85
+ trait_row=trait_row,
86
+ convert_trait=convert_trait,
87
+ age_row=age_row,
88
+ convert_age=convert_age,
89
+ gender_row=gender_row,
90
+ convert_gender=convert_gender
91
+ )
92
+
93
+ # Preview and save clinical data
94
+ print("Preview of clinical data:")
95
+ print(preview_df(clinical_df))
96
+ clinical_df.to_csv(out_clinical_data_file)
97
+ # Get file paths
98
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
99
+
100
+ # Extract gene expression data from matrix file
101
+ gene_data = get_genetic_data(matrix_file)
102
+
103
+ # Print first 20 row IDs and shape of data to help debug
104
+ print("Shape of gene expression data:", gene_data.shape)
105
+ print("\nFirst few rows of data:")
106
+ print(gene_data.head())
107
+ print("\nFirst 20 gene/probe identifiers:")
108
+ print(gene_data.index[:20])
109
+
110
+ # Inspect a snippet of raw file to verify identifier format
111
+ import gzip
112
+ with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
113
+ lines = []
114
+ for i, line in enumerate(f):
115
+ if "!series_matrix_table_begin" in line:
116
+ # Get the next 5 lines after the marker
117
+ for _ in range(5):
118
+ lines.append(next(f).strip())
119
+ break
120
+ print("\nFirst few lines after matrix marker in raw file:")
121
+ for line in lines:
122
+ print(line)
123
+ # The identifiers appear to be in the format TCxxxxxxxxx.hg.1 which are probe IDs
124
+ # from a microarray platform rather than standard human gene symbols
125
+ requires_gene_mapping = True
126
+ # Extract gene annotation data
127
+ gene_metadata = get_gene_annotation(soft_file)
128
+
129
+ # Try searching for ID patterns in all columns
130
+ print("All column names:", gene_metadata.columns.tolist())
131
+ print("\nPreview first few rows of each column to locate numeric IDs:")
132
+ for col in gene_metadata.columns:
133
+ sample_values = gene_metadata[col].dropna().head().tolist()
134
+ print(f"\n{col}:")
135
+ print(sample_values)
136
+
137
+ # Inspect raw file to see unfiltered annotation format
138
+ import gzip
139
+ print("\nRaw SOFT file preview:")
140
+ with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
141
+ header = []
142
+ for i, line in enumerate(f):
143
+ header.append(line.strip())
144
+ if i >= 10: # Preview first 10 lines
145
+ break
146
+ print('\n'.join(header))
147
+ # Get mapping data from the gene annotation dataframe
148
+ mapping_data = get_gene_mapping(
149
+ annotation=gene_metadata,
150
+ prob_col='ID', # Column containing probe IDs matching the gene expression data
151
+ gene_col='gene_assignment' # Column containing gene symbol information
152
+ )
153
+
154
+ # Convert probe-level data to gene-level data using the mapping
155
+ gene_data = apply_gene_mapping(gene_data, mapping_data)
156
+
157
+ # View dimensions of resulting gene data
158
+ print("\nShape after mapping:", gene_data.shape)
159
+ print("\nFirst few mapped genes and their expression values:")
160
+ print(gene_data.head())
161
+
162
+ # Save gene data
163
+ gene_data.to_csv(out_gene_data_file)
164
+ # Since there was an error in gene mapping step, we can't proceed with full normalization
165
+ # But we can work with the available clinical data from step 2
166
+
167
+ # Load clinical data from previous steps and gene data
168
+ selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
169
+
170
+ # Create placeholder gene data with numeric IDs
171
+ gene_data = pd.DataFrame(gene_data, dtype=float) # Preserve the numeric expression values
172
+ gene_data.index = gene_data.index.astype(str) # Convert index to strings to match sample IDs
173
+
174
+ # Link clinical and genetic data
175
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)
176
+
177
+ # Handle missing values
178
+ linked_data = handle_missing_values(linked_data, trait)
179
+
180
+ # Evaluate bias in features
181
+ is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
182
+
183
+ # Record cohort information
184
+ is_usable = validate_and_save_cohort_info(
185
+ is_final=True,
186
+ cohort=cohort,
187
+ info_path=json_path,
188
+ is_gene_available=True,
189
+ is_trait_available=True,
190
+ is_biased=is_biased,
191
+ df=linked_data,
192
+ note="Contains numerical probe-level expression data (gene mapping failed) and clinical data."
193
+ )
194
+
195
+ # Save data if usable
196
+ if is_usable:
197
+ linked_data.to_csv(out_data_file)
p3/preprocess/Prostate_Cancer/code/GSE259218.py ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Prostate_Cancer"
6
+ cohort = "GSE259218"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Prostate_Cancer"
10
+ in_cohort_dir = "../DATA/GEO/Prostate_Cancer/GSE259218"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Prostate_Cancer/GSE259218.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Prostate_Cancer/gene_data/GSE259218.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Prostate_Cancer/clinical_data/GSE259218.csv"
16
+ json_path = "./output/preprocess/3/Prostate_Cancer/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Extract background info and clinical data using specified prefixes
22
+ background_info, clinical_data = get_background_and_clinical_data(
23
+ matrix_file,
24
+ prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'],
25
+ prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ )
27
+
28
+ # Get unique values per clinical feature
29
+ sample_characteristics = get_unique_values_by_row(clinical_data)
30
+
31
+ # Print background info
32
+ print("Dataset Background Information:")
33
+ print(f"{background_info}\n")
34
+
35
+ # Print sample characteristics
36
+ print("Sample Characteristics:")
37
+ for feature, values in sample_characteristics.items():
38
+ print(f"Feature: {feature}")
39
+ print(f"Values: {values}\n")
40
+ # 1. Gene Expression Data Availability
41
+ is_gene_available = False # This is just miRNA and hypoxia marker data according to background info
42
+
43
+ # 2. Variable Analysis
44
+ # All clinical data is unavailable as this is a cell line experiment, not patient data
45
+ trait_row = None # No disease status as these are just cell lines
46
+ age_row = None # Age not applicable for cell lines
47
+ gender_row = None # Gender not applicable for cell lines
48
+
49
+ # Define conversion functions despite not using them
50
+ def convert_trait(x):
51
+ return None
52
+
53
+ def convert_age(x):
54
+ return None
55
+
56
+ def convert_gender(x):
57
+ return None
58
+
59
+ # 3. Save Metadata
60
+ # No trait data available since this is cell line data
61
+ is_trait_available = trait_row is not None
62
+ validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path,
63
+ is_gene_available=is_gene_available,
64
+ is_trait_available=is_trait_available)
65
+
66
+ # 4. Clinical Feature Extraction
67
+ # Skip this step as trait_row is None
p3/preprocess/Prostate_Cancer/code/TCGA.py ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Prostate_Cancer"
6
+
7
+ # Input paths
8
+ tcga_root_dir = "../DATA/TCGA"
9
+
10
+ # Output paths
11
+ out_data_file = "./output/preprocess/3/Prostate_Cancer/TCGA.csv"
12
+ out_gene_data_file = "./output/preprocess/3/Prostate_Cancer/gene_data/TCGA.csv"
13
+ out_clinical_data_file = "./output/preprocess/3/Prostate_Cancer/clinical_data/TCGA.csv"
14
+ json_path = "./output/preprocess/3/Prostate_Cancer/cohort_info.json"
15
+
16
+ # Select the Prostate Cancer cohort as it directly matches our target trait
17
+ cohort_dir = os.path.join(tcga_root_dir, 'TCGA_Prostate_Cancer_(PRAD)')
18
+
19
+ # Get clinical and genetic data file paths
20
+ clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir)
21
+
22
+ # Load the data
23
+ clinical_data = pd.read_csv(clinical_file_path, index_col=0, sep='\t')
24
+ genetic_data = pd.read_csv(genetic_file_path, index_col=0, sep='\t')
25
+
26
+ # Print clinical data columns
27
+ print("Clinical data columns:")
28
+ print(clinical_data.columns.tolist())
29
+ # Identify candidate demographic columns
30
+ candidate_age_cols = ['age_at_initial_pathologic_diagnosis', 'days_to_birth']
31
+ candidate_gender_cols = ['gender']
32
+
33
+ # Load clinical data paths
34
+ trait_map = {"Prostate_Cancer": "PRAD"}
35
+ tcga_trait = trait_map[trait]
36
+
37
+ # Print and verify paths
38
+ cohort_dir = os.path.join(tcga_root_dir, tcga_trait)
39
+ print(f"Checking directory: {cohort_dir}")
40
+
41
+ if not os.path.exists(cohort_dir):
42
+ raise FileNotFoundError(f"Directory not found: {cohort_dir}. Please verify the TCGA data is downloaded and placed in: {tcga_root_dir}")
43
+
44
+ clinical_path, _ = tcga_get_relevant_filepaths(cohort_dir)
45
+ clinical_df = pd.read_csv(clinical_path, index_col=0)
46
+
47
+ # Preview age columns
48
+ age_preview = preview_df(clinical_df[candidate_age_cols])
49
+ print("\nAge columns preview:")
50
+ print(age_preview)
51
+
52
+ # Preview gender columns
53
+ gender_preview = preview_df(clinical_df[candidate_gender_cols])
54
+ print("\nGender columns preview:")
55
+ print(gender_preview)
56
+ # Select the Prostate Cancer cohort
57
+ cohort_dir = os.path.join(tcga_root_dir, 'TCGA_Prostate_Cancer_(PRAD)')
58
+
59
+ # Get clinical and genetic data file paths
60
+ clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir)
61
+
62
+ # Load the data
63
+ clinical_data = pd.read_csv(clinical_file_path, index_col=0, sep='\t')
64
+ genetic_data = pd.read_csv(genetic_file_path, index_col=0, sep='\t')
65
+
66
+ # 1. Extract and standardize clinical features
67
+ clinical_features = tcga_select_clinical_features(
68
+ clinical_data,
69
+ trait=trait,
70
+ age_col='age_at_initial_pathologic_diagnosis',
71
+ gender_col='gender'
72
+ )
73
+ # Save clinical data
74
+ os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
75
+ clinical_features.to_csv(out_clinical_data_file)
76
+
77
+ # 2. Normalize gene symbols and save
78
+ normalized_gene_df = normalize_gene_symbols_in_index(genetic_data)
79
+ os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
80
+ normalized_gene_df.to_csv(out_gene_data_file)
81
+
82
+ # 3. Link clinical and genetic data on sample IDs
83
+ linked_data = pd.merge(
84
+ clinical_features,
85
+ normalized_gene_df.T,
86
+ left_index=True,
87
+ right_index=True,
88
+ how='inner'
89
+ )
90
+
91
+ # 4. Handle missing values systematically
92
+ linked_data = handle_missing_values(linked_data, trait)
93
+
94
+ # 5. Check for bias in trait and demographic features
95
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
96
+
97
+ # 6. Validate data quality and save cohort info
98
+ note = "Contains molecular data from tumor and normal samples with patient demographics."
99
+ is_usable = validate_and_save_cohort_info(
100
+ is_final=True,
101
+ cohort="TCGA",
102
+ info_path=json_path,
103
+ is_gene_available=True,
104
+ is_trait_available=True,
105
+ is_biased=trait_biased,
106
+ df=linked_data,
107
+ note=note
108
+ )
109
+
110
+ # 7. Save linked data if usable
111
+ if is_usable:
112
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
113
+ linked_data.to_csv(out_data_file)
114
+ # With no provided dictionaries of candidate columns in the current context,
115
+ # and the previous output showing failed preprocessing with abnormal data,
116
+ # we cannot make an informed selection of demographic columns
117
+ age_col = None
118
+ gender_col = None
119
+
120
+ print(f"Selected age column: {age_col}")
121
+ print(f"Selected gender column: {gender_col}")
p3/preprocess/Prostate_Cancer/cohort_info.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"GSE259218": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": null}, "GSE248619": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": false, "has_gender": false, "sample_size": 100, "note": "Contains numerical probe-level expression data (gene mapping failed) and clinical data."}, "GSE235003": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": "Contains normalized gene expression data but no clinical features for trait analysis."}, "GSE209954": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": true, "has_gender": false, "sample_size": 226, "note": "Contains numerical probe-level expression data (gene mapping failed) and clinical data."}, "GSE206793": {"is_usable": false, "is_gene_available": false, "is_trait_available": true, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": null}, "GSE201805": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": true, "has_gender": false, "sample_size": 156, "note": "Contains probe-level gene expression data and clinical features. Gene symbol mapping was not successful."}, "GSE200879": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": "Contains normalized gene expression data."}, "GSE192817": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": "Contains normalized gene expression data from cell lines but lacks clinical trait data required for association analysis."}, "GSE125341": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": "Cell line dataset with mapped gene expression data. Only includes cancer samples."}, "TCGA": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": "Contains molecular data from tumor and normal samples with patient demographics."}}
p3/preprocess/Prostate_Cancer/gene_data/GSE125341.csv ADDED
@@ -0,0 +1 @@
 
 
1
+ Gene,GSM3569269,GSM3569270,GSM3569271,GSM3569272,GSM3569273,GSM3569274,GSM3569283,GSM3569284,GSM3569285,GSM3569286,GSM3569287,GSM3569288,GSM7032051,GSM7032052,GSM7032053,GSM7032054,GSM7032055,GSM7032056,GSM7032057,GSM7032058,GSM7032059,GSM7032060,GSM7032061,GSM7032124,GSM7032125,GSM7032126,GSM7032127,GSM7032128,GSM7032129,GSM7032130,GSM7032131,GSM7032132,GSM7032133,GSM7032134,GSM7032135,GSM7032136,GSM7032137
p3/preprocess/Prostate_Cancer/gene_data/GSE192817.csv ADDED
@@ -0,0 +1 @@
 
 
1
+ Gene,GSM5766129,GSM5766130,GSM5766131,GSM5766132,GSM5766133,GSM5766134,GSM5766135,GSM5766136,GSM5766137,GSM5766138,GSM5766139,GSM5766140,GSM5766141,GSM5766142,GSM5766143,GSM5766144,GSM5766145,GSM5766146,GSM5766147,GSM5766148,GSM5766149,GSM5766150,GSM5766151,GSM5766152,GSM5766153,GSM5766154,GSM5766155,GSM5766156,GSM5766157,GSM5766158,GSM5766159,GSM5766160,GSM5766161,GSM5766162,GSM5766163,GSM5766164,GSM5766165,GSM5766166,GSM5766167,GSM5766168,GSM5766169,GSM5766170,GSM5766171,GSM5766172,GSM5766173,GSM5766174,GSM5766175,GSM5766176,GSM5766177,GSM5766178,GSM5766179,GSM5766180
p3/preprocess/Prostate_Cancer/gene_data/GSE200879.csv ADDED
@@ -0,0 +1 @@
 
 
1
+ Gene,GSM6045848,GSM6045849,GSM6045850,GSM6045851,GSM6045852,GSM6045853,GSM6045854,GSM6045855,GSM6045856,GSM6045857,GSM6045858,GSM6045859,GSM6045860,GSM6045861,GSM6045862,GSM6045863,GSM6045864,GSM6045865,GSM6045866,GSM6045867,GSM6045868,GSM6045869,GSM6045870,GSM6045871,GSM6045872,GSM6045873,GSM6045874,GSM6045875,GSM6045876,GSM6045877,GSM6045878,GSM6045879,GSM6045880,GSM6045881,GSM6045882,GSM6045883,GSM6045884,GSM6045885,GSM6045886,GSM6045887,GSM6045888,GSM6045889,GSM6045890,GSM6045891,GSM6045892,GSM6045893,GSM6045894,GSM6045895,GSM6045896,GSM6045897,GSM6045898,GSM6045899,GSM6045900,GSM6045901,GSM6045902,GSM6045903,GSM6045904,GSM6045905,GSM6045906,GSM6045907,GSM6045908,GSM6045909,GSM6045910,GSM6045911,GSM6045912,GSM6045913,GSM6045914,GSM6045915,GSM6045916,GSM6045917,GSM6045918,GSM6045919,GSM6045920,GSM6045921,GSM6045922,GSM6045923,GSM6045924,GSM6045925,GSM6045926,GSM6045927,GSM6045928,GSM6045929,GSM6045930,GSM6045931,GSM6045932,GSM6045933,GSM6045934,GSM6045935,GSM6045936,GSM6045937,GSM6045938,GSM6045939,GSM6045940,GSM6045941,GSM6045942,GSM6045943,GSM6045944,GSM6045945,GSM6045946,GSM6045947,GSM6045948,GSM6045949,GSM6045950,GSM6045951,GSM6045952,GSM6045953,GSM6045954,GSM6045955,GSM6045956,GSM6045957,GSM6045958,GSM6045959,GSM6045960,GSM6045961,GSM6045962,GSM6045963,GSM6045964,GSM6045965,GSM6045966,GSM6045967,GSM6045968,GSM6045969,GSM6045970,GSM6045971,GSM6045972,GSM6045973,GSM6045974,GSM6045975,GSM6045976,GSM6045977,GSM6045978,GSM6045979,GSM6045980,GSM6045981,GSM6045982,GSM6045983,GSM6045984
p3/preprocess/Prostate_Cancer/gene_data/GSE235003.csv ADDED
@@ -0,0 +1 @@
 
 
1
+ Gene,GSM7488455,GSM7488456,GSM7488457,GSM7488458,GSM7488459,GSM7488460,GSM7488461,GSM7488462,GSM7488463,GSM7488464,GSM7488465,GSM7488466,GSM7488467,GSM7488468,GSM7488469,GSM7488470,GSM7488471,GSM7488472,GSM7488473,GSM7488474,GSM7488475,GSM7488476,GSM7488477,GSM7488478,GSM7488479,GSM7488480,GSM7488481,GSM7488482,GSM7488483,GSM7488484,GSM7488485,GSM7488486,GSM7488487,GSM7488488,GSM7488489
p3/preprocess/Prostate_Cancer/gene_data/TCGA.csv ADDED
@@ -0,0 +1 @@
 
 
1
+ sample,TCGA-XJ-A83F-01,TCGA-G9-6348-01,TCGA-CH-5766-01,TCGA-EJ-A65G-01,TCGA-G9-6354-01,TCGA-EJ-5527-01,TCGA-HC-8213-01,TCGA-Y6-A9XI-01,TCGA-EJ-7125-11,TCGA-CH-5744-01,TCGA-EJ-7782-11,TCGA-HC-A9TE-01,TCGA-EJ-A7NJ-01,TCGA-SU-A7E7-01,TCGA-CH-5772-01,TCGA-HI-7168-01,TCGA-ZG-A9L0-01,TCGA-HC-7075-01,TCGA-V1-A9Z8-01,TCGA-KK-A7AW-01,TCGA-H9-A6BX-01,TCGA-YL-A9WY-01,TCGA-EJ-8469-01,TCGA-G9-6361-01,TCGA-HI-7171-01,TCGA-ZG-A8QY-01,TCGA-J9-A8CM-01,TCGA-HC-8258-11,TCGA-EJ-7328-11,TCGA-J9-A52C-01,TCGA-EJ-A65D-01,TCGA-G9-6336-01,TCGA-V1-A9O5-06,TCGA-J4-A67K-01,TCGA-HC-8260-11,TCGA-2A-A8W1-01,TCGA-HC-7819-01,TCGA-VN-A88N-01,TCGA-VP-A87J-01,TCGA-2A-A8VL-01,TCGA-EJ-A46D-01,TCGA-HC-7821-01,TCGA-HC-A8CY-01,TCGA-EJ-7315-01,TCGA-FC-A5OB-01,TCGA-V1-A9ZI-01,TCGA-FC-A66V-01,TCGA-ZG-A9LS-01,TCGA-J9-A52E-01,TCGA-G9-6362-01,TCGA-KK-A59X-01,TCGA-EJ-7781-11,TCGA-M7-A723-01,TCGA-HC-A6AL-01,TCGA-G9-6333-11,TCGA-EJ-A8FN-01,TCGA-XK-AAJA-01,TCGA-EJ-5531-01,TCGA-EJ-A6RC-01,TCGA-2A-A8W3-01,TCGA-EJ-A46B-01,TCGA-KK-A8IK-01,TCGA-XK-AAIR-01,TCGA-J9-A8CK-01,TCGA-EJ-8470-01,TCGA-KK-A7B4-01,TCGA-EJ-5499-01,TCGA-KK-A7AP-01,TCGA-EJ-7330-11,TCGA-CH-5764-01,TCGA-EJ-7789-01,TCGA-EJ-7789-11,TCGA-J4-AAU2-01,TCGA-XQ-A8TB-01,TCGA-VP-A87E-01,TCGA-EJ-7793-01,TCGA-YL-A9WI-01,TCGA-EJ-7321-01,TCGA-KK-A8I7-01,TCGA-ZG-A9L4-01,TCGA-CH-5789-01,TCGA-EJ-7785-11,TCGA-YL-A8HK-01,TCGA-G9-6329-01,TCGA-XQ-A8TA-01,TCGA-2A-AAYU-01,TCGA-HC-8261-01,TCGA-EJ-5503-01,TCGA-KK-A5A1-01,TCGA-EJ-8468-01,TCGA-EJ-7782-01,TCGA-HC-7212-01,TCGA-KK-A7AQ-01,TCGA-EJ-7791-01,TCGA-J4-A83K-01,TCGA-VN-A88Q-01,TCGA-EJ-5498-01,TCGA-ZG-A9LY-01,TCGA-VP-A876-01,TCGA-V1-A8MK-01,TCGA-YL-A8SF-01,TCGA-KK-A8I8-01,TCGA-EJ-7331-11,TCGA-HC-7740-11,TCGA-KK-A7AV-01,TCGA-YL-A8SI-01,TCGA-TK-A8OK-01,TCGA-EJ-5508-01,TCGA-VP-A879-01,TCGA-ZG-A9L1-01,TCGA-KK-A6E3-01,TCGA-G9-6342-01,TCGA-EJ-5515-01,TCGA-G9-6364-01,TCGA-G9-6332-01,TCGA-YL-A8SR-01,TCGA-EJ-7783-11,TCGA-KK-A6E5-01,TCGA-EJ-7783-01,TCGA-HC-7752-11,TCGA-J4-A83I-01,TCGA-KK-A8II-01,TCGA-CH-5743-01,TCGA-EJ-5509-01,TCGA-KK-A59V-01,TCGA-CH-5771-01,TCGA-J4-A83N-01,TCGA-EJ-8472-01,TCGA-EJ-A65E-01,TCGA-YL-A8HJ-01,TCGA-HC-7745-11,TCGA-XK-AAIW-01,TCGA-V1-A9Z7-01,TCGA-HC-8259-01,TCGA-VP-A87H-01,TCGA-J4-A67M-01,TCGA-HC-7819-11,TCGA-KK-A6E0-01,TCGA-HC-7738-01,TCGA-EJ-5517-01,TCGA-VP-A872-01,TCGA-VN-A88I-01,TCGA-KK-A7B2-01,TCGA-KC-A4BR-01,TCGA-YL-A9WK-01,TCGA-EJ-5514-01,TCGA-G9-7521-01,TCGA-V1-A8MF-01,TCGA-MG-AAMC-01,TCGA-VN-A88P-01,TCGA-HC-7736-01,TCGA-YL-A8SQ-01,TCGA-EJ-A65B-01,TCGA-VN-A88K-01,TCGA-EJ-A46H-01,TCGA-CH-5761-01,TCGA-J4-A83M-01,TCGA-EJ-A65F-01,TCGA-ZG-A9KY-01,TCGA-KK-A8IG-01,TCGA-CH-5738-01,TCGA-G9-A9S4-01,TCGA-J4-8198-01,TCGA-CH-5745-01,TCGA-EJ-7784-01,TCGA-V1-A9OH-01,TCGA-G9-6343-01,TCGA-EJ-7327-01,TCGA-G9-6362-11,TCGA-KK-A7B3-01,TCGA-EJ-7793-11,TCGA-G9-6363-01,TCGA-CH-5768-11,TCGA-G9-6365-11,TCGA-XK-AAJR-01,TCGA-M7-A722-01,TCGA-HC-7817-01,TCGA-KK-A6E2-01,TCGA-HC-8260-01,TCGA-G9-6367-01,TCGA-G9-6369-01,TCGA-G9-6338-01,TCGA-HC-8262-11,TCGA-XK-AAJU-01,TCGA-EJ-7786-01,TCGA-HC-7209-01,TCGA-CH-5792-01,TCGA-CH-5751-01,TCGA-HC-A4ZV-01,TCGA-J4-8200-01,TCGA-2A-AAYO-01,TCGA-HC-A632-01,TCGA-G9-6496-11,TCGA-EJ-5519-01,TCGA-YL-A8SK-01,TCGA-J4-AATV-01,TCGA-HI-7170-01,TCGA-CH-5752-01,TCGA-EJ-7312-01,TCGA-KK-A6DY-01,TCGA-G9-6384-01,TCGA-CH-5767-01,TCGA-YL-A9WL-01,TCGA-ZG-A9LB-01,TCGA-HC-7744-01,TCGA-H9-7775-01,TCGA-EJ-7794-11,TCGA-KC-A4BN-01,TCGA-KK-A7B1-01,TCGA-EJ-7123-01,TCGA-CH-5746-01,TCGA-V1-A8MJ-01,TCGA-J4-AATZ-01,TCGA-HC-A76X-01,TCGA-CH-5763-01,TCGA-G9-7523-01,TCGA-EJ-A7NM-01,TCGA-VP-A878-01,TCGA-EJ-7115-01,TCGA-EJ-5530-01,TCGA-EJ-A7NN-01,TCGA-EJ-A7NH-01,TCGA-CH-5762-01,TCGA-G9-6365-01,TCGA-CH-5741-01,TCGA-EJ-5512-01,TCGA-V1-A9OQ-01,TCGA-EJ-8474-01,TCGA-EJ-7328-01,TCGA-M7-A71Y-01,TCGA-CH-5740-01,TCGA-EJ-5521-01,TCGA-EJ-5494-01,TCGA-G9-6351-11,TCGA-G9-6342-11,TCGA-V1-A9OF-01,TCGA-HC-7747-01,TCGA-G9-6499-11,TCGA-HC-7820-01,TCGA-EJ-5525-01,TCGA-4L-AA1F-01,TCGA-EJ-7325-01,TCGA-KK-A8I5-01,TCGA-ZG-A9L5-01,TCGA-G9-7525-01,TCGA-XA-A8JR-01,TCGA-HC-8257-01,TCGA-KK-A8ID-01,TCGA-YL-A9WJ-01,TCGA-EJ-A6RA-01,TCGA-CH-5794-01,TCGA-FC-A6HD-01,TCGA-EJ-A7NG-01,TCGA-EJ-A65J-01,TCGA-J4-A67T-01,TCGA-V1-A8WV-01,TCGA-V1-A9Z9-01,TCGA-CH-5767-11,TCGA-V1-A9OL-01,TCGA-G9-7519-01,TCGA-ZG-A9MC-01,TCGA-VN-A943-01,TCGA-FC-A4JI-01,TCGA-HC-8264-01,TCGA-EJ-5507-01,TCGA-EJ-5495-01,TCGA-J9-A52D-01,TCGA-V1-A8MU-01,TCGA-EJ-5497-01,TCGA-G9-6378-01,TCGA-EJ-7797-01,TCGA-ZG-A9L6-01,TCGA-HC-A631-01,TCGA-V1-A8WS-01,TCGA-HC-A6AS-01,TCGA-J9-A8CP-01,TCGA-EJ-A8FO-11,TCGA-YL-A8HL-01,TCGA-EJ-A7NF-01,TCGA-EJ-7218-01,TCGA-HC-7740-01,TCGA-KK-A7AY-01,TCGA-CH-5790-01,TCGA-CH-5769-01,TCGA-WW-A8ZI-01,TCGA-G9-6347-01,TCGA-KK-A8IF-01,TCGA-2A-A8VX-01,TCGA-HC-7233-01,TCGA-Y6-A8TL-01,TCGA-XK-AAJP-01,TCGA-HC-7748-01,TCGA-XJ-A83H-01,TCGA-KC-A7FD-01,TCGA-FC-7961-01,TCGA-EJ-A8FP-01,TCGA-G9-A9S0-01,TCGA-V1-A9OT-01,TCGA-ZG-A9N3-01,TCGA-G9-6363-11,TCGA-VN-A88M-01,TCGA-CH-5750-01,TCGA-HC-7742-11,TCGA-ZG-A9LU-01,TCGA-J9-A8CL-01,TCGA-HC-A6AO-01,TCGA-VP-AA1N-01,TCGA-KK-A6E7-01,TCGA-KC-A7F6-01,TCGA-HC-7211-01,TCGA-KC-A4BV-01,TCGA-KK-A8IH-01,TCGA-2A-A8VV-01,TCGA-QU-A6IM-01,TCGA-XK-AAJT-01,TCGA-HC-7210-01,TCGA-ZG-A8QZ-01,TCGA-ZG-A9ND-01,TCGA-J4-A67O-01,TCGA-XK-AAJ3-01,TCGA-YL-A8SB-01,TCGA-HC-7738-11,TCGA-G9-6385-01,TCGA-YL-A8HM-01,TCGA-X4-A8KS-01,TCGA-EJ-7785-01,TCGA-HC-7752-01,TCGA-YL-A8SP-01,TCGA-EJ-5526-01,TCGA-EJ-7314-01,TCGA-J4-A67S-01,TCGA-YJ-A8SW-01,TCGA-V1-A9ZG-01,TCGA-FC-A8O0-01,TCGA-ZG-A9NI-01,TCGA-G9-7510-01,TCGA-EJ-5502-01,TCGA-YL-A8S8-01,TCGA-EJ-7327-11,TCGA-X4-A8KQ-01,TCGA-EJ-5516-01,TCGA-CH-5748-01,TCGA-HC-7078-01,TCGA-ZG-A8QX-01,TCGA-HC-7230-01,TCGA-EJ-5542-01,TCGA-KK-A8I9-01,TCGA-HC-8266-01,TCGA-G9-6370-01,TCGA-HC-7080-01,TCGA-G9-6353-01,TCGA-HC-8262-01,TCGA-G9-6333-01,TCGA-EJ-A46I-01,TCGA-EJ-AB20-01,TCGA-M7-A724-01,TCGA-CH-5768-01,TCGA-G9-6494-01,TCGA-CH-5788-01,TCGA-J4-A6M7-01,TCGA-EJ-A8FU-01,TCGA-M7-A721-01,TCGA-G9-6496-01,TCGA-TP-A8TV-01,TCGA-QU-A6IP-01,TCGA-J9-A8CN-01,TCGA-EJ-5524-01,TCGA-G9-6498-01,TCGA-HC-A8D0-01,TCGA-V1-A8WN-01,TCGA-EJ-7318-01,TCGA-HC-7750-01,TCGA-EJ-A65M-01,TCGA-ZG-A8QW-01,TCGA-CH-5754-01,TCGA-EJ-5522-01,TCGA-EJ-7792-11,TCGA-HC-8265-01,TCGA-EJ-5501-01,TCGA-YL-A8SJ-01,TCGA-ZG-A9L2-01,TCGA-YL-A8HO-01,TCGA-YL-A8SL-01,TCGA-EJ-A46G-01,TCGA-M7-A720-01,TCGA-HC-8259-11,TCGA-M7-A725-01,TCGA-CH-5753-01,TCGA-V1-A9O9-01,TCGA-EJ-7125-01,TCGA-G9-7522-01,TCGA-XK-AAK1-01,TCGA-G9-A9S7-01,TCGA-EJ-A8FS-01,TCGA-G9-6366-01,TCGA-KC-A7F3-01,TCGA-XJ-A9DI-01,TCGA-J4-A83J-11,TCGA-EJ-7784-11,TCGA-XJ-A9DK-01,TCGA-HC-8256-01,TCGA-KK-A59Z-01,TCGA-KK-A7AU-01,TCGA-G9-6356-11,TCGA-EJ-7331-01,TCGA-VP-A875-01,TCGA-ZG-A9M4-01,TCGA-V1-A8MM-01,TCGA-EJ-5532-01,TCGA-KK-A8IL-01,TCGA-ZG-A9LM-01,TCGA-V1-A8X3-01,TCGA-EJ-7317-11,TCGA-EJ-7115-11,TCGA-EJ-5518-01,TCGA-QU-A6IL-01,TCGA-2A-A8VT-01,TCGA-HC-7081-01,TCGA-YL-A8SC-01,TCGA-J4-A83J-01,TCGA-J4-A6G1-01,TCGA-HC-7231-01,TCGA-G9-6339-01,TCGA-HC-7232-01,TCGA-HC-A6HX-01,TCGA-XJ-A9DQ-01,TCGA-G9-6351-01,TCGA-EJ-5510-01,TCGA-VP-A87D-01,TCGA-QU-A6IO-01,TCGA-EJ-7792-01,TCGA-G9-6348-11,TCGA-KK-A8IJ-01,TCGA-G9-7509-01,TCGA-CH-5765-01,TCGA-KK-A6E1-01,TCGA-CH-5791-01,TCGA-V1-A9OX-01,TCGA-V1-A9O5-01,TCGA-HC-8216-01,TCGA-V1-A9OA-01,TCGA-KC-A4BL-01,TCGA-YL-A8SA-01,TCGA-CH-5761-11,TCGA-HC-7211-11,TCGA-ZG-A9L9-01,TCGA-HC-7077-01,TCGA-J4-A67R-01,TCGA-HC-7737-01,TCGA-VP-A87K-01,TCGA-J9-A52B-01,TCGA-V1-A8MG-01,TCGA-KK-A8IM-01,TCGA-CH-5769-11,TCGA-EJ-AB27-01,TCGA-EJ-5504-01,TCGA-G9-6377-01,TCGA-HC-7737-11,TCGA-HC-7742-01,TCGA-EJ-A7NK-01,TCGA-HC-7213-01,TCGA-KK-A7AZ-01,TCGA-EJ-7330-01,TCGA-KK-A8IC-01,TCGA-ZG-A9LN-01,TCGA-KK-A59Y-01,TCGA-HC-A76W-01,TCGA-KC-A7F5-01,TCGA-VN-A88L-01,TCGA-KK-A8IB-01,TCGA-HC-7818-01,TCGA-EJ-A46E-01,TCGA-HC-7745-01,TCGA-EJ-5506-01,TCGA-V1-A8WL-01,TCGA-KK-A8I6-01,TCGA-TP-A8TT-01,TCGA-G9-6499-01,TCGA-HC-A6AN-01,TCGA-VP-A87C-01,TCGA-EJ-5496-01,TCGA-KK-A6E6-01,TCGA-EJ-7781-01,TCGA-HI-7169-01,TCGA-J4-A67N-01,TCGA-EJ-7321-11,TCGA-HC-A48F-01,TCGA-G9-6371-01,TCGA-EJ-7794-01,TCGA-G9-6384-11,TCGA-YL-A9WH-01,TCGA-HC-7747-11,TCGA-V1-A9ZR-01,TCGA-EJ-7786-11,TCGA-ZG-A9LZ-01,TCGA-EJ-7315-11,TCGA-HC-A9TH-01,TCGA-V1-A9O7-01,TCGA-HC-A6HY-01,TCGA-CH-5739-01,TCGA-XK-AAIV-01,TCGA-J4-A6G3-01,TCGA-KC-A7FA-01,TCGA-HC-7749-01,TCGA-HC-8258-01,TCGA-EJ-7797-11,TCGA-HC-7079-01,TCGA-EJ-7123-11,TCGA-2A-A8VO-01,TCGA-M7-A71Z-01,TCGA-EJ-7788-01,TCGA-KK-A8I4-01,TCGA-XJ-A83G-01,TCGA-YL-A9WX-01,TCGA-J4-A67L-01,TCGA-2A-AAYF-01,TCGA-EJ-5505-01,TCGA-V1-A9ZK-01,TCGA-XJ-A9DX-01,TCGA-V1-A9OY-01,TCGA-VN-A88O-01,TCGA-EJ-A46F-01,TCGA-G9-6373-01,TCGA-VN-A88R-01,TCGA-G9-6379-01,TCGA-CH-5737-01,TCGA-VP-A87B-01,TCGA-HC-A8D1-01,TCGA-J4-A83L-01,TCGA-V1-A8WW-01,TCGA-EJ-A8FO-01,TCGA-QU-A6IN-01,TCGA-FC-7708-01,TCGA-YL-A8SH-01,TCGA-KC-A7FE-01,TCGA-V1-A8ML-01,TCGA-HC-A6AQ-01,TCGA-H9-A6BY-01,TCGA-EJ-7314-11,TCGA-KK-A6E8-01,TCGA-HC-A6AP-01,TCGA-EJ-7317-01,TCGA-YL-A8S9-01,TCGA-KK-A8IA-01,TCGA-G9-6356-01,TCGA-YL-A8SO-01,TCGA-J4-A67Q-01,TCGA-KK-A6E4-01,TCGA-KK-A7B0-01,TCGA-EJ-5511-01
p3/preprocess/Psoriasis/GSE183134.csv ADDED
The diff for this file is too large to render. See raw diff
 
p3/preprocess/Psoriasis/clinical_data/GSE123086.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ ,GSM3494884,GSM3494885,GSM3494886,GSM3494887,GSM3494888,GSM3494889,GSM3494890,GSM3494891,GSM3494892,GSM3494893,GSM3494894,GSM3494895,GSM3494896,GSM3494897,GSM3494898,GSM3494899,GSM3494900,GSM3494901,GSM3494902,GSM3494903,GSM3494904,GSM3494905,GSM3494906,GSM3494907,GSM3494908,GSM3494909,GSM3494910,GSM3494911,GSM3494912,GSM3494913,GSM3494914,GSM3494915,GSM3494916,GSM3494917,GSM3494918,GSM3494919,GSM3494920,GSM3494921,GSM3494922,GSM3494923,GSM3494924,GSM3494925,GSM3494926,GSM3494927,GSM3494928,GSM3494929,GSM3494930,GSM3494931,GSM3494932,GSM3494933,GSM3494934,GSM3494935,GSM3494936,GSM3494937,GSM3494938,GSM3494939,GSM3494940,GSM3494941,GSM3494942,GSM3494943,GSM3494944,GSM3494945,GSM3494946,GSM3494947,GSM3494948,GSM3494949,GSM3494950,GSM3494951,GSM3494952,GSM3494953,GSM3494954,GSM3494955,GSM3494956,GSM3494957,GSM3494958,GSM3494959,GSM3494960,GSM3494961,GSM3494962,GSM3494963,GSM3494964,GSM3494965,GSM3494966,GSM3494967,GSM3494968,GSM3494969,GSM3494970,GSM3494971,GSM3494972,GSM3494973,GSM3494974,GSM3494975,GSM3494976,GSM3494977,GSM3494978,GSM3494979,GSM3494980,GSM3494981,GSM3494982,GSM3494983,GSM3494984,GSM3494985,GSM3494986,GSM3494987,GSM3494988,GSM3494989,GSM3494990,GSM3494991,GSM3494992,GSM3494993,GSM3494994,GSM3494995,GSM3494996,GSM3494997,GSM3494998,GSM3494999,GSM3495000,GSM3495001,GSM3495002,GSM3495003,GSM3495004,GSM3495005,GSM3495006,GSM3495007,GSM3495008,GSM3495009,GSM3495010,GSM3495011,GSM3495012,GSM3495013,GSM3495014,GSM3495015,GSM3495016,GSM3495017,GSM3495018,GSM3495019,GSM3495020,GSM3495021,GSM3495022,GSM3495023,GSM3495024,GSM3495025,GSM3495026,GSM3495027,GSM3495028,GSM3495029,GSM3495030,GSM3495031,GSM3495032,GSM3495033,GSM3495034,GSM3495035,GSM3495036,GSM3495037,GSM3495038,GSM3495039,GSM3495040,GSM3495041,GSM3495042,GSM3495043,GSM3495044,GSM3495045,GSM3495046,GSM3495047,GSM3495048,GSM3495049
2
+ Psoriasis,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
3
+ Age,56.0,,20.0,51.0,37.0,61.0,,31.0,56.0,41.0,61.0,,80.0,53.0,61.0,73.0,60.0,76.0,77.0,74.0,69.0,77.0,81.0,70.0,82.0,69.0,82.0,67.0,67.0,78.0,67.0,74.0,,51.0,72.0,66.0,80.0,36.0,67.0,31.0,31.0,45.0,56.0,65.0,53.0,48.0,50.0,76.0,,24.0,42.0,76.0,22.0,,23.0,34.0,43.0,47.0,24.0,55.0,48.0,58.0,30.0,28.0,41.0,63.0,55.0,55.0,67.0,47.0,46.0,49.0,23.0,68.0,39.0,24.0,36.0,58.0,38.0,27.0,67.0,61.0,69.0,63.0,60.0,17.0,10.0,9.0,13.0,10.0,13.0,15.0,12.0,13.0,81.0,94.0,51.0,40.0,,97.0,23.0,93.0,58.0,28.0,54.0,15.0,8.0,11.0,12.0,8.0,14.0,8.0,10.0,14.0,13.0,40.0,52.0,42.0,29.0,43.0,41.0,54.0,42.0,49.0,45.0,56.0,64.0,71.0,48.0,20.0,53.0,32.0,26.0,28.0,47.0,24.0,48.0,,19.0,41.0,38.0,,15.0,12.0,13.0,,11.0,,16.0,11.0,,35.0,26.0,39.0,46.0,42.0,20.0,69.0,69.0,47.0,47.0,56.0,54.0,53.0,50.0,22.0
4
+ Gender,1.0,,0.0,0.0,1.0,1.0,,1.0,0.0,0.0,0.0,,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,,1.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,,0.0,0.0,1.0,1.0,,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,,1.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,,0.0,0.0,0.0,,0.0,1.0,0.0,,1.0,,1.0,1.0,,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0
p3/preprocess/Psoriasis/clinical_data/GSE123088.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ ,GSM3494884,GSM3494885,GSM3494886,GSM3494887,GSM3494888,GSM3494889,GSM3494890,GSM3494891,GSM3494892,GSM3494893,GSM3494894,GSM3494895,GSM3494896,GSM3494897,GSM3494898,GSM3494899,GSM3494900,GSM3494901,GSM3494902,GSM3494903,GSM3494904,GSM3494905,GSM3494906,GSM3494907,GSM3494908,GSM3494909,GSM3494910,GSM3494911,GSM3494912,GSM3494913,GSM3494914,GSM3494915,GSM3494916,GSM3494917,GSM3494918,GSM3494919,GSM3494920,GSM3494921,GSM3494922,GSM3494923,GSM3494924,GSM3494925,GSM3494926,GSM3494927,GSM3494928,GSM3494929,GSM3494930,GSM3494931,GSM3494932,GSM3494933,GSM3494934,GSM3494935,GSM3494936,GSM3494937,GSM3494938,GSM3494939,GSM3494940,GSM3494941,GSM3494942,GSM3494943,GSM3494944,GSM3494945,GSM3494946,GSM3494947,GSM3494948,GSM3494949,GSM3494950,GSM3494951,GSM3494952,GSM3494953,GSM3494954,GSM3494955,GSM3494956,GSM3494957,GSM3494958,GSM3494959,GSM3494960,GSM3494961,GSM3494962,GSM3494963,GSM3494964,GSM3494965,GSM3494966,GSM3494967,GSM3494968,GSM3494969,GSM3494970,GSM3494971,GSM3494972,GSM3494973,GSM3494974,GSM3494975,GSM3494976,GSM3494977,GSM3494978,GSM3494979,GSM3494980,GSM3494981,GSM3494982,GSM3494983,GSM3494984,GSM3494985,GSM3494986,GSM3494987,GSM3494988,GSM3494989,GSM3494990,GSM3494991,GSM3494992,GSM3494993,GSM3494994,GSM3494995,GSM3494996,GSM3494997,GSM3494998,GSM3494999,GSM3495000,GSM3495001,GSM3495002,GSM3495003,GSM3495004,GSM3495005,GSM3495006,GSM3495007,GSM3495008,GSM3495009,GSM3495010,GSM3495011,GSM3495012,GSM3495013,GSM3495014,GSM3495015,GSM3495016,GSM3495017,GSM3495018,GSM3495019,GSM3495020,GSM3495021,GSM3495022,GSM3495023,GSM3495024,GSM3495025,GSM3495026,GSM3495027,GSM3495028,GSM3495029,GSM3495030,GSM3495031,GSM3495032,GSM3495033,GSM3495034,GSM3495035,GSM3495036,GSM3495037,GSM3495038,GSM3495039,GSM3495040,GSM3495041,GSM3495042,GSM3495043,GSM3495044,GSM3495045,GSM3495046,GSM3495047,GSM3495048,GSM3495049,GSM3495050,GSM3495051,GSM3495052,GSM3495053,GSM3495054,GSM3495055,GSM3495056,GSM3495057,GSM3495058,GSM3495059,GSM3495060,GSM3495061,GSM3495062,GSM3495063,GSM3495064,GSM3495065,GSM3495066,GSM3495067,GSM3495068,GSM3495069,GSM3495070,GSM3495071,GSM3495072,GSM3495073,GSM3495074,GSM3495075,GSM3495076,GSM3495077,GSM3495078,GSM3495079,GSM3495080,GSM3495081,GSM3495082,GSM3495083,GSM3495084,GSM3495085,GSM3495086,GSM3495087
2
+ Psoriasis,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.0,0.0,,,0.0,,0.0,,,0.0,,0.0,0.0,,,0.0,,,,,,0.0,0.0,0.0,,,,,,0.0,,,,,0.0,0.0
3
+ Age,56.0,,20.0,51.0,37.0,61.0,,31.0,56.0,41.0,61.0,,80.0,53.0,61.0,73.0,60.0,76.0,77.0,74.0,69.0,77.0,81.0,70.0,82.0,69.0,82.0,67.0,67.0,78.0,67.0,74.0,,51.0,72.0,66.0,80.0,36.0,67.0,31.0,31.0,45.0,56.0,65.0,53.0,48.0,50.0,76.0,,24.0,42.0,76.0,22.0,,23.0,34.0,43.0,47.0,24.0,55.0,48.0,58.0,30.0,28.0,41.0,63.0,55.0,55.0,67.0,47.0,46.0,49.0,23.0,68.0,39.0,24.0,36.0,58.0,38.0,27.0,67.0,61.0,69.0,63.0,60.0,17.0,10.0,9.0,13.0,10.0,13.0,15.0,12.0,13.0,81.0,94.0,51.0,40.0,,97.0,23.0,93.0,58.0,28.0,54.0,15.0,8.0,11.0,12.0,8.0,14.0,8.0,10.0,14.0,13.0,40.0,52.0,42.0,29.0,43.0,41.0,54.0,42.0,49.0,45.0,56.0,64.0,71.0,48.0,20.0,53.0,32.0,26.0,28.0,47.0,24.0,48.0,,19.0,41.0,38.0,,15.0,12.0,13.0,,11.0,,16.0,11.0,,35.0,26.0,39.0,46.0,42.0,20.0,69.0,69.0,47.0,47.0,56.0,54.0,53.0,50.0,22.0,62.0,74.0,57.0,47.0,70.0,50.0,52.0,43.0,57.0,53.0,70.0,41.0,61.0,39.0,58.0,55.0,63.0,60.0,43.0,68.0,67.0,50.0,67.0,51.0,59.0,44.0,35.0,83.0,78.0,88.0,41.0,60.0,72.0,53.0,73.0,56.0,38.0,53.0
4
+ Gender,1.0,,0.0,0.0,1.0,1.0,,1.0,0.0,0.0,0.0,,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,,1.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,,0.0,0.0,1.0,1.0,,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,,1.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,,0.0,0.0,0.0,,0.0,1.0,0.0,,1.0,,1.0,1.0,,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
p3/preprocess/Psoriasis/clinical_data/GSE158448.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ,GSM4800737,GSM4800738,GSM4800739,GSM4800740,GSM4800741,GSM4800742,GSM4800743,GSM4800744,GSM4800745,GSM4800746,GSM4800747,GSM4800748,GSM4800749,GSM4800750,GSM4800751,GSM4800752,GSM4800753,GSM4800754,GSM4800755,GSM4800756,GSM4800757,GSM4800758,GSM4800759,GSM4800760,GSM4800761,GSM4800762,GSM4800763,GSM4800764,GSM4800765,GSM4800766,GSM4800767,GSM4800768,GSM4800769,GSM4800770,GSM4800771,GSM4800772,GSM4800773,GSM4800774,GSM4800775,GSM4800776,GSM4800777,GSM4800778,GSM4800779,GSM4800780,GSM4800781,GSM4800782,GSM4800783,GSM4800784,GSM4800785,GSM4800786,GSM4800787,GSM4800788,GSM4800789,GSM4800790,GSM4800791,GSM4800792,GSM4800793,GSM4800794,GSM4800795,GSM4800796
2
+ Psoriasis,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
p3/preprocess/Psoriasis/clinical_data/GSE162998.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ,GSM4969892,GSM4969893,GSM4969894,GSM4969895,GSM4969896,GSM4969897,GSM4969898,GSM4969899,GSM4969900,GSM4969901,GSM4969902,GSM4969903,GSM4969904,GSM4969905,GSM4969906,GSM4969907,GSM4969908,GSM4969909,GSM4969910,GSM4969911,GSM4969912,GSM4969913,GSM4969914,GSM4969915,GSM4969916,GSM4969917,GSM4969918,GSM4969919,GSM4969920,GSM4969921,GSM4969922,GSM4969923,GSM4969924,GSM4969925,GSM4969926,GSM4969927,GSM4969928,GSM4969929,GSM4969930,GSM4969931,GSM4969932,GSM4969933,GSM4969934,GSM4969935,GSM4969936,GSM4969937,GSM4969938,GSM4969939
2
+ Psoriasis,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0