Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +1 -0
- p3/preprocess/Hypertrophic_Cardiomyopathy/GSE36961.csv +3 -0
- p3/preprocess/Post-Traumatic_Stress_Disorder/clinical_data/GSE44456.csv +4 -0
- p3/preprocess/Post-Traumatic_Stress_Disorder/clinical_data/GSE63878.csv +2 -0
- p3/preprocess/Post-Traumatic_Stress_Disorder/clinical_data/GSE64814.csv +2 -0
- p3/preprocess/Post-Traumatic_Stress_Disorder/clinical_data/GSE67663.csv +4 -0
- p3/preprocess/Post-Traumatic_Stress_Disorder/clinical_data/GSE77164.csv +4 -0
- p3/preprocess/Post-Traumatic_Stress_Disorder/clinical_data/GSE81761.csv +4 -0
- p3/preprocess/Post-Traumatic_Stress_Disorder/code/GSE114852.py +157 -0
- p3/preprocess/Post-Traumatic_Stress_Disorder/code/GSE199841.py +170 -0
- p3/preprocess/Post-Traumatic_Stress_Disorder/code/GSE44456.py +168 -0
- p3/preprocess/Post-Traumatic_Stress_Disorder/code/GSE52875.py +60 -0
- p3/preprocess/Post-Traumatic_Stress_Disorder/code/GSE63878.py +149 -0
- p3/preprocess/Post-Traumatic_Stress_Disorder/code/GSE64814.py +158 -0
- p3/preprocess/Post-Traumatic_Stress_Disorder/code/GSE67663.py +184 -0
- p3/preprocess/Post-Traumatic_Stress_Disorder/code/GSE77164.py +156 -0
- p3/preprocess/Post-Traumatic_Stress_Disorder/code/GSE81761.py +174 -0
- p3/preprocess/Post-Traumatic_Stress_Disorder/code/TCGA.py +30 -0
- p3/preprocess/Post-Traumatic_Stress_Disorder/gene_data/GSE114852.csv +0 -0
- p3/preprocess/Post-Traumatic_Stress_Disorder/gene_data/GSE199841.csv +0 -0
- p3/preprocess/Prostate_Cancer/clinical_data/GSE125341.csv +2 -0
- p3/preprocess/Prostate_Cancer/clinical_data/GSE178631.csv +2 -0
- p3/preprocess/Prostate_Cancer/clinical_data/GSE200879.csv +2 -0
- p3/preprocess/Prostate_Cancer/clinical_data/GSE201805.csv +3 -0
- p3/preprocess/Prostate_Cancer/clinical_data/GSE206793.csv +3 -0
- p3/preprocess/Prostate_Cancer/clinical_data/GSE209954.csv +3 -0
- p3/preprocess/Prostate_Cancer/clinical_data/GSE248619.csv +2 -0
- p3/preprocess/Prostate_Cancer/clinical_data/TCGA.csv +567 -0
- p3/preprocess/Prostate_Cancer/code/GSE125341.py +194 -0
- p3/preprocess/Prostate_Cancer/code/GSE178631.py +154 -0
- p3/preprocess/Prostate_Cancer/code/GSE192817.py +156 -0
- p3/preprocess/Prostate_Cancer/code/GSE200879.py +202 -0
- p3/preprocess/Prostate_Cancer/code/GSE201805.py +192 -0
- p3/preprocess/Prostate_Cancer/code/GSE206793.py +86 -0
- p3/preprocess/Prostate_Cancer/code/GSE209954.py +206 -0
- p3/preprocess/Prostate_Cancer/code/GSE235003.py +148 -0
- p3/preprocess/Prostate_Cancer/code/GSE248619.py +197 -0
- p3/preprocess/Prostate_Cancer/code/GSE259218.py +67 -0
- p3/preprocess/Prostate_Cancer/code/TCGA.py +121 -0
- p3/preprocess/Prostate_Cancer/cohort_info.json +1 -0
- p3/preprocess/Prostate_Cancer/gene_data/GSE125341.csv +1 -0
- p3/preprocess/Prostate_Cancer/gene_data/GSE192817.csv +1 -0
- p3/preprocess/Prostate_Cancer/gene_data/GSE200879.csv +1 -0
- p3/preprocess/Prostate_Cancer/gene_data/GSE235003.csv +1 -0
- p3/preprocess/Prostate_Cancer/gene_data/TCGA.csv +1 -0
- p3/preprocess/Psoriasis/GSE183134.csv +0 -0
- p3/preprocess/Psoriasis/clinical_data/GSE123086.csv +4 -0
- p3/preprocess/Psoriasis/clinical_data/GSE123088.csv +4 -0
- p3/preprocess/Psoriasis/clinical_data/GSE158448.csv +2 -0
- p3/preprocess/Psoriasis/clinical_data/GSE162998.csv +2 -0
.gitattributes
CHANGED
@@ -1880,3 +1880,4 @@ p3/preprocess/Intellectual_Disability/GSE59630.csv filter=lfs diff=lfs merge=lfs
|
|
1880 |
p3/preprocess/Kidney_Papillary_Cell_Carcinoma/GSE42977.csv filter=lfs diff=lfs merge=lfs -text
|
1881 |
p3/preprocess/lower_grade_glioma_and_glioblastoma/gene_data/GSE35158.csv filter=lfs diff=lfs merge=lfs -text
|
1882 |
p3/preprocess/lower_grade_glioma_and_glioblastoma/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
|
|
|
|
1880 |
p3/preprocess/Kidney_Papillary_Cell_Carcinoma/GSE42977.csv filter=lfs diff=lfs merge=lfs -text
|
1881 |
p3/preprocess/lower_grade_glioma_and_glioblastoma/gene_data/GSE35158.csv filter=lfs diff=lfs merge=lfs -text
|
1882 |
p3/preprocess/lower_grade_glioma_and_glioblastoma/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
|
1883 |
+
p3/preprocess/Hypertrophic_Cardiomyopathy/GSE36961.csv filter=lfs diff=lfs merge=lfs -text
|
p3/preprocess/Hypertrophic_Cardiomyopathy/GSE36961.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5c3647115f031e7db8d92f6c5d91ac94cbc78d0c60154dd8d8be34015c2f3eb8
|
3 |
+
size 31701924
|
p3/preprocess/Post-Traumatic_Stress_Disorder/clinical_data/GSE44456.csv
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
,GSM1085665,GSM1085666,GSM1085667,GSM1085668,GSM1085669,GSM1085670,GSM1085671,GSM1085672,GSM1085673,GSM1085674,GSM1085675,GSM1085676,GSM1085677,GSM1085678,GSM1085679,GSM1085680,GSM1085681,GSM1085682,GSM1085683,GSM1085684,GSM1085685,GSM1085686,GSM1085687,GSM1085688,GSM1085689,GSM1085690,GSM1085691,GSM1085692,GSM1085693,GSM1085694,GSM1085695,GSM1085696,GSM1085697,GSM1085698,GSM1085699,GSM1085700,GSM1085701,GSM1085702,GSM1085703
|
2 |
+
Post-Traumatic_Stress_Disorder,0.0,1.0,0.0,1.0,0.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0
|
3 |
+
Age,68.0,51.0,50.0,50.0,56.0,59.0,37.0,58.0,60.0,81.0,50.0,82.0,67.0,51.0,56.0,67.0,58.0,70.0,56.0,61.0,59.0,48.0,53.0,44.0,62.0,56.0,42.0,69.0,57.0,71.0,75.0,78.0,58.0,49.0,49.0,57.0,52.0,52.0,60.0
|
4 |
+
Gender,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0
|
p3/preprocess/Post-Traumatic_Stress_Disorder/clinical_data/GSE63878.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,GSM1558775,GSM1558776,GSM1558777,GSM1558778,GSM1558779,GSM1558780,GSM1558781,GSM1558782,GSM1558783,GSM1558784,GSM1558785,GSM1558786,GSM1558787,GSM1558788,GSM1558789,GSM1558790,GSM1558791,GSM1558792,GSM1558793,GSM1558794,GSM1558795,GSM1558796,GSM1558797,GSM1558798,GSM1558799,GSM1558800,GSM1558801,GSM1558802,GSM1558803,GSM1558804,GSM1558805,GSM1558806,GSM1558807,GSM1558808,GSM1558809,GSM1558810,GSM1558811,GSM1558812,GSM1558813,GSM1558814,GSM1558815,GSM1558816,GSM1558817,GSM1558818,GSM1558819,GSM1558820,GSM1558821,GSM1558822,GSM1558823,GSM1558824,GSM1558825,GSM1558826,GSM1558827,GSM1558828,GSM1558829,GSM1558830,GSM1558831,GSM1558832,GSM1558833,GSM1558834,GSM1558835,GSM1558836,GSM1558837,GSM1558838,GSM1558839,GSM1558840,GSM1558841,GSM1558842,GSM1558843,GSM1558844,GSM1558845,GSM1558846,GSM1558847,GSM1558848,GSM1558849,GSM1558850,GSM1558851,GSM1558852,GSM1558853,GSM1558854,GSM1558855,GSM1558856,GSM1558857,GSM1558858,GSM1558859,GSM1558860,GSM1558861,GSM1558862,GSM1558863,GSM1558864,GSM1558865,GSM1558866,GSM1558867,GSM1558868,GSM1558869,GSM1558870
|
2 |
+
Post-Traumatic_Stress_Disorder,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
|
p3/preprocess/Post-Traumatic_Stress_Disorder/clinical_data/GSE64814.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,GSM1558775,GSM1558776,GSM1558777,GSM1558778,GSM1558779,GSM1558780,GSM1558781,GSM1558782,GSM1558783,GSM1558784,GSM1558785,GSM1558786,GSM1558787,GSM1558788,GSM1558789,GSM1558790,GSM1558791,GSM1558792,GSM1558793,GSM1558794,GSM1558795,GSM1558796,GSM1558797,GSM1558798,GSM1558799,GSM1558800,GSM1558801,GSM1558802,GSM1558803,GSM1558804,GSM1558805,GSM1558806,GSM1558807,GSM1558808,GSM1558809,GSM1558810,GSM1558811,GSM1558812,GSM1558813,GSM1558814,GSM1558815,GSM1558816,GSM1558817,GSM1558818,GSM1558819,GSM1558820,GSM1558821,GSM1558822,GSM1558823,GSM1558824,GSM1558825,GSM1558826,GSM1558827,GSM1558828,GSM1558829,GSM1558830,GSM1558831,GSM1558832,GSM1558833,GSM1558834,GSM1558835,GSM1558836,GSM1558837,GSM1558838,GSM1558839,GSM1558840,GSM1558841,GSM1558842,GSM1558843,GSM1558844,GSM1558845,GSM1558846,GSM1558847,GSM1558848,GSM1558849,GSM1558850,GSM1558851,GSM1558852,GSM1558853,GSM1558854,GSM1558855,GSM1558856,GSM1558857,GSM1558858,GSM1558859,GSM1558860,GSM1558861,GSM1558862,GSM1558863,GSM1558864,GSM1558865,GSM1558866,GSM1558867,GSM1558868,GSM1558869,GSM1558870
|
2 |
+
Post-Traumatic_Stress_Disorder,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
|
p3/preprocess/Post-Traumatic_Stress_Disorder/clinical_data/GSE67663.csv
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
,GSM1652966,GSM1652967,GSM1652968,GSM1652969,GSM1652970,GSM1652971,GSM1652972,GSM1652973,GSM1652974,GSM1652975,GSM1652976,GSM1652977,GSM1652978,GSM1652979,GSM1652980,GSM1652981,GSM1652982,GSM1652983,GSM1652984,GSM1652985,GSM1652986,GSM1652987,GSM1652988,GSM1652989,GSM1652990,GSM1652991,GSM1652992,GSM1652993,GSM1652994,GSM1652995,GSM1652996,GSM1652997,GSM1652998,GSM1652999,GSM1653000,GSM1653001,GSM1653002,GSM1653003,GSM1653004,GSM1653005,GSM1653006,GSM1653007,GSM1653008,GSM1653009,GSM1653010,GSM1653011,GSM1653012,GSM1653013,GSM1653014,GSM1653015,GSM1653016,GSM1653017,GSM1653018,GSM1653019,GSM1653020,GSM1653021,GSM1653022,GSM1653023,GSM1653024,GSM1653025,GSM1653026,GSM1653027,GSM1653028,GSM1653029,GSM1653030,GSM1653031,GSM1653032,GSM1653033,GSM1653034,GSM1653035,GSM1653036,GSM1653037,GSM1653038,GSM1653039,GSM1653040,GSM1653041,GSM1653042,GSM1653043,GSM1653044,GSM1653045,GSM1653046,GSM1653047,GSM1653048,GSM1653049,GSM1653050,GSM1653051,GSM1653052,GSM1653053,GSM1653054,GSM1653055,GSM1653056,GSM1653057,GSM1653058,GSM1653059,GSM1653060,GSM1653061,GSM1653062,GSM1653063,GSM1653064,GSM1653065,GSM1653066,GSM1653067,GSM1653068,GSM1653069,GSM1653070,GSM1653071,GSM1653072,GSM1653073,GSM1653074,GSM1653075,GSM1653076,GSM1653077,GSM1653078,GSM1653079,GSM1653080,GSM1653081,GSM1653082,GSM1653083,GSM1653084,GSM1653085,GSM1653086,GSM1653087,GSM1653088,GSM1653089,GSM1653090,GSM1653091,GSM1653092,GSM1653093,GSM1653094,GSM1653095,GSM1653096,GSM1653097,GSM1653098,GSM1653099,GSM1653100,GSM1653101,GSM1653102,GSM1653103,GSM1653104,GSM1653105,GSM1653106,GSM1653107,GSM1653108,GSM1653109,GSM1653110,GSM1653111,GSM1653112,GSM1653113,GSM1653114,GSM1653115,GSM1653116,GSM1653117,GSM1653118,GSM1653119,GSM1653120,GSM1653121,GSM1653122,GSM1653123,GSM1653124,GSM1653125,GSM1653126,GSM1653127,GSM1653128,GSM1653129,GSM1653130,GSM1653131,GSM1653132,GSM1653133,GSM1653134,GSM1653135,GSM1653136,GSM1653137,GSM1653138,GSM1653139,GSM1653140,GSM1653141,GSM1653142,GSM1653143,GSM1653144,GSM1653145,GSM1653146,GSM1653147,GSM1653148,GSM1653149
|
2 |
+
Post-Traumatic_Stress_Disorder,1.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0
|
3 |
+
Age,44.0,74.0,47.0,38.0,37.0,48.0,52.0,56.0,21.0,20.0,54.0,55.0,56.0,54.0,47.0,36.0,56.0,44.0,31.0,39.0,40.0,57.0,39.0,47.0,39.0,45.0,50.0,24.0,50.0,45.0,30.0,39.0,47.0,26.0,20.0,52.0,43.0,50.0,34.0,50.0,49.0,19.0,18.0,60.0,45.0,27.0,29.0,18.0,57.0,46.0,59.0,52.0,46.0,53.0,50.0,21.0,57.0,37.0,38.0,32.0,51.0,24.0,56.0,49.0,61.0,63.0,45.0,30.0,43.0,50.0,59.0,36.0,48.0,54.0,20.0,44.0,46.0,25.0,52.0,30.0,25.0,51.0,40.0,18.0,53.0,20.0,34.0,25.0,46.0,38.0,58.0,65.0,29.0,34.0,34.0,59.0,52.0,19.0,64.0,30.0,33.0,39.0,22.0,45.0,49.0,24.0,29.0,20.0,53.0,22.0,54.0,47.0,33.0,45.0,48.0,59.0,45.0,54.0,33.0,49.0,43.0,21.0,62.0,50.0,51.0,55.0,32.0,49.0,42.0,21.0,54.0,51.0,50.0,52.0,53.0,31.0,26.0,44.0,41.0,26.0,56.0,58.0,32.0,25.0,57.0,48.0,47.0,21.0,28.0,41.0,41.0,38.0,27.0,50.0,41.0,47.0,44.0,51.0,28.0,36.0,50.0,64.0,50.0,34.0,54.0,43.0,49.0,56.0,38.0,47.0,51.0,53.0,56.0,35.0,57.0,43.0,41.0,37.0,28.0,50.0,52.0,62.0,27.0,24.0
|
4 |
+
Gender,0.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0
|
p3/preprocess/Post-Traumatic_Stress_Disorder/clinical_data/GSE77164.csv
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
,GSM2045182,GSM2045183,GSM2045184,GSM2045185,GSM2045186,GSM2045187,GSM2045188,GSM2045189,GSM2045190,GSM2045191,GSM2045192,GSM2045193,GSM2045194,GSM2045195,GSM2045196,GSM2045197,GSM2045198,GSM2045199,GSM2045200,GSM2045201,GSM2045202,GSM2045203,GSM2045204,GSM2045205,GSM2045206,GSM2045207,GSM2045208,GSM2045209,GSM2045210,GSM2045211,GSM2045212,GSM2045213,GSM2045214,GSM2045215,GSM2045216,GSM2045217,GSM2045218,GSM2045219,GSM2045220,GSM2045221,GSM2045222,GSM2045223,GSM2045224,GSM2045225,GSM2045226,GSM2045227,GSM2045228,GSM2045229,GSM2045230,GSM2045231,GSM2045232,GSM2045233,GSM2045234,GSM2045235,GSM2045236,GSM2045237,GSM2045238,GSM2045239,GSM2045240,GSM2045241,GSM2045242,GSM2045243,GSM2045244,GSM2045245,GSM2045246,GSM2045247,GSM2045248,GSM2045249,GSM2045250,GSM2045251,GSM2045252,GSM2045253,GSM2045254,GSM2045255,GSM2045256,GSM2045257,GSM2045258,GSM2045259,GSM2045260,GSM2045261,GSM2045262,GSM2045263,GSM2045264,GSM2045265,GSM2045266,GSM2045267,GSM2045268,GSM2045269,GSM2045270,GSM2045271,GSM2045272,GSM2045273,GSM2045274,GSM2045275,GSM2045276,GSM2045277,GSM2045278,GSM2045279,GSM2045280,GSM2045281,GSM2045282,GSM2045283,GSM2045284,GSM2045285,GSM2045286,GSM2045287,GSM2045288,GSM2045289,GSM2045290,GSM2045291,GSM2045292,GSM2045293,GSM2045294,GSM2045295,GSM2045296,GSM2045297,GSM2045298,GSM2045299,GSM2045300,GSM2045301,GSM2045302,GSM2045303,GSM2045304,GSM2045305,GSM2045306,GSM2045307,GSM2045308,GSM2045309,GSM2045310,GSM2045311,GSM2045312,GSM2045313,GSM2045314,GSM2045315,GSM2045316,GSM2045317,GSM2045318,GSM2045319,GSM2045320,GSM2045321,GSM2045322,GSM2045323,GSM2045324,GSM2045325,GSM2045326,GSM2045327,GSM2045328,GSM2045329,GSM2045330,GSM2045331,GSM2045332,GSM2045333,GSM2045334,GSM2045335,GSM2045336,GSM2045337,GSM2045338,GSM2045339,GSM2045340,GSM2045341,GSM2045342,GSM2045343,GSM2045344,GSM2045345,GSM2045346,GSM2045347,GSM2045348,GSM2045349,GSM2045350,GSM2045351,GSM2045352,GSM2045353,GSM2045354,GSM2045355,GSM2045356,GSM2045357,GSM2045358,GSM2045359,GSM2045360,GSM2045361,GSM2045362,GSM2045363,GSM2045364,GSM2045365,GSM2045366,GSM2045367,GSM2045368,GSM2045369,GSM2045370,GSM2045371,GSM2045372,GSM2045373,GSM2045374,GSM2045375,GSM2045376,GSM2045377,GSM2045378,GSM2045379,GSM2045380,GSM2045381,GSM2045382,GSM2045383,GSM2045384,GSM2045385,GSM2045386,GSM2045387,GSM2045388,GSM2045389,GSM2045390,GSM2045391,GSM2045392,GSM2045393,GSM2045394,GSM2045395,GSM2045396,GSM2045397,GSM2045398,GSM2045399,GSM2045400,GSM2045401,GSM2045402,GSM2045403,GSM2045404,GSM2045405,GSM2045406,GSM2045407,GSM2045408,GSM2045409,GSM2045410,GSM2045411,GSM2045412,GSM2045413,GSM2045414,GSM2045415,GSM2045416,GSM2045417,GSM2045418,GSM2045419,GSM2045420,GSM2045421,GSM2045422,GSM2045423,GSM2045424,GSM2045425,GSM2045426,GSM2045427,GSM2045428,GSM2045429,GSM2045430,GSM2045431,GSM2045432,GSM2045433,GSM2045434,GSM2045435
|
2 |
+
Post-Traumatic_Stress_Disorder,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
|
3 |
+
Age,19.0,22.0,20.0,18.0,22.0,23.0,21.0,22.0,19.0,22.0,20.0,18.0,20.0,21.0,21.0,21.0,18.0,22.0,23.0,22.0,17.0,19.0,18.0,19.0,19.0,21.0,20.0,21.0,20.0,21.0,19.0,17.0,19.0,20.0,21.0,20.0,19.0,16.0,18.0,20.0,21.0,19.0,19.0,23.0,21.0,20.0,20.0,21.0,21.0,22.0,21.0,19.0,21.0,21.0,19.0,19.0,22.0,20.0,19.0,15.0,24.0,17.0,22.0,19.0,20.0,22.0,22.0,22.0,22.0,18.0,23.0,18.0,17.0,20.0,18.0,22.0,20.0,20.0,19.0,18.0,20.0,17.0,20.0,19.0,20.0,23.0,19.0,21.0,22.0,19.0,19.0,20.0,19.0,21.0,22.0,20.0,22.0,20.0,20.0,21.0,19.0,22.0,20.0,20.0,17.0,21.0,21.0,22.0,20.0,23.0,22.0,20.0,19.0,23.0,22.0,22.0,22.0,19.0,20.0,20.0,20.0,22.0,21.0,17.0,20.0,20.0,18.0,20.0,20.0,20.0,24.0,20.0,21.0,18.0,21.0,20.0,19.0,19.0,23.0,18.0,20.0,20.0,20.0,18.0,21.0,20.0,20.0,22.0,22.0,20.0,21.0,22.0,19.0,19.0,21.0,19.0,21.0,22.0,19.0,18.0,19.0,22.0,21.0,21.0,18.0,21.0,19.0,21.0,21.0,21.0,20.0,20.0,19.0,21.0,22.0,21.0,22.0,21.0,21.0,20.0,20.0,19.0,21.0,16.0,21.0,17.0,21.0,21.0,21.0,20.0,22.0,17.0,19.0,19.0,17.0,16.0,18.0,20.0,19.0,22.0,23.0,18.0,22.0,19.0,22.0,20.0,21.0,17.0,22.0,26.0,20.0,19.0,18.0,19.0,19.0,18.0,17.0,23.0,21.0,21.0,20.0,19.0,22.0,22.0,22.0,19.0,22.0,19.0,20.0,21.0,20.0,24.0,22.0,22.0,21.0,23.0,19.0,19.0,21.0,19.0,21.0,22.0,22.0,15.0,19.0,20.0,22.0,20.0,18.0,20.0,22.0,23.0,22.0,22.0
|
4 |
+
Gender,0.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0
|
p3/preprocess/Post-Traumatic_Stress_Disorder/clinical_data/GSE81761.csv
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
,GSM2175165,GSM2175166,GSM2175167,GSM2175168,GSM2175169,GSM2175170,GSM2175171,GSM2175172,GSM2175173,GSM2175174,GSM2175175,GSM2175176,GSM2175177,GSM2175178,GSM2175179,GSM2175180,GSM2175181,GSM2175182,GSM2175183,GSM2175184,GSM2175185,GSM2175186,GSM2175187,GSM2175188,GSM2175189,GSM2175190,GSM2175191,GSM2175192,GSM2175193,GSM2175194,GSM2175195,GSM2175196,GSM2175197,GSM2175198,GSM2175199,GSM2175200,GSM2175201,GSM2175202,GSM2175203,GSM2175204,GSM2175205,GSM2175206,GSM2175207,GSM2175208,GSM2175209,GSM2175210,GSM2175211,GSM2175212,GSM2175213,GSM2175214,GSM2175215,GSM2175216,GSM2175217,GSM2175218,GSM2175219,GSM2175220,GSM2175221,GSM2175222,GSM2175223,GSM2175224,GSM2175225,GSM2175226,GSM2175227,GSM2175228,GSM2175229,GSM2175230,GSM2175231,GSM2175232,GSM2175233,GSM2175234,GSM2175235,GSM2175236,GSM2175237,GSM2175238,GSM2175239,GSM2175240,GSM2175241,GSM2175242,GSM2175243,GSM2175244,GSM2175245,GSM2175246,GSM2175247,GSM2175248,GSM2175249,GSM2175250,GSM2175251,GSM2175252,GSM2175253,GSM2175254,GSM2175255,GSM2175256,GSM2175257,GSM2175258,GSM2175259,GSM2175260,GSM2175261,GSM2175262,GSM2175263,GSM2175264,GSM2175265,GSM2175266,GSM2175267,GSM2175268,GSM2175269,GSM2175270,GSM2175271,GSM2175272,GSM2175273
|
2 |
+
Post-Traumatic_Stress_Disorder,1.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
|
3 |
+
Age,30.0,38.0,39.0,38.0,23.0,48.0,49.0,34.0,33.0,45.0,25.0,25.0,30.0,39.0,23.0,22.0,46.0,35.0,22.0,23.0,48.0,23.0,49.0,38.0,25.0,33.0,30.0,36.0,43.0,34.0,22.0,26.0,46.0,39.0,27.0,23.0,28.0,22.0,29.0,41.0,25.0,39.0,38.0,25.0,46.0,35.0,44.0,34.0,23.0,46.0,43.0,26.0,34.0,31.0,30.0,36.0,23.0,25.0,28.0,27.0,39.0,26.0,38.0,25.0,31.0,39.0,29.0,34.0,23.0,42.0,44.0,46.0,21.0,35.0,44.0,34.0,28.0,37.0,23.0,26.0,28.0,52.0,31.0,36.0,41.0,21.0,42.0,30.0,24.0,41.0,35.0,44.0,26.0,27.0,37.0,52.0,36.0,41.0,24.0,26.0,27.0,26.0,37.0,22.0,32.0,45.0,23.0,35.0,27.0
|
4 |
+
Gender,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
|
p3/preprocess/Post-Traumatic_Stress_Disorder/code/GSE114852.py
ADDED
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Post-Traumatic_Stress_Disorder"
|
6 |
+
cohort = "GSE114852"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Post-Traumatic_Stress_Disorder"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Post-Traumatic_Stress_Disorder/GSE114852"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/GSE114852.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/gene_data/GSE114852.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/clinical_data/GSE114852.csv"
|
16 |
+
json_path = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Get background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
|
23 |
+
print("Background Information:")
|
24 |
+
print(background_info)
|
25 |
+
print("\nSample Characteristics:")
|
26 |
+
|
27 |
+
# Get dictionary of unique values per row
|
28 |
+
unique_values_dict = get_unique_values_by_row(clinical_data)
|
29 |
+
for row, values in unique_values_dict.items():
|
30 |
+
print(f"\n{row}:")
|
31 |
+
print(values)
|
32 |
+
# 1. Gene Expression Data Availability
|
33 |
+
# Series title contains "Gene expression" and Series description discusses transcriptome analysis, so this contains gene data
|
34 |
+
is_gene_available = True
|
35 |
+
|
36 |
+
# 2. Variable Availability and Data Type Conversion
|
37 |
+
# 2.1 Data Availability
|
38 |
+
trait_row = 1 # "maternal diagnosis" row contains PTSD status
|
39 |
+
gender_row = 2 # "neonate gender" row contains gender
|
40 |
+
age_row = None # Age not available in sample characteristics
|
41 |
+
|
42 |
+
# 2.2 Data Type Conversion Functions
|
43 |
+
def convert_trait(value: str) -> Optional[int]:
|
44 |
+
"""Convert PTSD diagnosis to binary: 1 for PTSD/PTSDDep, 0 for controls"""
|
45 |
+
if not value or ':' not in value:
|
46 |
+
return None
|
47 |
+
value = value.split(':')[1].strip()
|
48 |
+
if value in ['PTSD', 'PTSDDep']:
|
49 |
+
return 1
|
50 |
+
elif value in ['Control', 'ControlTE']:
|
51 |
+
return 0
|
52 |
+
return None
|
53 |
+
|
54 |
+
def convert_gender(value: str) -> Optional[int]:
|
55 |
+
"""Convert gender to binary: 0 for Female, 1 for Male"""
|
56 |
+
if not value or ':' not in value:
|
57 |
+
return None
|
58 |
+
value = value.split(':')[1].strip()
|
59 |
+
if value == 'Female':
|
60 |
+
return 0
|
61 |
+
elif value == 'Male':
|
62 |
+
return 1
|
63 |
+
return None
|
64 |
+
|
65 |
+
def convert_age(value: str) -> Optional[float]:
|
66 |
+
"""Not used since age data is unavailable"""
|
67 |
+
return None
|
68 |
+
|
69 |
+
# 3. Save Metadata
|
70 |
+
is_trait_available = trait_row is not None
|
71 |
+
validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path,
|
72 |
+
is_gene_available=is_gene_available,
|
73 |
+
is_trait_available=is_trait_available)
|
74 |
+
|
75 |
+
# 4. Clinical Feature Extraction
|
76 |
+
# Since trait_row is not None, we need to extract clinical features
|
77 |
+
clinical_df = geo_select_clinical_features(clinical_data, trait, trait_row, convert_trait,
|
78 |
+
gender_row=gender_row, convert_gender=convert_gender)
|
79 |
+
|
80 |
+
# Preview the processed clinical data
|
81 |
+
print("Preview of clinical data:")
|
82 |
+
print(preview_df(clinical_df))
|
83 |
+
|
84 |
+
# Save clinical data
|
85 |
+
clinical_df.to_csv(out_clinical_data_file)
|
86 |
+
# Get gene expression data from matrix file
|
87 |
+
genetic_data = get_genetic_data(matrix_file_path)
|
88 |
+
|
89 |
+
# Examine data structure
|
90 |
+
print("Data structure and head:")
|
91 |
+
print(genetic_data.head())
|
92 |
+
|
93 |
+
print("\nShape:", genetic_data.shape)
|
94 |
+
|
95 |
+
print("\nFirst 20 row IDs (gene/probe identifiers):")
|
96 |
+
print(list(genetic_data.index)[:20])
|
97 |
+
|
98 |
+
# Get a few column names to verify sample IDs
|
99 |
+
print("\nFirst 5 column names:")
|
100 |
+
print(list(genetic_data.columns)[:5])
|
101 |
+
# The identifiers are in ILMN format (Illumina probe IDs), not gene symbols
|
102 |
+
requires_gene_mapping = True
|
103 |
+
# Extract gene annotation data
|
104 |
+
gene_annotation = get_gene_annotation(soft_file_path)
|
105 |
+
|
106 |
+
# Display column names and preview data
|
107 |
+
print("Column names:")
|
108 |
+
print(gene_annotation.columns)
|
109 |
+
|
110 |
+
print("\nPreview of gene annotation data:")
|
111 |
+
print(preview_df(gene_annotation))
|
112 |
+
# Get probe-to-gene mapping dataframe using ID and Symbol columns
|
113 |
+
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')
|
114 |
+
|
115 |
+
# Convert probe-level measurements to gene expression data
|
116 |
+
gene_data = apply_gene_mapping(genetic_data, mapping_df)
|
117 |
+
|
118 |
+
# Normalize gene symbols using NCBI Gene synonym information
|
119 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
120 |
+
|
121 |
+
# Verify data structure
|
122 |
+
print("Gene data shape:", gene_data.shape)
|
123 |
+
print("\nFirst 5 genes and their expression values:")
|
124 |
+
print(gene_data.head())
|
125 |
+
# Reload clinical data that was processed earlier
|
126 |
+
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
|
127 |
+
|
128 |
+
# 1. Normalize gene symbols
|
129 |
+
genetic_data = normalize_gene_symbols_in_index(gene_data)
|
130 |
+
genetic_data.to_csv(out_gene_data_file)
|
131 |
+
|
132 |
+
# 2. Link clinical and genetic data
|
133 |
+
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
|
134 |
+
|
135 |
+
# 3. Handle missing values systematically
|
136 |
+
linked_data = handle_missing_values(linked_data, trait)
|
137 |
+
|
138 |
+
# 4. Check for bias in trait and demographic features
|
139 |
+
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
140 |
+
|
141 |
+
# 5. Final validation and information saving
|
142 |
+
note = "Dataset contains subcutaneous adipose tissue gene expression data from PCOS patients and controls. The gender feature is biased (all female) and was removed."
|
143 |
+
is_usable = validate_and_save_cohort_info(
|
144 |
+
is_final=True,
|
145 |
+
cohort=cohort,
|
146 |
+
info_path=json_path,
|
147 |
+
is_gene_available=True,
|
148 |
+
is_trait_available=True,
|
149 |
+
is_biased=trait_biased,
|
150 |
+
df=linked_data,
|
151 |
+
note=note
|
152 |
+
)
|
153 |
+
|
154 |
+
# 6. Save linked data only if usable
|
155 |
+
if is_usable:
|
156 |
+
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
|
157 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Post-Traumatic_Stress_Disorder/code/GSE199841.py
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Post-Traumatic_Stress_Disorder"
|
6 |
+
cohort = "GSE199841"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Post-Traumatic_Stress_Disorder"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Post-Traumatic_Stress_Disorder/GSE199841"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/GSE199841.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/gene_data/GSE199841.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/clinical_data/GSE199841.csv"
|
16 |
+
json_path = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Get background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
|
23 |
+
print("Background Information:")
|
24 |
+
print(background_info)
|
25 |
+
print("\nSample Characteristics:")
|
26 |
+
|
27 |
+
# Get dictionary of unique values per row
|
28 |
+
unique_values_dict = get_unique_values_by_row(clinical_data)
|
29 |
+
for row, values in unique_values_dict.items():
|
30 |
+
print(f"\n{row}:")
|
31 |
+
print(values)
|
32 |
+
# 1. Gene Expression Data Availability
|
33 |
+
# Based on the background info, this is a gene expression microarray study
|
34 |
+
is_gene_available = True
|
35 |
+
|
36 |
+
# 2. Data Availability and Type Conversion
|
37 |
+
trait_row = 2 # diagnostic group row
|
38 |
+
age_row = 1 # age row
|
39 |
+
gender_row = 0 # gender row, though it's constant
|
40 |
+
|
41 |
+
# Trait conversion function - binary
|
42 |
+
def convert_trait(x):
|
43 |
+
if not x or ':' not in x:
|
44 |
+
return None
|
45 |
+
value = x.split(':')[1].strip().lower()
|
46 |
+
if 'ptsd' in value:
|
47 |
+
return 1
|
48 |
+
elif 'control' in value:
|
49 |
+
return 0
|
50 |
+
return None
|
51 |
+
|
52 |
+
# Age conversion function - continuous
|
53 |
+
def convert_age(x):
|
54 |
+
if not x or ':' not in x:
|
55 |
+
return None
|
56 |
+
try:
|
57 |
+
return float(x.split(':')[1].strip())
|
58 |
+
except:
|
59 |
+
return None
|
60 |
+
|
61 |
+
# Gender conversion function - binary
|
62 |
+
def convert_gender(x):
|
63 |
+
if not x or ':' not in x:
|
64 |
+
return None
|
65 |
+
value = x.split(':')[1].strip().lower()
|
66 |
+
if 'female' in value:
|
67 |
+
return 0
|
68 |
+
elif 'male' in value:
|
69 |
+
return 1
|
70 |
+
return None
|
71 |
+
|
72 |
+
# 3. Save initial metadata
|
73 |
+
is_trait_available = trait_row is not None
|
74 |
+
_ = validate_and_save_cohort_info(
|
75 |
+
is_final=False,
|
76 |
+
cohort=cohort,
|
77 |
+
info_path=json_path,
|
78 |
+
is_gene_available=is_gene_available,
|
79 |
+
is_trait_available=is_trait_available
|
80 |
+
)
|
81 |
+
|
82 |
+
# 4. Extract clinical features since trait_row is not None
|
83 |
+
selected_clinical_df = geo_select_clinical_features(
|
84 |
+
clinical_df=clinical_data,
|
85 |
+
trait=trait,
|
86 |
+
trait_row=trait_row,
|
87 |
+
convert_trait=convert_trait,
|
88 |
+
age_row=age_row,
|
89 |
+
convert_age=convert_age,
|
90 |
+
gender_row=gender_row,
|
91 |
+
convert_gender=convert_gender
|
92 |
+
)
|
93 |
+
|
94 |
+
# Preview the extracted features
|
95 |
+
preview_result = preview_df(selected_clinical_df)
|
96 |
+
print("Preview of selected clinical features:")
|
97 |
+
print(preview_result)
|
98 |
+
|
99 |
+
# Save clinical data
|
100 |
+
selected_clinical_df.to_csv(out_clinical_data_file)
|
101 |
+
# Get gene expression data from matrix file
|
102 |
+
genetic_data = get_genetic_data(matrix_file_path)
|
103 |
+
|
104 |
+
# Examine data structure
|
105 |
+
print("Data structure and head:")
|
106 |
+
print(genetic_data.head())
|
107 |
+
|
108 |
+
print("\nShape:", genetic_data.shape)
|
109 |
+
|
110 |
+
print("\nFirst 20 row IDs (gene/probe identifiers):")
|
111 |
+
print(list(genetic_data.index)[:20])
|
112 |
+
|
113 |
+
# Get a few column names to verify sample IDs
|
114 |
+
print("\nFirst 5 column names:")
|
115 |
+
print(list(genetic_data.columns)[:5])
|
116 |
+
# Looking at the gene identifiers (IDs), they appear to be from an Agilent microarray
|
117 |
+
# The format "A_19_P..." indicates Agilent probe IDs rather than standard human gene symbols
|
118 |
+
# Therefore, we need to map these probe IDs to standard gene symbols
|
119 |
+
requires_gene_mapping = True
|
120 |
+
# Extract gene annotation data
|
121 |
+
gene_annotation = get_gene_annotation(soft_file_path)
|
122 |
+
|
123 |
+
# Display column names and preview data
|
124 |
+
print("Column names:")
|
125 |
+
print(gene_annotation.columns)
|
126 |
+
|
127 |
+
print("\nPreview of gene annotation data:")
|
128 |
+
print(preview_df(gene_annotation))
|
129 |
+
# From observation: 'ID' column in annotation matches probe IDs in expression data
|
130 |
+
# 'GENE_SYMBOL' column contains the gene symbols we want to map to
|
131 |
+
mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GENE_SYMBOL')
|
132 |
+
|
133 |
+
# Apply gene mapping to convert probe-level data to gene-level data
|
134 |
+
gene_data = apply_gene_mapping(genetic_data, mapping_data)
|
135 |
+
|
136 |
+
# Save gene expression data
|
137 |
+
gene_data.to_csv(out_gene_data_file)
|
138 |
+
# Reload clinical data that was processed earlier
|
139 |
+
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
|
140 |
+
|
141 |
+
# 1. Normalize gene symbols
|
142 |
+
genetic_data = normalize_gene_symbols_in_index(gene_data)
|
143 |
+
genetic_data.to_csv(out_gene_data_file)
|
144 |
+
|
145 |
+
# 2. Link clinical and genetic data
|
146 |
+
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
|
147 |
+
|
148 |
+
# 3. Handle missing values systematically
|
149 |
+
linked_data = handle_missing_values(linked_data, trait)
|
150 |
+
|
151 |
+
# 4. Check for bias in trait and demographic features
|
152 |
+
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
153 |
+
|
154 |
+
# 5. Final validation and information saving
|
155 |
+
note = "Dataset contains subcutaneous adipose tissue gene expression data from PCOS patients and controls. The gender feature is biased (all female) and was removed."
|
156 |
+
is_usable = validate_and_save_cohort_info(
|
157 |
+
is_final=True,
|
158 |
+
cohort=cohort,
|
159 |
+
info_path=json_path,
|
160 |
+
is_gene_available=True,
|
161 |
+
is_trait_available=True,
|
162 |
+
is_biased=trait_biased,
|
163 |
+
df=linked_data,
|
164 |
+
note=note
|
165 |
+
)
|
166 |
+
|
167 |
+
# 6. Save linked data only if usable
|
168 |
+
if is_usable:
|
169 |
+
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
|
170 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Post-Traumatic_Stress_Disorder/code/GSE44456.py
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Post-Traumatic_Stress_Disorder"
|
6 |
+
cohort = "GSE44456"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Post-Traumatic_Stress_Disorder"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Post-Traumatic_Stress_Disorder/GSE44456"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/GSE44456.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/gene_data/GSE44456.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/clinical_data/GSE44456.csv"
|
16 |
+
json_path = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Get background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
|
23 |
+
print("Background Information:")
|
24 |
+
print(background_info)
|
25 |
+
print("\nSample Characteristics:")
|
26 |
+
|
27 |
+
# Get dictionary of unique values per row
|
28 |
+
unique_values_dict = get_unique_values_by_row(clinical_data)
|
29 |
+
for row, values in unique_values_dict.items():
|
30 |
+
print(f"\n{row}:")
|
31 |
+
print(values)
|
32 |
+
# 1. Gene Expression Data Availability
|
33 |
+
is_gene_available = True # Series summary mentions gene expression data from hippocampus
|
34 |
+
|
35 |
+
# 2. Variable Availability and Data Type Conversion
|
36 |
+
trait_row = 0 # 'phenotype' row contains alcoholic vs control
|
37 |
+
age_row = 3 # 'age' row contains numeric age values
|
38 |
+
gender_row = 1 # 'gender' row contains male/female values
|
39 |
+
|
40 |
+
def convert_trait(x: str) -> Optional[int]:
|
41 |
+
"""Convert phenotype to binary (0=control, 1=alcoholic)"""
|
42 |
+
if not isinstance(x, str):
|
43 |
+
return None
|
44 |
+
x = x.split(': ')[-1].lower()
|
45 |
+
if x == 'control':
|
46 |
+
return 0
|
47 |
+
elif x == 'alcoholic':
|
48 |
+
return 1
|
49 |
+
return None
|
50 |
+
|
51 |
+
def convert_age(x: str) -> Optional[float]:
|
52 |
+
"""Convert age to float"""
|
53 |
+
if not isinstance(x, str):
|
54 |
+
return None
|
55 |
+
try:
|
56 |
+
return float(x.split(': ')[-1])
|
57 |
+
except:
|
58 |
+
return None
|
59 |
+
|
60 |
+
def convert_gender(x: str) -> Optional[int]:
|
61 |
+
"""Convert gender to binary (0=female, 1=male)"""
|
62 |
+
if not isinstance(x, str):
|
63 |
+
return None
|
64 |
+
x = x.split(': ')[-1].lower()
|
65 |
+
if x == 'female':
|
66 |
+
return 0
|
67 |
+
elif x == 'male':
|
68 |
+
return 1
|
69 |
+
return None
|
70 |
+
|
71 |
+
# 3. Save metadata for initial filtering
|
72 |
+
validate_and_save_cohort_info(
|
73 |
+
is_final=False,
|
74 |
+
cohort=cohort,
|
75 |
+
info_path=json_path,
|
76 |
+
is_gene_available=is_gene_available,
|
77 |
+
is_trait_available=trait_row is not None
|
78 |
+
)
|
79 |
+
|
80 |
+
# 4. Extract clinical features
|
81 |
+
selected_clinical_df = geo_select_clinical_features(
|
82 |
+
clinical_df=clinical_data,
|
83 |
+
trait=trait,
|
84 |
+
trait_row=trait_row,
|
85 |
+
convert_trait=convert_trait,
|
86 |
+
age_row=age_row,
|
87 |
+
convert_age=convert_age,
|
88 |
+
gender_row=gender_row,
|
89 |
+
convert_gender=convert_gender
|
90 |
+
)
|
91 |
+
|
92 |
+
# Preview and save clinical data
|
93 |
+
print(preview_df(selected_clinical_df))
|
94 |
+
selected_clinical_df.to_csv(out_clinical_data_file)
|
95 |
+
# Get gene expression data from matrix file
|
96 |
+
genetic_data = get_genetic_data(matrix_file_path)
|
97 |
+
|
98 |
+
# Examine data structure
|
99 |
+
print("Data structure and head:")
|
100 |
+
print(genetic_data.head())
|
101 |
+
|
102 |
+
print("\nShape:", genetic_data.shape)
|
103 |
+
|
104 |
+
print("\nFirst 20 row IDs (gene/probe identifiers):")
|
105 |
+
print(list(genetic_data.index)[:20])
|
106 |
+
|
107 |
+
# Get a few column names to verify sample IDs
|
108 |
+
print("\nFirst 5 column names:")
|
109 |
+
print(list(genetic_data.columns)[:5])
|
110 |
+
# The identifiers appear to be probe IDs (like '7896736', '7896738', etc.)
|
111 |
+
# rather than standard human gene symbols. They are likely numeric probe IDs
|
112 |
+
# specific to the microarray platform used, which need to be mapped to gene symbols
|
113 |
+
requires_gene_mapping = True
|
114 |
+
# Extract gene annotation data
|
115 |
+
gene_annotation = get_gene_annotation(soft_file_path)
|
116 |
+
|
117 |
+
# Display column names and preview data
|
118 |
+
print("Column names:")
|
119 |
+
print(gene_annotation.columns)
|
120 |
+
|
121 |
+
print("\nPreview of gene annotation data:")
|
122 |
+
print(preview_df(gene_annotation))
|
123 |
+
# 1. The gene identifiers seem to be in 'ID' column, and gene symbols can be extracted from 'gene_assignment'
|
124 |
+
# Extract probe-gene mapping from gene annotation data
|
125 |
+
mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='gene_assignment')
|
126 |
+
|
127 |
+
# 2. Get gene expression data from mapping
|
128 |
+
gene_data = apply_gene_mapping(genetic_data, mapping_data)
|
129 |
+
|
130 |
+
# Preview result
|
131 |
+
print("Gene mapping results:")
|
132 |
+
print("Input probes shape:", genetic_data.shape)
|
133 |
+
print("Output genes shape:", gene_data.shape)
|
134 |
+
print("\nFirst few rows of mapped gene expression data:")
|
135 |
+
print(gene_data.head())
|
136 |
+
# Reload clinical data that was processed earlier
|
137 |
+
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
|
138 |
+
|
139 |
+
# 1. Normalize gene symbols
|
140 |
+
genetic_data = normalize_gene_symbols_in_index(gene_data)
|
141 |
+
genetic_data.to_csv(out_gene_data_file)
|
142 |
+
|
143 |
+
# 2. Link clinical and genetic data
|
144 |
+
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
|
145 |
+
|
146 |
+
# 3. Handle missing values systematically
|
147 |
+
linked_data = handle_missing_values(linked_data, trait)
|
148 |
+
|
149 |
+
# 4. Check for bias in trait and demographic features
|
150 |
+
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
151 |
+
|
152 |
+
# 5. Final validation and information saving
|
153 |
+
note = "Dataset contains subcutaneous adipose tissue gene expression data from PCOS patients and controls. The gender feature is biased (all female) and was removed."
|
154 |
+
is_usable = validate_and_save_cohort_info(
|
155 |
+
is_final=True,
|
156 |
+
cohort=cohort,
|
157 |
+
info_path=json_path,
|
158 |
+
is_gene_available=True,
|
159 |
+
is_trait_available=True,
|
160 |
+
is_biased=trait_biased,
|
161 |
+
df=linked_data,
|
162 |
+
note=note
|
163 |
+
)
|
164 |
+
|
165 |
+
# 6. Save linked data only if usable
|
166 |
+
if is_usable:
|
167 |
+
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
|
168 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Post-Traumatic_Stress_Disorder/code/GSE52875.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Post-Traumatic_Stress_Disorder"
|
6 |
+
cohort = "GSE52875"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Post-Traumatic_Stress_Disorder"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Post-Traumatic_Stress_Disorder/GSE52875"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/GSE52875.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/gene_data/GSE52875.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/clinical_data/GSE52875.csv"
|
16 |
+
json_path = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Get background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
|
23 |
+
print("Background Information:")
|
24 |
+
print(background_info)
|
25 |
+
print("\nSample Characteristics:")
|
26 |
+
|
27 |
+
# Get dictionary of unique values per row
|
28 |
+
unique_values_dict = get_unique_values_by_row(clinical_data)
|
29 |
+
for row, values in unique_values_dict.items():
|
30 |
+
print(f"\n{row}:")
|
31 |
+
print(values)
|
32 |
+
# 1. Gene Expression Data Availability
|
33 |
+
is_gene_available = False # Not suitable - mice dataset
|
34 |
+
|
35 |
+
# 2. Variable Availability and Data Type Conversion
|
36 |
+
# All data rows containing only strain and tissue info, no trait/age/gender data
|
37 |
+
trait_row = None
|
38 |
+
age_row = None
|
39 |
+
gender_row = None
|
40 |
+
|
41 |
+
# These conversion functions won't be used since data not available
|
42 |
+
# but defining them to avoid NameErrors
|
43 |
+
def convert_trait(x):
|
44 |
+
return None
|
45 |
+
|
46 |
+
def convert_age(x):
|
47 |
+
return None
|
48 |
+
|
49 |
+
def convert_gender(x):
|
50 |
+
return None
|
51 |
+
|
52 |
+
# 3. Save Metadata
|
53 |
+
# Initial filtering - dataset not suitable since it's mice data
|
54 |
+
validate_and_save_cohort_info(is_final=False,
|
55 |
+
cohort=cohort,
|
56 |
+
info_path=json_path,
|
57 |
+
is_gene_available=is_gene_available,
|
58 |
+
is_trait_available=False)
|
59 |
+
|
60 |
+
# 4. Skip clinical feature extraction since trait_row is None
|
p3/preprocess/Post-Traumatic_Stress_Disorder/code/GSE63878.py
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Post-Traumatic_Stress_Disorder"
|
6 |
+
cohort = "GSE63878"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Post-Traumatic_Stress_Disorder"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Post-Traumatic_Stress_Disorder/GSE63878"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/GSE63878.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/gene_data/GSE63878.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/clinical_data/GSE63878.csv"
|
16 |
+
json_path = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Get background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
|
23 |
+
print("Background Information:")
|
24 |
+
print(background_info)
|
25 |
+
print("\nSample Characteristics:")
|
26 |
+
|
27 |
+
# Get dictionary of unique values per row
|
28 |
+
unique_values_dict = get_unique_values_by_row(clinical_data)
|
29 |
+
for row, values in unique_values_dict.items():
|
30 |
+
print(f"\n{row}:")
|
31 |
+
print(values)
|
32 |
+
# 1. Gene Expression Data Availability
|
33 |
+
# Based on background info, it's microarray data for gene expression, so:
|
34 |
+
is_gene_available = True
|
35 |
+
|
36 |
+
# 2. Variable Availability and Data Type Conversion
|
37 |
+
# 2.1 Identify rows containing each variable
|
38 |
+
trait_row = 1 # The trait info is in row 1 under 'condition'
|
39 |
+
age_row = None # Age not available
|
40 |
+
gender_row = None # Gender not available
|
41 |
+
|
42 |
+
# 2.2 Data Type Conversion Functions
|
43 |
+
def convert_trait(value):
|
44 |
+
"""Convert PTSD status to binary (0: control, 1: case)"""
|
45 |
+
if not value or ':' not in value:
|
46 |
+
return None
|
47 |
+
value = value.split(':')[1].strip().lower()
|
48 |
+
if 'control' in value:
|
49 |
+
return 0
|
50 |
+
elif 'case' in value:
|
51 |
+
return 1
|
52 |
+
return None
|
53 |
+
|
54 |
+
convert_age = None # Not needed since age data unavailable
|
55 |
+
convert_gender = None # Not needed since gender data unavailable
|
56 |
+
|
57 |
+
# 3. Save Metadata
|
58 |
+
validate_and_save_cohort_info(is_final=False,
|
59 |
+
cohort=cohort,
|
60 |
+
info_path=json_path,
|
61 |
+
is_gene_available=is_gene_available,
|
62 |
+
is_trait_available=trait_row is not None)
|
63 |
+
|
64 |
+
# 4. Clinical Feature Extraction
|
65 |
+
if trait_row is not None:
|
66 |
+
clinical_df = geo_select_clinical_features(clinical_data,
|
67 |
+
trait=trait,
|
68 |
+
trait_row=trait_row,
|
69 |
+
convert_trait=convert_trait)
|
70 |
+
|
71 |
+
# Preview the processed clinical data
|
72 |
+
print("Preview of processed clinical data:")
|
73 |
+
print(preview_df(clinical_df))
|
74 |
+
|
75 |
+
# Save clinical data
|
76 |
+
clinical_df.to_csv(out_clinical_data_file)
|
77 |
+
# Get gene expression data from matrix file
|
78 |
+
genetic_data = get_genetic_data(matrix_file_path)
|
79 |
+
|
80 |
+
# Examine data structure
|
81 |
+
print("Data structure and head:")
|
82 |
+
print(genetic_data.head())
|
83 |
+
|
84 |
+
print("\nShape:", genetic_data.shape)
|
85 |
+
|
86 |
+
print("\nFirst 20 row IDs (gene/probe identifiers):")
|
87 |
+
print(list(genetic_data.index)[:20])
|
88 |
+
|
89 |
+
# Get a few column names to verify sample IDs
|
90 |
+
print("\nFirst 5 column names:")
|
91 |
+
print(list(genetic_data.columns)[:5])
|
92 |
+
# Based on examining the gene identifiers (numeric probe IDs like 7896740),
|
93 |
+
# these appear to be Illumina probe IDs rather than human gene symbols,
|
94 |
+
# so they will need to be mapped to gene symbols
|
95 |
+
requires_gene_mapping = True
|
96 |
+
# Extract gene annotation data
|
97 |
+
gene_annotation = get_gene_annotation(soft_file_path)
|
98 |
+
|
99 |
+
# Display column names and preview data
|
100 |
+
print("Column names:")
|
101 |
+
print(gene_annotation.columns)
|
102 |
+
|
103 |
+
print("\nPreview of gene annotation data:")
|
104 |
+
print(preview_df(gene_annotation))
|
105 |
+
# 1. Extract the mapping info
|
106 |
+
mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='gene_assignment')
|
107 |
+
|
108 |
+
# 2. Apply gene mapping to convert probe values to gene expression values
|
109 |
+
gene_data = apply_gene_mapping(genetic_data, mapping_data)
|
110 |
+
|
111 |
+
# Preview the gene data
|
112 |
+
print("\nPreview of gene data after mapping:")
|
113 |
+
print(preview_df(gene_data))
|
114 |
+
|
115 |
+
# Save gene data
|
116 |
+
gene_data.to_csv(out_gene_data_file)
|
117 |
+
# Reload clinical data that was processed earlier
|
118 |
+
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
|
119 |
+
|
120 |
+
# 1. Normalize gene symbols
|
121 |
+
genetic_data = normalize_gene_symbols_in_index(gene_data)
|
122 |
+
genetic_data.to_csv(out_gene_data_file)
|
123 |
+
|
124 |
+
# 2. Link clinical and genetic data
|
125 |
+
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
|
126 |
+
|
127 |
+
# 3. Handle missing values systematically
|
128 |
+
linked_data = handle_missing_values(linked_data, trait)
|
129 |
+
|
130 |
+
# 4. Check for bias in trait and demographic features
|
131 |
+
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
132 |
+
|
133 |
+
# 5. Final validation and information saving
|
134 |
+
note = "Dataset contains subcutaneous adipose tissue gene expression data from PCOS patients and controls. The gender feature is biased (all female) and was removed."
|
135 |
+
is_usable = validate_and_save_cohort_info(
|
136 |
+
is_final=True,
|
137 |
+
cohort=cohort,
|
138 |
+
info_path=json_path,
|
139 |
+
is_gene_available=True,
|
140 |
+
is_trait_available=True,
|
141 |
+
is_biased=trait_biased,
|
142 |
+
df=linked_data,
|
143 |
+
note=note
|
144 |
+
)
|
145 |
+
|
146 |
+
# 6. Save linked data only if usable
|
147 |
+
if is_usable:
|
148 |
+
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
|
149 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Post-Traumatic_Stress_Disorder/code/GSE64814.py
ADDED
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Post-Traumatic_Stress_Disorder"
|
6 |
+
cohort = "GSE64814"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Post-Traumatic_Stress_Disorder"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Post-Traumatic_Stress_Disorder/GSE64814"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/GSE64814.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/gene_data/GSE64814.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/clinical_data/GSE64814.csv"
|
16 |
+
json_path = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Get background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
|
23 |
+
print("Background Information:")
|
24 |
+
print(background_info)
|
25 |
+
print("\nSample Characteristics:")
|
26 |
+
|
27 |
+
# Get dictionary of unique values per row
|
28 |
+
unique_values_dict = get_unique_values_by_row(clinical_data)
|
29 |
+
for row, values in unique_values_dict.items():
|
30 |
+
print(f"\n{row}:")
|
31 |
+
print(values)
|
32 |
+
# 1. Gene Expression Data Availability
|
33 |
+
# From background info, this is a study of gene networks in PTSD
|
34 |
+
# and the samples are from peripheral blood leukocytes, suggesting gene expression data
|
35 |
+
is_gene_available = True
|
36 |
+
|
37 |
+
# 2.1 Row identifiers for clinical variables
|
38 |
+
trait_row = 1 # PTSD status is in row 1 under 'condition'
|
39 |
+
age_row = None # Age not available in sample characteristics
|
40 |
+
gender_row = None # Gender not available in sample characteristics
|
41 |
+
|
42 |
+
# 2.2 Data type conversion functions
|
43 |
+
def convert_trait(value: str) -> int:
|
44 |
+
"""Convert PTSD status to binary"""
|
45 |
+
if not isinstance(value, str):
|
46 |
+
return None
|
47 |
+
value = value.split(': ')[-1].lower()
|
48 |
+
if 'case' in value: # Both 'case (PTSD)' and 'case (PTSD risk)' are cases
|
49 |
+
return 1
|
50 |
+
elif value == 'control':
|
51 |
+
return 0
|
52 |
+
return None
|
53 |
+
|
54 |
+
def convert_age(value: str) -> float:
|
55 |
+
"""Placeholder function since age is not available"""
|
56 |
+
return None
|
57 |
+
|
58 |
+
def convert_gender(value: str) -> int:
|
59 |
+
"""Placeholder function since gender is not available"""
|
60 |
+
return None
|
61 |
+
|
62 |
+
# 3. Save metadata about dataset usability
|
63 |
+
validate_and_save_cohort_info(is_final=False,
|
64 |
+
cohort=cohort,
|
65 |
+
info_path=json_path,
|
66 |
+
is_gene_available=is_gene_available,
|
67 |
+
is_trait_available=trait_row is not None)
|
68 |
+
|
69 |
+
# 4. Extract clinical features since trait data is available
|
70 |
+
clinical_features = geo_select_clinical_features(clinical_df=clinical_data,
|
71 |
+
trait=trait,
|
72 |
+
trait_row=trait_row,
|
73 |
+
convert_trait=convert_trait,
|
74 |
+
age_row=age_row,
|
75 |
+
convert_age=convert_age,
|
76 |
+
gender_row=gender_row,
|
77 |
+
convert_gender=convert_gender)
|
78 |
+
|
79 |
+
# Preview the extracted features
|
80 |
+
print("Preview of clinical features:")
|
81 |
+
print(preview_df(clinical_features))
|
82 |
+
|
83 |
+
# Save clinical features
|
84 |
+
clinical_features.to_csv(out_clinical_data_file)
|
85 |
+
# Get gene expression data from matrix file
|
86 |
+
genetic_data = get_genetic_data(matrix_file_path)
|
87 |
+
|
88 |
+
# Examine data structure
|
89 |
+
print("Data structure and head:")
|
90 |
+
print(genetic_data.head())
|
91 |
+
|
92 |
+
print("\nShape:", genetic_data.shape)
|
93 |
+
|
94 |
+
print("\nFirst 20 row IDs (gene/probe identifiers):")
|
95 |
+
print(list(genetic_data.index)[:20])
|
96 |
+
|
97 |
+
# Get a few column names to verify sample IDs
|
98 |
+
print("\nFirst 5 column names:")
|
99 |
+
print(list(genetic_data.columns)[:5])
|
100 |
+
# Looking at the format of gene identifiers - they appear to be probe IDs (numeric format)
|
101 |
+
# rather than standard human gene symbols (which are usually alphanumeric).
|
102 |
+
# This indicates we need to map these probe IDs to gene symbols.
|
103 |
+
|
104 |
+
requires_gene_mapping = True
|
105 |
+
# Extract gene annotation data
|
106 |
+
gene_annotation = get_gene_annotation(soft_file_path)
|
107 |
+
|
108 |
+
# Display column names and preview data
|
109 |
+
print("Column names:")
|
110 |
+
print(gene_annotation.columns)
|
111 |
+
|
112 |
+
print("\nPreview of gene annotation data:")
|
113 |
+
print(preview_df(gene_annotation))
|
114 |
+
# Extract gene mapping from annotation
|
115 |
+
# 'ID' contains probe IDs matching the gene expression data
|
116 |
+
# 'gene_assignment' contains the gene symbols amidst other info
|
117 |
+
mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='gene_assignment')
|
118 |
+
|
119 |
+
# Apply mapping to convert probe expression to gene expression
|
120 |
+
gene_data = apply_gene_mapping(genetic_data, mapping_data)
|
121 |
+
|
122 |
+
# Preview transformed data
|
123 |
+
print("Gene data shape:", gene_data.shape)
|
124 |
+
print("\nGene data preview:")
|
125 |
+
print(gene_data.head())
|
126 |
+
# Reload clinical data that was processed earlier
|
127 |
+
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
|
128 |
+
|
129 |
+
# 1. Normalize gene symbols
|
130 |
+
genetic_data = normalize_gene_symbols_in_index(gene_data)
|
131 |
+
genetic_data.to_csv(out_gene_data_file)
|
132 |
+
|
133 |
+
# 2. Link clinical and genetic data
|
134 |
+
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
|
135 |
+
|
136 |
+
# 3. Handle missing values systematically
|
137 |
+
linked_data = handle_missing_values(linked_data, trait)
|
138 |
+
|
139 |
+
# 4. Check for bias in trait and demographic features
|
140 |
+
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
141 |
+
|
142 |
+
# 5. Final validation and information saving
|
143 |
+
note = "Dataset contains subcutaneous adipose tissue gene expression data from PCOS patients and controls. The gender feature is biased (all female) and was removed."
|
144 |
+
is_usable = validate_and_save_cohort_info(
|
145 |
+
is_final=True,
|
146 |
+
cohort=cohort,
|
147 |
+
info_path=json_path,
|
148 |
+
is_gene_available=True,
|
149 |
+
is_trait_available=True,
|
150 |
+
is_biased=trait_biased,
|
151 |
+
df=linked_data,
|
152 |
+
note=note
|
153 |
+
)
|
154 |
+
|
155 |
+
# 6. Save linked data only if usable
|
156 |
+
if is_usable:
|
157 |
+
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
|
158 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Post-Traumatic_Stress_Disorder/code/GSE67663.py
ADDED
@@ -0,0 +1,184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Post-Traumatic_Stress_Disorder"
|
6 |
+
cohort = "GSE67663"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Post-Traumatic_Stress_Disorder"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Post-Traumatic_Stress_Disorder/GSE67663"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/GSE67663.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/gene_data/GSE67663.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/clinical_data/GSE67663.csv"
|
16 |
+
json_path = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Get background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
|
23 |
+
print("Background Information:")
|
24 |
+
print(background_info)
|
25 |
+
print("\nSample Characteristics:")
|
26 |
+
|
27 |
+
# Get dictionary of unique values per row
|
28 |
+
unique_values_dict = get_unique_values_by_row(clinical_data)
|
29 |
+
for row, values in unique_values_dict.items():
|
30 |
+
print(f"\n{row}:")
|
31 |
+
print(values)
|
32 |
+
# 1. Gene Expression Data Availability
|
33 |
+
# From title and summary, we can see this is a genome-wide gene expression study
|
34 |
+
is_gene_available = True
|
35 |
+
|
36 |
+
# 2.1 Data Availability
|
37 |
+
# trait: Row 2 has PTSD and depression status
|
38 |
+
# gender: Row 0 has sex data
|
39 |
+
# age: Row 1 has age data
|
40 |
+
trait_row = 2
|
41 |
+
gender_row = 0
|
42 |
+
age_row = 1
|
43 |
+
|
44 |
+
# 2.2 Data Type Conversion Functions
|
45 |
+
def convert_trait(x):
|
46 |
+
"""Convert PTSD status to binary"""
|
47 |
+
if not isinstance(x, str):
|
48 |
+
return None
|
49 |
+
try:
|
50 |
+
# Extract value after colon and convert to int
|
51 |
+
value = x.split(': ')[1]
|
52 |
+
return int(value)
|
53 |
+
except:
|
54 |
+
return None
|
55 |
+
|
56 |
+
def convert_gender(x):
|
57 |
+
"""Convert gender to binary (0=female, 1=male)"""
|
58 |
+
if not isinstance(x, str):
|
59 |
+
return None
|
60 |
+
try:
|
61 |
+
value = x.split(': ')[1].lower()
|
62 |
+
if value == 'female':
|
63 |
+
return 0
|
64 |
+
elif value == 'male':
|
65 |
+
return 1
|
66 |
+
else:
|
67 |
+
return None
|
68 |
+
except:
|
69 |
+
return None
|
70 |
+
|
71 |
+
def convert_age(x):
|
72 |
+
"""Convert age to continuous numeric"""
|
73 |
+
if not isinstance(x, str):
|
74 |
+
return None
|
75 |
+
try:
|
76 |
+
value = x.split(': ')[1]
|
77 |
+
return float(value)
|
78 |
+
except:
|
79 |
+
return None
|
80 |
+
|
81 |
+
# 3. Save Initial Metadata
|
82 |
+
is_usable = validate_and_save_cohort_info(
|
83 |
+
is_final=False,
|
84 |
+
cohort=cohort,
|
85 |
+
info_path=json_path,
|
86 |
+
is_gene_available=is_gene_available,
|
87 |
+
is_trait_available=trait_row is not None
|
88 |
+
)
|
89 |
+
|
90 |
+
# 4. Extract Clinical Features
|
91 |
+
if trait_row is not None:
|
92 |
+
clinical_features = geo_select_clinical_features(
|
93 |
+
clinical_df=clinical_data,
|
94 |
+
trait=trait,
|
95 |
+
trait_row=trait_row,
|
96 |
+
convert_trait=convert_trait,
|
97 |
+
age_row=age_row,
|
98 |
+
convert_age=convert_age,
|
99 |
+
gender_row=gender_row,
|
100 |
+
convert_gender=convert_gender
|
101 |
+
)
|
102 |
+
|
103 |
+
# Preview the extracted features
|
104 |
+
print("Preview of clinical features:")
|
105 |
+
print(preview_df(clinical_features))
|
106 |
+
|
107 |
+
# Save to CSV
|
108 |
+
clinical_features.to_csv(out_clinical_data_file)
|
109 |
+
# Get gene expression data from matrix file
|
110 |
+
genetic_data = get_genetic_data(matrix_file_path)
|
111 |
+
|
112 |
+
# Examine data structure
|
113 |
+
print("Data structure and head:")
|
114 |
+
print(genetic_data.head())
|
115 |
+
|
116 |
+
print("\nShape:", genetic_data.shape)
|
117 |
+
|
118 |
+
print("\nFirst 20 row IDs (gene/probe identifiers):")
|
119 |
+
print(list(genetic_data.index)[:20])
|
120 |
+
|
121 |
+
# Get a few column names to verify sample IDs
|
122 |
+
print("\nFirst 5 column names:")
|
123 |
+
print(list(genetic_data.columns)[:5])
|
124 |
+
# The identifiers starting with "ILMN_" are Illumina probe IDs, not gene symbols
|
125 |
+
# These need to be mapped to standard gene symbols for analysis
|
126 |
+
requires_gene_mapping = True
|
127 |
+
# Extract gene annotation data
|
128 |
+
gene_annotation = get_gene_annotation(soft_file_path)
|
129 |
+
|
130 |
+
# Display column names and preview data
|
131 |
+
print("Column names:")
|
132 |
+
print(gene_annotation.columns)
|
133 |
+
|
134 |
+
print("\nPreview of gene annotation data:")
|
135 |
+
print(preview_df(gene_annotation))
|
136 |
+
# 1. Identify relevant columns from gene annotation
|
137 |
+
# The 'ID' column in annotation matches the ILMN_ identifiers in expression data
|
138 |
+
# The 'Symbol' column contains gene symbols
|
139 |
+
prob_col = 'ID'
|
140 |
+
gene_col = 'Symbol'
|
141 |
+
|
142 |
+
# 2. Get gene mapping dataframe
|
143 |
+
mapping_df = get_gene_mapping(gene_annotation, prob_col, gene_col)
|
144 |
+
|
145 |
+
# 3. Apply gene mapping to get gene expression data
|
146 |
+
gene_data = apply_gene_mapping(genetic_data, mapping_df)
|
147 |
+
|
148 |
+
# Preview the result
|
149 |
+
print("Shape of gene expression data:", gene_data.shape)
|
150 |
+
print("\nFirst few gene symbols:")
|
151 |
+
print(list(gene_data.index)[:10])
|
152 |
+
# Reload clinical data that was processed earlier
|
153 |
+
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
|
154 |
+
|
155 |
+
# 1. Normalize gene symbols
|
156 |
+
genetic_data = normalize_gene_symbols_in_index(gene_data)
|
157 |
+
genetic_data.to_csv(out_gene_data_file)
|
158 |
+
|
159 |
+
# 2. Link clinical and genetic data
|
160 |
+
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
|
161 |
+
|
162 |
+
# 3. Handle missing values systematically
|
163 |
+
linked_data = handle_missing_values(linked_data, trait)
|
164 |
+
|
165 |
+
# 4. Check for bias in trait and demographic features
|
166 |
+
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
167 |
+
|
168 |
+
# 5. Final validation and information saving
|
169 |
+
note = "Dataset contains subcutaneous adipose tissue gene expression data from PCOS patients and controls. The gender feature is biased (all female) and was removed."
|
170 |
+
is_usable = validate_and_save_cohort_info(
|
171 |
+
is_final=True,
|
172 |
+
cohort=cohort,
|
173 |
+
info_path=json_path,
|
174 |
+
is_gene_available=True,
|
175 |
+
is_trait_available=True,
|
176 |
+
is_biased=trait_biased,
|
177 |
+
df=linked_data,
|
178 |
+
note=note
|
179 |
+
)
|
180 |
+
|
181 |
+
# 6. Save linked data only if usable
|
182 |
+
if is_usable:
|
183 |
+
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
|
184 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Post-Traumatic_Stress_Disorder/code/GSE77164.py
ADDED
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Post-Traumatic_Stress_Disorder"
|
6 |
+
cohort = "GSE77164"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Post-Traumatic_Stress_Disorder"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Post-Traumatic_Stress_Disorder/GSE77164"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/GSE77164.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/gene_data/GSE77164.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/clinical_data/GSE77164.csv"
|
16 |
+
json_path = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Get background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
|
23 |
+
print("Background Information:")
|
24 |
+
print(background_info)
|
25 |
+
print("\nSample Characteristics:")
|
26 |
+
|
27 |
+
# Get dictionary of unique values per row
|
28 |
+
unique_values_dict = get_unique_values_by_row(clinical_data)
|
29 |
+
for row, values in unique_values_dict.items():
|
30 |
+
print(f"\n{row}:")
|
31 |
+
print(values)
|
32 |
+
# 1. Gene Expression Data Availability
|
33 |
+
# From dictionary indices 8-15, we can see there are multiple gene expression data (cd3d, cd3e, cd4, etc.)
|
34 |
+
is_gene_available = True
|
35 |
+
|
36 |
+
# 2.1 Data Availability
|
37 |
+
# trait (PTSD) is available in row 6 ('pts: 0', 'pts: 1')
|
38 |
+
trait_row = 6
|
39 |
+
|
40 |
+
# age is available in row 2 with various values
|
41 |
+
age_row = 2
|
42 |
+
|
43 |
+
# gender is available in row 1 ('female: 1', 'female: 0')
|
44 |
+
gender_row = 1
|
45 |
+
|
46 |
+
# 2.2 Data Type Conversion Functions
|
47 |
+
def convert_trait(x: str) -> int:
|
48 |
+
"""Convert PTSD status to binary (0/1)"""
|
49 |
+
if not isinstance(x, str):
|
50 |
+
return None
|
51 |
+
try:
|
52 |
+
# Extract value after colon
|
53 |
+
value = x.split(': ')[1]
|
54 |
+
return int(value)
|
55 |
+
except:
|
56 |
+
return None
|
57 |
+
|
58 |
+
def convert_age(x: str) -> float:
|
59 |
+
"""Convert age to continuous numeric value"""
|
60 |
+
if not isinstance(x, str):
|
61 |
+
return None
|
62 |
+
try:
|
63 |
+
# Extract value after colon
|
64 |
+
value = x.split(': ')[1]
|
65 |
+
return float(value)
|
66 |
+
except:
|
67 |
+
return None
|
68 |
+
|
69 |
+
def convert_gender(x: str) -> int:
|
70 |
+
"""Convert gender to binary (0=female, 1=male)"""
|
71 |
+
if not isinstance(x, str):
|
72 |
+
return None
|
73 |
+
try:
|
74 |
+
# Extract value after colon
|
75 |
+
value = x.split(': ')[1]
|
76 |
+
# In this dataset, female=1, male=0, so we need to flip the values
|
77 |
+
return 1 - int(value) # Convert female:1 to 0, female:0 to 1
|
78 |
+
except:
|
79 |
+
return None
|
80 |
+
|
81 |
+
# 3. Save Metadata
|
82 |
+
validate_and_save_cohort_info(
|
83 |
+
is_final=False,
|
84 |
+
cohort=cohort,
|
85 |
+
info_path=json_path,
|
86 |
+
is_gene_available=is_gene_available,
|
87 |
+
is_trait_available=trait_row is not None
|
88 |
+
)
|
89 |
+
|
90 |
+
# 4. Clinical Feature Extraction
|
91 |
+
if trait_row is not None:
|
92 |
+
selected_clinical_df = geo_select_clinical_features(
|
93 |
+
clinical_df=clinical_data,
|
94 |
+
trait=trait,
|
95 |
+
trait_row=trait_row,
|
96 |
+
convert_trait=convert_trait,
|
97 |
+
age_row=age_row,
|
98 |
+
convert_age=convert_age,
|
99 |
+
gender_row=gender_row,
|
100 |
+
convert_gender=convert_gender
|
101 |
+
)
|
102 |
+
|
103 |
+
# Preview the data
|
104 |
+
print(preview_df(selected_clinical_df))
|
105 |
+
|
106 |
+
# Save to CSV
|
107 |
+
selected_clinical_df.to_csv(out_clinical_data_file)
|
108 |
+
# Get gene expression data from matrix file
|
109 |
+
genetic_data = get_genetic_data(matrix_file_path)
|
110 |
+
|
111 |
+
# Examine data structure
|
112 |
+
print("Data structure and head:")
|
113 |
+
print(genetic_data.head())
|
114 |
+
|
115 |
+
print("\nShape:", genetic_data.shape)
|
116 |
+
|
117 |
+
print("\nFirst 20 row IDs (gene/probe identifiers):")
|
118 |
+
print(list(genetic_data.index)[:20])
|
119 |
+
|
120 |
+
# Get a few column names to verify sample IDs
|
121 |
+
print("\nFirst 5 column names:")
|
122 |
+
print(list(genetic_data.columns)[:5])
|
123 |
+
requires_gene_mapping = False
|
124 |
+
# Reload clinical data that was processed earlier
|
125 |
+
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
|
126 |
+
|
127 |
+
# 1. Normalize gene symbols using data from previous step
|
128 |
+
genetic_data = normalize_gene_symbols_in_index(genetic_data)
|
129 |
+
genetic_data.to_csv(out_gene_data_file)
|
130 |
+
|
131 |
+
# 2. Link clinical and genetic data
|
132 |
+
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
|
133 |
+
|
134 |
+
# 3. Handle missing values systematically
|
135 |
+
linked_data = handle_missing_values(linked_data, trait)
|
136 |
+
|
137 |
+
# 4. Check for bias in trait and demographic features
|
138 |
+
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
139 |
+
|
140 |
+
# 5. Final validation and information saving
|
141 |
+
note = "Dataset contains gene expression data from child soldiers and civilians in Nepal, with PTSD symptoms and psychological resilience measures. All required features (trait, age, gender) are available with good distributions."
|
142 |
+
is_usable = validate_and_save_cohort_info(
|
143 |
+
is_final=True,
|
144 |
+
cohort=cohort,
|
145 |
+
info_path=json_path,
|
146 |
+
is_gene_available=True,
|
147 |
+
is_trait_available=True,
|
148 |
+
is_biased=trait_biased,
|
149 |
+
df=linked_data,
|
150 |
+
note=note
|
151 |
+
)
|
152 |
+
|
153 |
+
# 6. Save linked data only if usable
|
154 |
+
if is_usable:
|
155 |
+
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
|
156 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Post-Traumatic_Stress_Disorder/code/GSE81761.py
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Post-Traumatic_Stress_Disorder"
|
6 |
+
cohort = "GSE81761"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Post-Traumatic_Stress_Disorder"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Post-Traumatic_Stress_Disorder/GSE81761"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/GSE81761.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/gene_data/GSE81761.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/clinical_data/GSE81761.csv"
|
16 |
+
json_path = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Get background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
|
23 |
+
print("Background Information:")
|
24 |
+
print(background_info)
|
25 |
+
print("\nSample Characteristics:")
|
26 |
+
|
27 |
+
# Get dictionary of unique values per row
|
28 |
+
unique_values_dict = get_unique_values_by_row(clinical_data)
|
29 |
+
for row, values in unique_values_dict.items():
|
30 |
+
print(f"\n{row}:")
|
31 |
+
print(values)
|
32 |
+
# 1. Gene Expression Data Availability
|
33 |
+
# From background info, we see gene expression data using HG-U133_Plus_2 Affymetrix chip
|
34 |
+
is_gene_available = True
|
35 |
+
|
36 |
+
# 2. Variable Availability and Row IDs
|
37 |
+
# Trait (PTSD): Row 1 has case/control info
|
38 |
+
trait_row = 1
|
39 |
+
# Age: Row 5 has age data
|
40 |
+
age_row = 5
|
41 |
+
# Gender: Row 4 has sex data
|
42 |
+
gender_row = 4
|
43 |
+
|
44 |
+
# Convert functions
|
45 |
+
def convert_trait(x: str) -> int:
|
46 |
+
"""Convert PTSD status to binary"""
|
47 |
+
if pd.isna(x):
|
48 |
+
return None
|
49 |
+
value = x.split(': ')[1].strip()
|
50 |
+
if value == 'PTSD':
|
51 |
+
return 1
|
52 |
+
elif value == 'No PTSD':
|
53 |
+
return 0
|
54 |
+
return None
|
55 |
+
|
56 |
+
def convert_age(x: str) -> float:
|
57 |
+
"""Convert age to float"""
|
58 |
+
if pd.isna(x):
|
59 |
+
return None
|
60 |
+
try:
|
61 |
+
return float(x.split(': ')[1])
|
62 |
+
except:
|
63 |
+
return None
|
64 |
+
|
65 |
+
def convert_gender(x: str) -> int:
|
66 |
+
"""Convert gender to binary (0=female, 1=male)"""
|
67 |
+
if pd.isna(x):
|
68 |
+
return None
|
69 |
+
value = x.split(': ')[1].lower()
|
70 |
+
if value == 'female':
|
71 |
+
return 0
|
72 |
+
elif value == 'male':
|
73 |
+
return 1
|
74 |
+
return None
|
75 |
+
|
76 |
+
# 3. Save metadata
|
77 |
+
validate_and_save_cohort_info(is_final=False,
|
78 |
+
cohort=cohort,
|
79 |
+
info_path=json_path,
|
80 |
+
is_gene_available=is_gene_available,
|
81 |
+
is_trait_available=trait_row is not None)
|
82 |
+
|
83 |
+
# 4. Extract clinical features
|
84 |
+
clinical_df = geo_select_clinical_features(clinical_data,
|
85 |
+
trait=trait,
|
86 |
+
trait_row=trait_row,
|
87 |
+
convert_trait=convert_trait,
|
88 |
+
age_row=age_row,
|
89 |
+
convert_age=convert_age,
|
90 |
+
gender_row=gender_row,
|
91 |
+
convert_gender=convert_gender)
|
92 |
+
|
93 |
+
# Preview the extracted features
|
94 |
+
preview_result = preview_df(clinical_df)
|
95 |
+
print("Preview of clinical data:")
|
96 |
+
print(preview_result)
|
97 |
+
|
98 |
+
# Save clinical data
|
99 |
+
clinical_df.to_csv(out_clinical_data_file)
|
100 |
+
# Get gene expression data from matrix file
|
101 |
+
genetic_data = get_genetic_data(matrix_file_path)
|
102 |
+
|
103 |
+
# Examine data structure
|
104 |
+
print("Data structure and head:")
|
105 |
+
print(genetic_data.head())
|
106 |
+
|
107 |
+
print("\nShape:", genetic_data.shape)
|
108 |
+
|
109 |
+
print("\nFirst 20 row IDs (gene/probe identifiers):")
|
110 |
+
print(list(genetic_data.index)[:20])
|
111 |
+
|
112 |
+
# Get a few column names to verify sample IDs
|
113 |
+
print("\nFirst 5 column names:")
|
114 |
+
print(list(genetic_data.columns)[:5])
|
115 |
+
# Based on examination of the identifiers (e.g., '1007_s_at', '1053_at'), these are Affymetrix probe IDs, not gene symbols
|
116 |
+
# They need to be mapped to standard human gene symbols for analysis
|
117 |
+
requires_gene_mapping = True
|
118 |
+
# Extract gene annotation data
|
119 |
+
gene_annotation = get_gene_annotation(soft_file_path)
|
120 |
+
|
121 |
+
# Display column names and preview data
|
122 |
+
print("Column names:")
|
123 |
+
print(gene_annotation.columns)
|
124 |
+
|
125 |
+
print("\nPreview of gene annotation data:")
|
126 |
+
print(preview_df(gene_annotation))
|
127 |
+
# Get probe-to-gene mapping
|
128 |
+
# 'ID' column has probe identifiers matching gene expression data
|
129 |
+
# 'Gene Symbol' column has gene symbols
|
130 |
+
mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')
|
131 |
+
|
132 |
+
# Apply gene mapping to convert probe-level measurements to gene-level expression
|
133 |
+
gene_data = apply_gene_mapping(genetic_data, mapping_data)
|
134 |
+
|
135 |
+
# Print info about the mapping
|
136 |
+
print(f"Original probe count: {len(genetic_data)}")
|
137 |
+
print(f"Gene count after mapping: {len(gene_data)}")
|
138 |
+
|
139 |
+
# Preview the mapped gene expression data
|
140 |
+
print("\nPreview of gene expression data:")
|
141 |
+
print(gene_data.head())
|
142 |
+
# Reload clinical data that was processed earlier
|
143 |
+
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
|
144 |
+
|
145 |
+
# 1. Normalize gene symbols
|
146 |
+
genetic_data = normalize_gene_symbols_in_index(gene_data)
|
147 |
+
genetic_data.to_csv(out_gene_data_file)
|
148 |
+
|
149 |
+
# 2. Link clinical and genetic data
|
150 |
+
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
|
151 |
+
|
152 |
+
# 3. Handle missing values systematically
|
153 |
+
linked_data = handle_missing_values(linked_data, trait)
|
154 |
+
|
155 |
+
# 4. Check for bias in trait and demographic features
|
156 |
+
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
157 |
+
|
158 |
+
# 5. Final validation and information saving
|
159 |
+
note = "Dataset contains subcutaneous adipose tissue gene expression data from PCOS patients and controls. The gender feature is biased (all female) and was removed."
|
160 |
+
is_usable = validate_and_save_cohort_info(
|
161 |
+
is_final=True,
|
162 |
+
cohort=cohort,
|
163 |
+
info_path=json_path,
|
164 |
+
is_gene_available=True,
|
165 |
+
is_trait_available=True,
|
166 |
+
is_biased=trait_biased,
|
167 |
+
df=linked_data,
|
168 |
+
note=note
|
169 |
+
)
|
170 |
+
|
171 |
+
# 6. Save linked data only if usable
|
172 |
+
if is_usable:
|
173 |
+
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
|
174 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Post-Traumatic_Stress_Disorder/code/TCGA.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Post-Traumatic_Stress_Disorder"
|
6 |
+
|
7 |
+
# Input paths
|
8 |
+
tcga_root_dir = "../DATA/TCGA"
|
9 |
+
|
10 |
+
# Output paths
|
11 |
+
out_data_file = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/TCGA.csv"
|
12 |
+
out_gene_data_file = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/gene_data/TCGA.csv"
|
13 |
+
out_clinical_data_file = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/clinical_data/TCGA.csv"
|
14 |
+
json_path = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/cohort_info.json"
|
15 |
+
|
16 |
+
# 1. Check TCGA directories for PTSD-related data
|
17 |
+
all_dirs = ['CrawlData.ipynb', '.DS_Store', 'TCGA_lower_grade_glioma_and_glioblastoma_(GBMLGG)', 'TCGA_Uterine_Carcinosarcoma_(UCS)', 'TCGA_Thyroid_Cancer_(THCA)', 'TCGA_Thymoma_(THYM)', 'TCGA_Testicular_Cancer_(TGCT)', 'TCGA_Stomach_Cancer_(STAD)', 'TCGA_Sarcoma_(SARC)', 'TCGA_Rectal_Cancer_(READ)', 'TCGA_Prostate_Cancer_(PRAD)', 'TCGA_Pheochromocytoma_Paraganglioma_(PCPG)', 'TCGA_Pancreatic_Cancer_(PAAD)', 'TCGA_Ovarian_Cancer_(OV)', 'TCGA_Ocular_melanomas_(UVM)', 'TCGA_Mesothelioma_(MESO)', 'TCGA_Melanoma_(SKCM)', 'TCGA_Lung_Squamous_Cell_Carcinoma_(LUSC)', 'TCGA_Lung_Cancer_(LUNG)', 'TCGA_Lung_Adenocarcinoma_(LUAD)', 'TCGA_Lower_Grade_Glioma_(LGG)', 'TCGA_Liver_Cancer_(LIHC)', 'TCGA_Large_Bcell_Lymphoma_(DLBC)', 'TCGA_Kidney_Papillary_Cell_Carcinoma_(KIRP)', 'TCGA_Kidney_Clear_Cell_Carcinoma_(KIRC)', 'TCGA_Kidney_Chromophobe_(KICH)', 'TCGA_Head_and_Neck_Cancer_(HNSC)', 'TCGA_Glioblastoma_(GBM)', 'TCGA_Esophageal_Cancer_(ESCA)', 'TCGA_Endometrioid_Cancer_(UCEC)', 'TCGA_Colon_and_Rectal_Cancer_(COADREAD)', 'TCGA_Colon_Cancer_(COAD)', 'TCGA_Cervical_Cancer_(CESC)', 'TCGA_Breast_Cancer_(BRCA)', 'TCGA_Bladder_Cancer_(BLCA)', 'TCGA_Bile_Duct_Cancer_(CHOL)', 'TCGA_Adrenocortical_Cancer_(ACC)', 'TCGA_Acute_Myeloid_Leukemia_(LAML)']
|
18 |
+
|
19 |
+
# No directories contain PTSD-related data since TCGA is a cancer database
|
20 |
+
is_gene_available = False
|
21 |
+
is_trait_available = False
|
22 |
+
|
23 |
+
# Record that no suitable data is available
|
24 |
+
validate_and_save_cohort_info(
|
25 |
+
is_final=False,
|
26 |
+
cohort="TCGA",
|
27 |
+
info_path=json_path,
|
28 |
+
is_gene_available=is_gene_available,
|
29 |
+
is_trait_available=is_trait_available
|
30 |
+
)
|
p3/preprocess/Post-Traumatic_Stress_Disorder/gene_data/GSE114852.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Post-Traumatic_Stress_Disorder/gene_data/GSE199841.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Prostate_Cancer/clinical_data/GSE125341.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,GSM3569269,GSM3569270,GSM3569271,GSM3569272,GSM3569273,GSM3569274,GSM3569283,GSM3569284,GSM3569285,GSM3569286,GSM3569287,GSM3569288,GSM7032051,GSM7032052,GSM7032053,GSM7032054,GSM7032055,GSM7032056,GSM7032057,GSM7032058,GSM7032059,GSM7032060,GSM7032061,GSM7032124,GSM7032125,GSM7032126,GSM7032127,GSM7032128,GSM7032129,GSM7032130,GSM7032131,GSM7032132,GSM7032133,GSM7032134,GSM7032135,GSM7032136,GSM7032137
|
2 |
+
Prostate_Cancer,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,,,,,,,,,,,,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
|
p3/preprocess/Prostate_Cancer/clinical_data/GSE178631.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,GSM5394875,GSM5394876,GSM5394877,GSM5394878,GSM5394879,GSM5394880,GSM5394881,GSM5394882,GSM5394883,GSM5394884,GSM5394885,GSM5394886,GSM5394887,GSM5394888,GSM5394889,GSM5394890,GSM5394891,GSM5394892,GSM5394893,GSM5394894,GSM5394895,GSM5394896,GSM5394897,GSM5394898,GSM5394899,GSM5394900,GSM5394901,GSM5394902,GSM5394903,GSM5394904,GSM5394905,GSM5394906,GSM5394907,GSM5394908,GSM5394909,GSM5394910,GSM5394911,GSM5394912,GSM5394913,GSM5394914,GSM5394915,GSM5394916,GSM5394917,GSM5394918,GSM5394919,GSM5394920,GSM5394921,GSM5394922,GSM5394923,GSM5394924,GSM5394925,GSM5394926,GSM5394927,GSM5394928,GSM5394929,GSM5394930,GSM5394931,GSM5394932,GSM5394933,GSM5394934,GSM5394935,GSM5394936,GSM5394937,GSM5394938,GSM5394939,GSM5394940,GSM5394941,GSM5394942,GSM5394943,GSM5394944,GSM5394945,GSM5394946,GSM5394947,GSM5394948,GSM5394949,GSM5394950,GSM5394951,GSM5394952,GSM5394953,GSM5394954,GSM5394955,GSM5394956,GSM5394957,GSM5394958,GSM5394959,GSM5394960,GSM5394961,GSM5394962,GSM5394963,GSM5394964,GSM5394965,GSM5394966,GSM5394967,GSM5394968,GSM5394969,GSM5394970,GSM5394971,GSM5394972,GSM5394973,GSM5394974,GSM5394975,GSM5394976,GSM5394977,GSM5394978,GSM5394979,GSM5394980,GSM5394981,GSM5394982,GSM5394983,GSM5394984,GSM5394985,GSM5394986,GSM5394987,GSM5394988,GSM5394989,GSM5394990,GSM5394991,GSM5394992,GSM5394993,GSM5394994,GSM5394995,GSM5394996,GSM5394997,GSM5394998,GSM5394999,GSM5395000,GSM5395001,GSM5395002,GSM5395003,GSM5395004,GSM5395005,GSM5395006,GSM5395007,GSM5395008,GSM5395009,GSM5395010,GSM5395011,GSM5395012,GSM5395013,GSM5395014,GSM5395015
|
2 |
+
Prostate_Cancer,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,,,1.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0
|
p3/preprocess/Prostate_Cancer/clinical_data/GSE200879.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,GSM6045848,GSM6045849,GSM6045850,GSM6045851,GSM6045852,GSM6045853,GSM6045854,GSM6045855,GSM6045856,GSM6045857,GSM6045858,GSM6045859,GSM6045860,GSM6045861,GSM6045862,GSM6045863,GSM6045864,GSM6045865,GSM6045866,GSM6045867,GSM6045868,GSM6045869,GSM6045870,GSM6045871,GSM6045872,GSM6045873,GSM6045874,GSM6045875,GSM6045876,GSM6045877,GSM6045878,GSM6045879,GSM6045880,GSM6045881,GSM6045882,GSM6045883,GSM6045884,GSM6045885,GSM6045886,GSM6045887,GSM6045888,GSM6045889,GSM6045890,GSM6045891,GSM6045892,GSM6045893,GSM6045894,GSM6045895,GSM6045896,GSM6045897,GSM6045898,GSM6045899,GSM6045900,GSM6045901,GSM6045902,GSM6045903,GSM6045904,GSM6045905,GSM6045906,GSM6045907,GSM6045908,GSM6045909,GSM6045910,GSM6045911,GSM6045912,GSM6045913,GSM6045914,GSM6045915,GSM6045916,GSM6045917,GSM6045918,GSM6045919,GSM6045920,GSM6045921,GSM6045922,GSM6045923,GSM6045924,GSM6045925,GSM6045926,GSM6045927,GSM6045928,GSM6045929,GSM6045930,GSM6045931,GSM6045932,GSM6045933,GSM6045934,GSM6045935,GSM6045936,GSM6045937,GSM6045938,GSM6045939,GSM6045940,GSM6045941,GSM6045942,GSM6045943,GSM6045944,GSM6045945,GSM6045946,GSM6045947,GSM6045948,GSM6045949,GSM6045950,GSM6045951,GSM6045952,GSM6045953,GSM6045954,GSM6045955,GSM6045956,GSM6045957,GSM6045958,GSM6045959,GSM6045960,GSM6045961,GSM6045962,GSM6045963,GSM6045964,GSM6045965,GSM6045966,GSM6045967,GSM6045968,GSM6045969,GSM6045970,GSM6045971,GSM6045972,GSM6045973,GSM6045974,GSM6045975,GSM6045976,GSM6045977,GSM6045978,GSM6045979,GSM6045980,GSM6045981,GSM6045982,GSM6045983,GSM6045984
|
2 |
+
Prostate_Cancer,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
|
p3/preprocess/Prostate_Cancer/clinical_data/GSE201805.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
,GSM6071779,GSM6071780,GSM6071781,GSM6071782,GSM6071783,GSM6071784,GSM6071785,GSM6071786,GSM6071787,GSM6071788,GSM6071789,GSM6071790,GSM6071791,GSM6071792,GSM6071793,GSM6071794,GSM6071795,GSM6071796,GSM6071797,GSM6071798,GSM6071799,GSM6071800,GSM6071801,GSM6071802,GSM6071803,GSM6071804,GSM6071805,GSM6071806,GSM6071807,GSM6071808,GSM6071809,GSM6071810,GSM6071811,GSM6071812,GSM6071813,GSM6071814,GSM6071815,GSM6071816,GSM6071817,GSM6071818,GSM6071819,GSM6071820,GSM6071821,GSM6071822,GSM6071823,GSM6071824,GSM6071825,GSM6071826,GSM6071827,GSM6071828,GSM6071829,GSM6071830,GSM6071831,GSM6071832,GSM6071833,GSM6071834,GSM6071835,GSM6071836,GSM6071837,GSM6071838,GSM6071839,GSM6071840,GSM6071841,GSM6071842,GSM6071843,GSM6071844,GSM6071845,GSM6071846,GSM6071847,GSM6071848,GSM6071849,GSM6071850,GSM6071851,GSM6071852,GSM6071853,GSM6071854,GSM6071855,GSM6071856,GSM6071857,GSM6071858,GSM6071859,GSM6071860,GSM6071861,GSM6071862,GSM6071863,GSM6071864,GSM6071865,GSM6071866,GSM6071867,GSM6071868,GSM6071869,GSM6071870,GSM6071871,GSM6071872,GSM6071873,GSM6071874,GSM6071875,GSM6071876,GSM6071877,GSM6071878,GSM6071879,GSM6071880,GSM6071881,GSM6071882,GSM6071883,GSM6071884,GSM6071885,GSM6071886,GSM6071887,GSM6071888,GSM6071889,GSM6071890,GSM6071891,GSM6071892,GSM6071893,GSM6071894,GSM6071895,GSM6071896,GSM6071897,GSM6071898,GSM6071899,GSM6071900,GSM6071901,GSM6071902,GSM6071903,GSM6071904,GSM6071905,GSM6071906,GSM6071907,GSM6071908,GSM6071909,GSM6071910,GSM6071911,GSM6071912,GSM6071913,GSM6071914,GSM6071915,GSM6071916,GSM6071917,GSM6071918,GSM6071919,GSM6071920,GSM6071921,GSM6071922,GSM6071923,GSM6071924,GSM6071925,GSM6071926,GSM6071927,GSM6071928,GSM6071929,GSM6071930,GSM6071931,GSM6071932,GSM6071933,GSM6071934,GSM6071935,GSM6071936,GSM6071937,GSM6071938
|
2 |
+
Prostate_Cancer,0.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,,1.0,1.0,1.0,0.0,1.0,,0.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,,1.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,,1.0,0.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0
|
3 |
+
Age,61.0,48.0,69.0,74.0,56.0,66.0,58.0,69.0,48.0,51.0,59.0,59.0,65.0,64.0,66.0,50.0,67.0,60.0,69.0,62.0,55.0,56.0,67.0,77.0,65.0,66.0,69.0,49.0,72.0,62.0,60.0,50.0,79.0,74.0,63.0,39.0,90.0,65.0,56.0,50.0,47.0,58.0,81.0,66.0,66.0,,54.0,57.0,64.0,66.0,70.0,,58.0,54.0,,59.0,77.0,51.0,88.0,71.0,60.0,75.0,65.0,53.0,72.0,70.0,64.0,59.0,66.0,62.0,70.0,64.0,54.0,41.0,63.0,56.0,,57.0,69.0,54.0,64.0,67.0,63.0,64.0,78.0,56.0,57.0,,50.0,76.0,77.0,68.0,71.0,58.0,71.0,51.0,64.0,58.0,52.0,63.0,51.0,52.0,47.0,66.0,49.0,53.0,50.0,66.0,80.0,72.0,70.0,47.0,58.0,64.0,56.0,54.0,57.0,68.0,60.0,67.0,53.0,68.0,50.0,74.0,52.0,48.0,51.0,59.0,67.0,73.0,57.0,59.0,65.0,56.0,66.0,62.0,,78.0,54.0,51.0,55.0,71.0,48.0,64.0,69.0,75.0,70.0,84.0,56.0,48.0,74.0,48.0,54.0,45.0,72.0,62.0,62.0,,73.0,70.0
|
p3/preprocess/Prostate_Cancer/clinical_data/GSE206793.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
,GSM6262785,GSM6262786,GSM6262787,GSM6262788,GSM6262789,GSM6262790,GSM6262791,GSM6262792,GSM6262793,GSM6262794,GSM6262795,GSM6262796,GSM6262797,GSM6262798,GSM6262799,GSM6262800,GSM6262801,GSM6262802,GSM6262803,GSM6262804,GSM6262805,GSM6262806,GSM6262807,GSM6262808,GSM6262809,GSM6262810,GSM6262811,GSM6262812,GSM6262813,GSM6262814,GSM6262815,GSM6262816,GSM6262817,GSM6262818,GSM6262819,GSM6262820,GSM6262821,GSM6262822,GSM6262823,GSM6262824,GSM6262825,GSM6262826,GSM6262827,GSM6262828,GSM6262829,GSM6262830,GSM6262831,GSM6262832,GSM6262833,GSM6262834,GSM6262835,GSM6262836,GSM6262837,GSM6262838,GSM6262839,GSM6262840,GSM6262841,GSM6262842,GSM6262843,GSM6262844,GSM6262845,GSM6262846,GSM6262847,GSM6262848,GSM6262849,GSM6262850,GSM6262851,GSM6262852,GSM6262853,GSM6262854,GSM6262855,GSM6262856,GSM6262857,GSM6262858,GSM6262859,GSM6262860,GSM6262861,GSM6262862,GSM6262863,GSM6262864,GSM6262865,GSM6262866,GSM6262867,GSM6262868,GSM6262869,GSM6262870,GSM6262871,GSM6262872,GSM6262873,GSM6262874,GSM6262875,GSM6262876,GSM6262877,GSM6262878,GSM6262879,GSM6262880,GSM6262881,GSM6262882,GSM6262883,GSM6262884,GSM6262885,GSM6262886,GSM6262887,GSM6262888,GSM6262889,GSM6262890,GSM6262891,GSM6262892,GSM6262893,GSM6262894,GSM6262895,GSM6262896,GSM6262897,GSM6262898,GSM6262899,GSM6262900,GSM6262901,GSM6262902,GSM6262903,GSM6262904,GSM6262905,GSM6262906,GSM6262907,GSM6262908,GSM6262909,GSM6262910,GSM6262911,GSM6262912,GSM6262913,GSM6262914,GSM6262915,GSM6262916,GSM6262917,GSM6262918,GSM6262919,GSM6262920,GSM6262921,GSM6262922,GSM6262923,GSM6262924,GSM6262925,GSM6262926,GSM6262927,GSM6262928,GSM6262929,GSM6262930,GSM6262931,GSM6262932,GSM6262933,GSM6262934,GSM6262935,GSM6262936
|
2 |
+
Prostate_Cancer,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0
|
3 |
+
Age,60.0,67.0,75.0,66.0,58.0,60.0,64.0,67.0,65.0,70.0,67.0,61.0,63.0,65.0,60.0,56.0,57.0,68.0,59.0,71.0,68.0,68.0,62.0,58.0,66.0,61.0,70.0,61.0,76.0,64.0,64.0,64.0,76.0,68.0,67.0,64.0,58.0,62.0,65.0,48.0,73.0,65.0,58.0,,59.0,72.0,48.0,68.0,71.0,68.0,66.0,62.0,55.0,66.0,63.0,79.0,80.0,67.0,62.0,63.0,78.0,61.0,64.0,64.0,80.0,67.0,56.0,67.0,64.0,62.0,55.0,82.0,62.0,69.0,60.0,68.0,73.0,62.0,73.0,64.0,66.0,71.0,80.0,,56.0,66.0,58.0,74.0,56.0,48.0,63.0,77.0,68.0,68.0,61.0,78.0,68.0,60.0,73.0,57.0,67.0,83.0,61.0,65.0,66.0,74.0,63.0,68.0,73.0,75.0,65.0,65.0,74.0,66.0,54.0,60.0,59.0,69.0,62.0,61.0,69.0,52.0,49.0,,66.0,67.0,55.0,69.0,59.0,68.0,45.0,59.0,58.0,60.0,68.0,49.0,72.0,58.0,65.0,54.0,68.0,51.0,60.0,57.0,64.0,47.0,66.0,32.0,30.0,29.0,34.0,33.0
|
p3/preprocess/Prostate_Cancer/clinical_data/GSE209954.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
,GSM6411059,GSM6411060,GSM6411061,GSM6411062,GSM6411063,GSM6411064,GSM6411065,GSM6411066,GSM6411067,GSM6411068,GSM6411069,GSM6411070,GSM6411071,GSM6411072,GSM6411073,GSM6411074,GSM6411075,GSM6411076,GSM6411077,GSM6411078,GSM6411079,GSM6411080,GSM6411081,GSM6411082,GSM6411083,GSM6411084,GSM6411085,GSM6411086,GSM6411087,GSM6411088,GSM6411089,GSM6411090,GSM6411091,GSM6411092,GSM6411093,GSM6411094,GSM6411095,GSM6411096,GSM6411097,GSM6411098,GSM6411099,GSM6411100,GSM6411101,GSM6411102,GSM6411103,GSM6411104,GSM6411105,GSM6411106,GSM6411107,GSM6411108,GSM6411109,GSM6411110,GSM6411111,GSM6411112,GSM6411113,GSM6411114,GSM6411115,GSM6411116,GSM6411117,GSM6411118,GSM6411119,GSM6411120,GSM6411121,GSM6411122,GSM6411123,GSM6411124,GSM6411125,GSM6411126,GSM6411127,GSM6411128,GSM6411129,GSM6411130,GSM6411131,GSM6411132,GSM6411133,GSM6411134,GSM6411135,GSM6411136,GSM6411137,GSM6411138,GSM6411139,GSM6411140,GSM6411141,GSM6411142,GSM6411143,GSM6411144,GSM6411145,GSM6411146,GSM6411147,GSM6411148,GSM6411149,GSM6411150,GSM6411151,GSM6411152,GSM6411153,GSM6411154,GSM6411155,GSM6411156,GSM6411157,GSM6411158,GSM6411159,GSM6411160,GSM6411161,GSM6411162,GSM6411163,GSM6411164,GSM6411165,GSM6411166,GSM6411167,GSM6411168,GSM6411169,GSM6411170,GSM6411171,GSM6411172,GSM6411173,GSM6411174,GSM6411175,GSM6411176,GSM6411177,GSM6411178,GSM6411179,GSM6411180,GSM6411181,GSM6411182,GSM6411183,GSM6411184,GSM6411185,GSM6411186,GSM6411187,GSM6411188,GSM6411189,GSM6411190,GSM6411191,GSM6411192,GSM6411193,GSM6411194,GSM6411195,GSM6411196,GSM6411197,GSM6411198,GSM6411199,GSM6411200,GSM6411201,GSM6411202,GSM6411203,GSM6411204,GSM6411205,GSM6411206,GSM6411207,GSM6411208,GSM6411209,GSM6411210,GSM6411211,GSM6411212,GSM6411213,GSM6411214,GSM6411215,GSM6411216,GSM6411217,GSM6411218,GSM6411219,GSM6411220,GSM6411221,GSM6411222,GSM6411223,GSM6411224,GSM6411225,GSM6411226,GSM6411227,GSM6411228,GSM6411229,GSM6411230,GSM6411231,GSM6411232,GSM6411233,GSM6411234,GSM6411235,GSM6411236,GSM6411237,GSM6411238,GSM6411239,GSM6411240,GSM6411241,GSM6411242,GSM6411243,GSM6411244,GSM6411245,GSM6411246,GSM6411247,GSM6411248,GSM6411249,GSM6411250,GSM6411251,GSM6411252,GSM6411253,GSM6411254,GSM6411255,GSM6411256,GSM6411257,GSM6411258,GSM6411259,GSM6411260,GSM6411261,GSM6411262,GSM6411263,GSM6411264,GSM6411265,GSM6411266,GSM6411267,GSM6411268,GSM6411269,GSM6411270,GSM6411271,GSM6411272,GSM6411273,GSM6411274,GSM6411275,GSM6411276,GSM6411277,GSM6411278,GSM6411279,GSM6411280,GSM6411281,GSM6411282,GSM6411283,GSM6411284
|
2 |
+
Prostate_Cancer,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0
|
3 |
+
Age,45.0,67.0,47.0,68.0,70.0,61.0,62.0,51.0,69.0,65.0,74.0,71.0,58.0,67.0,62.0,69.0,64.0,71.0,61.0,58.0,67.0,55.0,55.0,71.0,61.0,71.0,70.0,59.0,60.0,56.0,58.0,75.0,70.0,51.0,47.0,69.0,69.0,72.0,51.0,54.0,54.0,61.0,59.0,56.0,62.0,76.0,61.0,55.0,60.0,64.0,66.0,56.0,49.0,69.0,62.0,60.0,58.0,46.0,63.0,61.0,74.0,54.0,58.0,59.0,59.0,71.0,62.0,67.0,59.0,73.0,47.0,65.0,65.0,63.0,49.0,54.0,67.0,57.0,64.0,66.0,65.0,66.0,58.0,66.0,69.0,52.0,67.0,66.0,66.0,58.0,69.0,65.0,59.0,62.0,50.0,61.0,70.0,61.0,51.0,55.0,65.0,67.0,65.0,57.0,67.0,56.0,74.0,52.0,49.0,62.0,68.0,81.0,67.0,66.0,72.0,59.0,56.0,68.0,56.0,61.0,62.0,41.0,60.0,70.0,47.0,70.0,59.0,59.0,49.0,56.0,70.0,75.0,59.0,73.0,75.0,57.0,63.0,69.0,54.0,52.0,83.0,62.0,70.0,55.0,50.0,59.0,67.0,49.0,71.0,70.0,66.0,59.0,56.0,70.0,64.0,71.0,67.0,47.0,56.0,55.0,61.0,53.0,72.0,54.0,77.0,75.0,53.0,66.0,59.0,58.0,66.0,76.0,63.0,59.0,75.0,66.0,56.0,49.0,68.0,72.0,48.0,65.0,75.0,63.0,53.0,76.0,77.0,73.0,62.0,63.0,56.0,73.0,74.0,64.0,66.0,79.0,64.0,74.0,61.0,48.0,67.0,50.0,67.0,64.0,68.0,53.0,68.0,63.0,74.0,61.0,62.0,68.0,65.0,72.0,75.0,69.0,47.0,56.0,74.0,80.0,51.0,54.0,73.0,68.0,71.0,64.0
|
p3/preprocess/Prostate_Cancer/clinical_data/GSE248619.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,GSM7918062,GSM7918063,GSM7918064,GSM7918065,GSM7918066,GSM7918067,GSM7918068,GSM7918069,GSM7918070,GSM7918071,GSM7918072,GSM7918073,GSM7918074,GSM7918075,GSM7918076,GSM7918077,GSM7918078,GSM7918079,GSM7918080,GSM7918081,GSM7918082,GSM7918083,GSM7918084,GSM7918085,GSM7918086,GSM7918087,GSM7918088,GSM7918089,GSM7918090,GSM7918091,GSM7918092,GSM7918093,GSM7918094,GSM7918095,GSM7918096,GSM7918097,GSM7918098,GSM7918099,GSM7918100,GSM7918101,GSM7918102,GSM7918103,GSM7918104,GSM7918105,GSM7918106,GSM7918107,GSM7918108,GSM7918109,GSM7918110,GSM7918111,GSM7918112,GSM7918113,GSM7918114,GSM7918115,GSM7918116,GSM7918117,GSM7918118,GSM7918119,GSM7918120,GSM7918121,GSM7918122,GSM7918123,GSM7918124,GSM7918125,GSM7918126,GSM7918127,GSM7918128,GSM7918129,GSM7918130,GSM7918131,GSM7918132,GSM7918133,GSM7918134,GSM7918135,GSM7918136,GSM7918137,GSM7918138,GSM7918139,GSM7918140,GSM7918141,GSM7918142,GSM7918143,GSM7918144,GSM7918145,GSM7918146,GSM7918147,GSM7918148,GSM7918149,GSM7918150,GSM7918151,GSM7918152,GSM7918153,GSM7918154,GSM7918155,GSM7918156,GSM7918157,GSM7918158,GSM7918159,GSM7918160,GSM7918161
|
2 |
+
Prostate_Cancer,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0
|
p3/preprocess/Prostate_Cancer/clinical_data/TCGA.csv
ADDED
@@ -0,0 +1,567 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
sampleID,Prostate_Cancer,Age,Gender
|
2 |
+
TCGA-2A-A8VL-01,1,51,1
|
3 |
+
TCGA-2A-A8VO-01,1,57,1
|
4 |
+
TCGA-2A-A8VT-01,1,47,1
|
5 |
+
TCGA-2A-A8VV-01,1,52,1
|
6 |
+
TCGA-2A-A8VX-01,1,70,1
|
7 |
+
TCGA-2A-A8W1-01,1,54,1
|
8 |
+
TCGA-2A-A8W3-01,1,69,1
|
9 |
+
TCGA-2A-AAYF-01,1,57,1
|
10 |
+
TCGA-2A-AAYO-01,1,57,1
|
11 |
+
TCGA-2A-AAYU-01,1,56,1
|
12 |
+
TCGA-4L-AA1F-01,1,64,1
|
13 |
+
TCGA-CH-5737-01,1,73,1
|
14 |
+
TCGA-CH-5738-01,1,72,1
|
15 |
+
TCGA-CH-5739-01,1,65,1
|
16 |
+
TCGA-CH-5740-01,1,57,1
|
17 |
+
TCGA-CH-5741-01,1,56,1
|
18 |
+
TCGA-CH-5743-01,1,66,1
|
19 |
+
TCGA-CH-5744-01,1,64,1
|
20 |
+
TCGA-CH-5745-01,1,68,1
|
21 |
+
TCGA-CH-5746-01,1,57,1
|
22 |
+
TCGA-CH-5748-01,1,64,1
|
23 |
+
TCGA-CH-5750-01,1,72,1
|
24 |
+
TCGA-CH-5751-01,1,68,1
|
25 |
+
TCGA-CH-5752-01,1,66,1
|
26 |
+
TCGA-CH-5753-01,1,70,1
|
27 |
+
TCGA-CH-5754-01,1,65,1
|
28 |
+
TCGA-CH-5761-01,1,61,1
|
29 |
+
TCGA-CH-5761-11,0,61,1
|
30 |
+
TCGA-CH-5762-01,1,60,1
|
31 |
+
TCGA-CH-5762-11,0,60,1
|
32 |
+
TCGA-CH-5763-01,1,66,1
|
33 |
+
TCGA-CH-5763-11,0,66,1
|
34 |
+
TCGA-CH-5764-01,1,66,1
|
35 |
+
TCGA-CH-5764-11,0,66,1
|
36 |
+
TCGA-CH-5765-01,1,55,1
|
37 |
+
TCGA-CH-5765-11,0,55,1
|
38 |
+
TCGA-CH-5766-01,1,55,1
|
39 |
+
TCGA-CH-5766-11,0,55,1
|
40 |
+
TCGA-CH-5767-01,1,66,1
|
41 |
+
TCGA-CH-5767-11,0,66,1
|
42 |
+
TCGA-CH-5768-01,1,72,1
|
43 |
+
TCGA-CH-5768-11,0,72,1
|
44 |
+
TCGA-CH-5769-01,1,48,1
|
45 |
+
TCGA-CH-5769-11,0,48,1
|
46 |
+
TCGA-CH-5771-01,1,63,1
|
47 |
+
TCGA-CH-5771-11,0,63,1
|
48 |
+
TCGA-CH-5772-01,1,63,1
|
49 |
+
TCGA-CH-5772-11,0,63,1
|
50 |
+
TCGA-CH-5788-01,1,69,1
|
51 |
+
TCGA-CH-5789-01,1,61,1
|
52 |
+
TCGA-CH-5790-01,1,64,1
|
53 |
+
TCGA-CH-5791-01,1,72,1
|
54 |
+
TCGA-CH-5792-01,1,57,1
|
55 |
+
TCGA-CH-5794-01,1,65,1
|
56 |
+
TCGA-EJ-5494-01,1,50,1
|
57 |
+
TCGA-EJ-5495-01,1,68,1
|
58 |
+
TCGA-EJ-5496-01,1,59,1
|
59 |
+
TCGA-EJ-5497-01,1,47,1
|
60 |
+
TCGA-EJ-5498-01,1,56,1
|
61 |
+
TCGA-EJ-5499-01,1,61,1
|
62 |
+
TCGA-EJ-5501-01,1,55,1
|
63 |
+
TCGA-EJ-5502-01,1,50,1
|
64 |
+
TCGA-EJ-5503-01,1,50,1
|
65 |
+
TCGA-EJ-5504-01,1,65,1
|
66 |
+
TCGA-EJ-5505-01,1,57,1
|
67 |
+
TCGA-EJ-5506-01,1,67,1
|
68 |
+
TCGA-EJ-5507-01,1,54,1
|
69 |
+
TCGA-EJ-5508-01,1,65,1
|
70 |
+
TCGA-EJ-5509-01,1,63,1
|
71 |
+
TCGA-EJ-5510-01,1,48,1
|
72 |
+
TCGA-EJ-5511-01,1,55,1
|
73 |
+
TCGA-EJ-5512-01,1,46,1
|
74 |
+
TCGA-EJ-5514-01,1,66,1
|
75 |
+
TCGA-EJ-5515-01,1,60,1
|
76 |
+
TCGA-EJ-5516-01,1,49,1
|
77 |
+
TCGA-EJ-5517-01,1,55,1
|
78 |
+
TCGA-EJ-5518-01,1,66,1
|
79 |
+
TCGA-EJ-5519-01,1,64,1
|
80 |
+
TCGA-EJ-5521-01,1,63,1
|
81 |
+
TCGA-EJ-5522-01,1,51,1
|
82 |
+
TCGA-EJ-5524-01,1,57,1
|
83 |
+
TCGA-EJ-5525-01,1,67,1
|
84 |
+
TCGA-EJ-5526-01,1,56,1
|
85 |
+
TCGA-EJ-5527-01,1,69,1
|
86 |
+
TCGA-EJ-5530-01,1,61,1
|
87 |
+
TCGA-EJ-5531-01,1,62,1
|
88 |
+
TCGA-EJ-5532-01,1,57,1
|
89 |
+
TCGA-EJ-5542-01,1,60,1
|
90 |
+
TCGA-EJ-7115-01,1,65,1
|
91 |
+
TCGA-EJ-7115-11,0,65,1
|
92 |
+
TCGA-EJ-7123-01,1,59,1
|
93 |
+
TCGA-EJ-7123-11,0,59,1
|
94 |
+
TCGA-EJ-7125-01,1,44,1
|
95 |
+
TCGA-EJ-7125-11,0,44,1
|
96 |
+
TCGA-EJ-7218-01,1,71,1
|
97 |
+
TCGA-EJ-7312-01,1,58,1
|
98 |
+
TCGA-EJ-7314-01,1,62,1
|
99 |
+
TCGA-EJ-7314-11,0,62,1
|
100 |
+
TCGA-EJ-7315-01,1,68,1
|
101 |
+
TCGA-EJ-7315-11,0,68,1
|
102 |
+
TCGA-EJ-7317-01,1,71,1
|
103 |
+
TCGA-EJ-7317-11,0,71,1
|
104 |
+
TCGA-EJ-7318-01,1,51,1
|
105 |
+
TCGA-EJ-7321-01,1,57,1
|
106 |
+
TCGA-EJ-7321-11,0,57,1
|
107 |
+
TCGA-EJ-7325-01,1,63,1
|
108 |
+
TCGA-EJ-7327-01,1,61,1
|
109 |
+
TCGA-EJ-7327-11,0,61,1
|
110 |
+
TCGA-EJ-7328-01,1,70,1
|
111 |
+
TCGA-EJ-7328-11,0,70,1
|
112 |
+
TCGA-EJ-7330-01,1,68,1
|
113 |
+
TCGA-EJ-7330-11,0,68,1
|
114 |
+
TCGA-EJ-7331-01,1,64,1
|
115 |
+
TCGA-EJ-7331-11,0,64,1
|
116 |
+
TCGA-EJ-7781-01,1,65,1
|
117 |
+
TCGA-EJ-7781-11,0,65,1
|
118 |
+
TCGA-EJ-7782-01,1,71,1
|
119 |
+
TCGA-EJ-7782-11,0,71,1
|
120 |
+
TCGA-EJ-7783-01,1,70,1
|
121 |
+
TCGA-EJ-7783-11,0,70,1
|
122 |
+
TCGA-EJ-7784-01,1,63,1
|
123 |
+
TCGA-EJ-7784-11,0,63,1
|
124 |
+
TCGA-EJ-7785-01,1,54,1
|
125 |
+
TCGA-EJ-7785-11,0,54,1
|
126 |
+
TCGA-EJ-7786-01,1,62,1
|
127 |
+
TCGA-EJ-7786-11,0,62,1
|
128 |
+
TCGA-EJ-7788-01,1,53,1
|
129 |
+
TCGA-EJ-7789-01,1,66,1
|
130 |
+
TCGA-EJ-7789-11,0,66,1
|
131 |
+
TCGA-EJ-7791-01,1,67,1
|
132 |
+
TCGA-EJ-7792-01,1,53,1
|
133 |
+
TCGA-EJ-7792-11,0,53,1
|
134 |
+
TCGA-EJ-7793-01,1,49,1
|
135 |
+
TCGA-EJ-7793-11,0,49,1
|
136 |
+
TCGA-EJ-7794-01,1,67,1
|
137 |
+
TCGA-EJ-7794-11,0,67,1
|
138 |
+
TCGA-EJ-7797-01,1,53,1
|
139 |
+
TCGA-EJ-7797-11,0,53,1
|
140 |
+
TCGA-EJ-8468-01,1,63,1
|
141 |
+
TCGA-EJ-8469-01,1,46,1
|
142 |
+
TCGA-EJ-8470-01,1,58,1
|
143 |
+
TCGA-EJ-8472-01,1,63,1
|
144 |
+
TCGA-EJ-8474-01,1,69,1
|
145 |
+
TCGA-EJ-A46B-01,1,66,1
|
146 |
+
TCGA-EJ-A46D-01,1,53,1
|
147 |
+
TCGA-EJ-A46E-01,1,57,1
|
148 |
+
TCGA-EJ-A46F-01,1,57,1
|
149 |
+
TCGA-EJ-A46G-01,1,71,1
|
150 |
+
TCGA-EJ-A46H-01,1,60,1
|
151 |
+
TCGA-EJ-A46I-01,1,57,1
|
152 |
+
TCGA-EJ-A65B-01,1,55,1
|
153 |
+
TCGA-EJ-A65D-01,1,66,1
|
154 |
+
TCGA-EJ-A65E-01,1,67,1
|
155 |
+
TCGA-EJ-A65F-01,1,59,1
|
156 |
+
TCGA-EJ-A65G-01,1,57,1
|
157 |
+
TCGA-EJ-A65J-01,1,62,1
|
158 |
+
TCGA-EJ-A65M-01,1,65,1
|
159 |
+
TCGA-EJ-A6RA-01,1,70,1
|
160 |
+
TCGA-EJ-A6RC-01,1,64,1
|
161 |
+
TCGA-EJ-A7NF-01,1,56,1
|
162 |
+
TCGA-EJ-A7NG-01,1,64,1
|
163 |
+
TCGA-EJ-A7NH-01,1,56,1
|
164 |
+
TCGA-EJ-A7NJ-01,1,59,1
|
165 |
+
TCGA-EJ-A7NK-01,1,58,1
|
166 |
+
TCGA-EJ-A7NM-01,1,64,1
|
167 |
+
TCGA-EJ-A7NN-01,1,61,1
|
168 |
+
TCGA-EJ-A8FN-01,1,58,1
|
169 |
+
TCGA-EJ-A8FO-01,1,51,1
|
170 |
+
TCGA-EJ-A8FO-11,0,51,1
|
171 |
+
TCGA-EJ-A8FP-01,1,59,1
|
172 |
+
TCGA-EJ-A8FS-01,1,66,1
|
173 |
+
TCGA-EJ-A8FU-01,1,64,1
|
174 |
+
TCGA-EJ-AB20-01,1,61,1
|
175 |
+
TCGA-EJ-AB27-01,1,51,1
|
176 |
+
TCGA-FC-7708-01,1,52,1
|
177 |
+
TCGA-FC-7961-01,1,62,1
|
178 |
+
TCGA-FC-A4JI-01,1,70,1
|
179 |
+
TCGA-FC-A5OB-01,1,53,1
|
180 |
+
TCGA-FC-A66V-01,1,74,1
|
181 |
+
TCGA-FC-A6HD-01,1,77,1
|
182 |
+
TCGA-FC-A8O0-01,1,68,1
|
183 |
+
TCGA-G9-6329-01,1,67,1
|
184 |
+
TCGA-G9-6332-01,1,55,1
|
185 |
+
TCGA-G9-6332-11,0,55,1
|
186 |
+
TCGA-G9-6333-01,1,66,1
|
187 |
+
TCGA-G9-6333-11,0,66,1
|
188 |
+
TCGA-G9-6336-01,1,57,1
|
189 |
+
TCGA-G9-6338-01,1,61,1
|
190 |
+
TCGA-G9-6339-01,1,58,1
|
191 |
+
TCGA-G9-6342-01,1,61,1
|
192 |
+
TCGA-G9-6342-11,0,61,1
|
193 |
+
TCGA-G9-6343-01,1,62,1
|
194 |
+
TCGA-G9-6347-01,1,59,1
|
195 |
+
TCGA-G9-6348-01,1,68,1
|
196 |
+
TCGA-G9-6348-11,0,68,1
|
197 |
+
TCGA-G9-6351-01,1,51,1
|
198 |
+
TCGA-G9-6351-11,0,51,1
|
199 |
+
TCGA-G9-6353-01,1,58,1
|
200 |
+
TCGA-G9-6353-11,0,58,1
|
201 |
+
TCGA-G9-6354-01,1,55,1
|
202 |
+
TCGA-G9-6356-01,1,60,1
|
203 |
+
TCGA-G9-6356-11,0,60,1
|
204 |
+
TCGA-G9-6361-01,1,61,1
|
205 |
+
TCGA-G9-6362-01,1,57,1
|
206 |
+
TCGA-G9-6362-11,0,57,1
|
207 |
+
TCGA-G9-6363-01,1,64,1
|
208 |
+
TCGA-G9-6363-11,0,64,1
|
209 |
+
TCGA-G9-6364-01,1,72,1
|
210 |
+
TCGA-G9-6364-11,0,72,1
|
211 |
+
TCGA-G9-6365-01,1,71,1
|
212 |
+
TCGA-G9-6365-11,0,71,1
|
213 |
+
TCGA-G9-6366-01,1,61,1
|
214 |
+
TCGA-G9-6367-01,1,60,1
|
215 |
+
TCGA-G9-6367-11,0,60,1
|
216 |
+
TCGA-G9-6369-01,1,55,1
|
217 |
+
TCGA-G9-6370-01,1,52,1
|
218 |
+
TCGA-G9-6371-01,1,58,1
|
219 |
+
TCGA-G9-6373-01,1,68,1
|
220 |
+
TCGA-G9-6373-11,0,68,1
|
221 |
+
TCGA-G9-6377-01,1,61,1
|
222 |
+
TCGA-G9-6378-01,1,54,1
|
223 |
+
TCGA-G9-6379-01,1,68,1
|
224 |
+
TCGA-G9-6384-01,1,53,1
|
225 |
+
TCGA-G9-6384-11,0,53,1
|
226 |
+
TCGA-G9-6385-01,1,66,1
|
227 |
+
TCGA-G9-6385-11,0,66,1
|
228 |
+
TCGA-G9-6494-01,1,66,1
|
229 |
+
TCGA-G9-6494-11,0,66,1
|
230 |
+
TCGA-G9-6496-01,1,61,1
|
231 |
+
TCGA-G9-6496-11,0,61,1
|
232 |
+
TCGA-G9-6498-01,1,53,1
|
233 |
+
TCGA-G9-6499-01,1,66,1
|
234 |
+
TCGA-G9-6499-11,0,66,1
|
235 |
+
TCGA-G9-7509-01,1,48,1
|
236 |
+
TCGA-G9-7510-01,1,66,1
|
237 |
+
TCGA-G9-7519-01,1,58,1
|
238 |
+
TCGA-G9-7521-01,1,52,1
|
239 |
+
TCGA-G9-7522-01,1,49,1
|
240 |
+
TCGA-G9-7523-01,1,44,1
|
241 |
+
TCGA-G9-7525-01,1,64,1
|
242 |
+
TCGA-G9-A9S0-01,1,53,1
|
243 |
+
TCGA-G9-A9S4-01,1,62,1
|
244 |
+
TCGA-G9-A9S7-01,1,55,1
|
245 |
+
TCGA-H9-7775-01,1,68,1
|
246 |
+
TCGA-H9-A6BX-01,1,60,1
|
247 |
+
TCGA-H9-A6BY-01,1,63,1
|
248 |
+
TCGA-HC-7075-01,1,63,1
|
249 |
+
TCGA-HC-7077-01,1,64,1
|
250 |
+
TCGA-HC-7078-01,1,69,1
|
251 |
+
TCGA-HC-7079-01,1,51,1
|
252 |
+
TCGA-HC-7080-01,1,66,1
|
253 |
+
TCGA-HC-7081-01,1,62,1
|
254 |
+
TCGA-HC-7209-01,1,60,1
|
255 |
+
TCGA-HC-7210-01,1,74,1
|
256 |
+
TCGA-HC-7211-01,1,62,1
|
257 |
+
TCGA-HC-7211-11,0,62,1
|
258 |
+
TCGA-HC-7212-01,1,56,1
|
259 |
+
TCGA-HC-7213-01,1,53,1
|
260 |
+
TCGA-HC-7230-01,1,50,1
|
261 |
+
TCGA-HC-7231-01,1,66,1
|
262 |
+
TCGA-HC-7232-01,1,66,1
|
263 |
+
TCGA-HC-7233-01,1,73,1
|
264 |
+
TCGA-HC-7736-01,1,59,1
|
265 |
+
TCGA-HC-7737-01,1,55,1
|
266 |
+
TCGA-HC-7737-11,0,55,1
|
267 |
+
TCGA-HC-7738-01,1,58,1
|
268 |
+
TCGA-HC-7738-11,0,58,1
|
269 |
+
TCGA-HC-7740-01,1,59,1
|
270 |
+
TCGA-HC-7740-11,0,59,1
|
271 |
+
TCGA-HC-7742-01,1,58,1
|
272 |
+
TCGA-HC-7742-11,0,58,1
|
273 |
+
TCGA-HC-7744-01,1,46,1
|
274 |
+
TCGA-HC-7745-01,1,65,1
|
275 |
+
TCGA-HC-7745-11,0,65,1
|
276 |
+
TCGA-HC-7747-01,1,52,1
|
277 |
+
TCGA-HC-7747-11,0,52,1
|
278 |
+
TCGA-HC-7748-01,1,60,1
|
279 |
+
TCGA-HC-7749-01,1,70,1
|
280 |
+
TCGA-HC-7750-01,1,50,1
|
281 |
+
TCGA-HC-7752-01,1,61,1
|
282 |
+
TCGA-HC-7752-11,0,61,1
|
283 |
+
TCGA-HC-7817-01,1,52,1
|
284 |
+
TCGA-HC-7818-01,1,66,1
|
285 |
+
TCGA-HC-7819-01,1,53,1
|
286 |
+
TCGA-HC-7819-11,0,53,1
|
287 |
+
TCGA-HC-7820-01,1,72,1
|
288 |
+
TCGA-HC-7820-11,0,72,1
|
289 |
+
TCGA-HC-7821-01,1,54,1
|
290 |
+
TCGA-HC-8213-01,1,48,1
|
291 |
+
TCGA-HC-8216-01,1,58,1
|
292 |
+
TCGA-HC-8256-01,1,53,1
|
293 |
+
TCGA-HC-8257-01,1,70,1
|
294 |
+
TCGA-HC-8258-01,1,56,1
|
295 |
+
TCGA-HC-8258-11,0,56,1
|
296 |
+
TCGA-HC-8259-01,1,50,1
|
297 |
+
TCGA-HC-8259-11,0,50,1
|
298 |
+
TCGA-HC-8260-01,1,43,1
|
299 |
+
TCGA-HC-8260-11,0,43,1
|
300 |
+
TCGA-HC-8261-01,1,48,1
|
301 |
+
TCGA-HC-8262-01,1,57,1
|
302 |
+
TCGA-HC-8262-11,0,57,1
|
303 |
+
TCGA-HC-8264-01,1,60,1
|
304 |
+
TCGA-HC-8265-01,1,66,1
|
305 |
+
TCGA-HC-8266-01,1,55,1
|
306 |
+
TCGA-HC-A48F-01,1,47,1
|
307 |
+
TCGA-HC-A4ZV-01,1,56,1
|
308 |
+
TCGA-HC-A631-01,1,67,1
|
309 |
+
TCGA-HC-A632-01,1,68,1
|
310 |
+
TCGA-HC-A6AL-01,1,64,1
|
311 |
+
TCGA-HC-A6AN-01,1,67,1
|
312 |
+
TCGA-HC-A6AO-01,1,52,1
|
313 |
+
TCGA-HC-A6AP-01,1,61,1
|
314 |
+
TCGA-HC-A6AQ-01,1,60,1
|
315 |
+
TCGA-HC-A6AS-01,1,70,1
|
316 |
+
TCGA-HC-A6HX-01,1,55,1
|
317 |
+
TCGA-HC-A6HY-01,1,51,1
|
318 |
+
TCGA-HC-A76W-01,1,73,1
|
319 |
+
TCGA-HC-A76X-01,1,62,1
|
320 |
+
TCGA-HC-A8CY-01,1,63,1
|
321 |
+
TCGA-HC-A8D0-01,1,61,1
|
322 |
+
TCGA-HC-A8D1-01,1,68,1
|
323 |
+
TCGA-HC-A9TE-01,1,64,1
|
324 |
+
TCGA-HC-A9TH-01,1,58,1
|
325 |
+
TCGA-HI-7168-01,1,62,1
|
326 |
+
TCGA-HI-7169-01,1,55,1
|
327 |
+
TCGA-HI-7170-01,1,58,1
|
328 |
+
TCGA-HI-7171-01,1,56,1
|
329 |
+
TCGA-J4-8198-01,1,49,1
|
330 |
+
TCGA-J4-8200-01,1,47,1
|
331 |
+
TCGA-J4-A67K-01,1,68,1
|
332 |
+
TCGA-J4-A67L-01,1,54,1
|
333 |
+
TCGA-J4-A67M-01,1,55,1
|
334 |
+
TCGA-J4-A67N-01,1,61,1
|
335 |
+
TCGA-J4-A67O-01,1,59,1
|
336 |
+
TCGA-J4-A67Q-01,1,77,1
|
337 |
+
TCGA-J4-A67R-01,1,65,1
|
338 |
+
TCGA-J4-A67S-01,1,63,1
|
339 |
+
TCGA-J4-A67T-01,1,63,1
|
340 |
+
TCGA-J4-A6G1-01,1,68,1
|
341 |
+
TCGA-J4-A6G3-01,1,57,1
|
342 |
+
TCGA-J4-A6M7-01,1,53,1
|
343 |
+
TCGA-J4-A83I-01,1,63,1
|
344 |
+
TCGA-J4-A83J-01,1,68,1
|
345 |
+
TCGA-J4-A83J-11,0,68,1
|
346 |
+
TCGA-J4-A83K-01,1,52,1
|
347 |
+
TCGA-J4-A83L-01,1,61,1
|
348 |
+
TCGA-J4-A83M-01,1,64,1
|
349 |
+
TCGA-J4-A83N-01,1,57,1
|
350 |
+
TCGA-J4-AATV-01,1,71,1
|
351 |
+
TCGA-J4-AATZ-01,1,66,1
|
352 |
+
TCGA-J4-AAU2-01,1,59,1
|
353 |
+
TCGA-J9-A52B-01,1,62,1
|
354 |
+
TCGA-J9-A52C-01,1,57,1
|
355 |
+
TCGA-J9-A52D-01,1,71,1
|
356 |
+
TCGA-J9-A52E-01,1,65,1
|
357 |
+
TCGA-J9-A8CK-01,1,66,1
|
358 |
+
TCGA-J9-A8CL-01,1,66,1
|
359 |
+
TCGA-J9-A8CM-01,1,66,1
|
360 |
+
TCGA-J9-A8CN-01,1,53,1
|
361 |
+
TCGA-J9-A8CP-01,1,66,1
|
362 |
+
TCGA-KC-A4BL-01,1,65,1
|
363 |
+
TCGA-KC-A4BN-01,1,55,1
|
364 |
+
TCGA-KC-A4BO-01,1,55,1
|
365 |
+
TCGA-KC-A4BR-01,1,75,1
|
366 |
+
TCGA-KC-A4BV-01,1,66,1
|
367 |
+
TCGA-KC-A7F3-01,1,67,1
|
368 |
+
TCGA-KC-A7F5-01,1,54,1
|
369 |
+
TCGA-KC-A7F6-01,1,63,1
|
370 |
+
TCGA-KC-A7FA-01,1,63,1
|
371 |
+
TCGA-KC-A7FD-01,1,62,1
|
372 |
+
TCGA-KC-A7FE-01,1,62,1
|
373 |
+
TCGA-KK-A59V-01,1,64,1
|
374 |
+
TCGA-KK-A59X-01,1,55,1
|
375 |
+
TCGA-KK-A59Y-01,1,56,1
|
376 |
+
TCGA-KK-A59Z-01,1,66,1
|
377 |
+
TCGA-KK-A5A1-01,1,72,1
|
378 |
+
TCGA-KK-A6DY-01,1,50,1
|
379 |
+
TCGA-KK-A6E0-01,1,59,1
|
380 |
+
TCGA-KK-A6E1-01,1,57,1
|
381 |
+
TCGA-KK-A6E2-01,1,54,1
|
382 |
+
TCGA-KK-A6E3-01,1,56,1
|
383 |
+
TCGA-KK-A6E4-01,1,69,1
|
384 |
+
TCGA-KK-A6E5-01,1,63,1
|
385 |
+
TCGA-KK-A6E6-01,1,69,1
|
386 |
+
TCGA-KK-A6E7-01,1,46,1
|
387 |
+
TCGA-KK-A6E8-01,1,68,1
|
388 |
+
TCGA-KK-A7AP-01,1,55,1
|
389 |
+
TCGA-KK-A7AQ-01,1,62,1
|
390 |
+
TCGA-KK-A7AU-01,1,63,1
|
391 |
+
TCGA-KK-A7AV-01,1,58,1
|
392 |
+
TCGA-KK-A7AW-01,1,57,1
|
393 |
+
TCGA-KK-A7AY-01,1,60,1
|
394 |
+
TCGA-KK-A7AZ-01,1,56,1
|
395 |
+
TCGA-KK-A7B0-01,1,67,1
|
396 |
+
TCGA-KK-A7B1-01,1,65,1
|
397 |
+
TCGA-KK-A7B2-01,1,68,1
|
398 |
+
TCGA-KK-A7B3-01,1,62,1
|
399 |
+
TCGA-KK-A7B4-01,1,64,1
|
400 |
+
TCGA-KK-A8I4-01,1,64,1
|
401 |
+
TCGA-KK-A8I5-01,1,55,1
|
402 |
+
TCGA-KK-A8I6-01,1,58,1
|
403 |
+
TCGA-KK-A8I7-01,1,55,1
|
404 |
+
TCGA-KK-A8I8-01,1,69,1
|
405 |
+
TCGA-KK-A8I9-01,1,61,1
|
406 |
+
TCGA-KK-A8IA-01,1,69,1
|
407 |
+
TCGA-KK-A8IB-01,1,65,1
|
408 |
+
TCGA-KK-A8IC-01,1,54,1
|
409 |
+
TCGA-KK-A8ID-01,1,70,1
|
410 |
+
TCGA-KK-A8IF-01,1,57,1
|
411 |
+
TCGA-KK-A8IG-01,1,55,1
|
412 |
+
TCGA-KK-A8IH-01,1,50,1
|
413 |
+
TCGA-KK-A8II-01,1,61,1
|
414 |
+
TCGA-KK-A8IJ-01,1,59,1
|
415 |
+
TCGA-KK-A8IK-01,1,56,1
|
416 |
+
TCGA-KK-A8IL-01,1,65,1
|
417 |
+
TCGA-KK-A8IM-01,1,55,1
|
418 |
+
TCGA-M7-A71Y-01,1,55,1
|
419 |
+
TCGA-M7-A71Z-01,1,62,1
|
420 |
+
TCGA-M7-A720-01,1,53,1
|
421 |
+
TCGA-M7-A721-01,1,70,1
|
422 |
+
TCGA-M7-A722-01,1,65,1
|
423 |
+
TCGA-M7-A723-01,1,54,1
|
424 |
+
TCGA-M7-A724-01,1,64,1
|
425 |
+
TCGA-M7-A725-01,1,56,1
|
426 |
+
TCGA-MG-AAMC-01,1,59,1
|
427 |
+
TCGA-QU-A6IL-01,1,64,1
|
428 |
+
TCGA-QU-A6IM-01,1,59,1
|
429 |
+
TCGA-QU-A6IN-01,1,61,1
|
430 |
+
TCGA-QU-A6IO-01,1,53,1
|
431 |
+
TCGA-QU-A6IP-01,1,66,1
|
432 |
+
TCGA-SU-A7E7-01,1,60,1
|
433 |
+
TCGA-TK-A8OK-01,1,73,1
|
434 |
+
TCGA-TP-A8TT-01,1,64,1
|
435 |
+
TCGA-TP-A8TV-01,1,62,1
|
436 |
+
TCGA-V1-A8MF-01,1,65,1
|
437 |
+
TCGA-V1-A8MG-01,1,53,1
|
438 |
+
TCGA-V1-A8MJ-01,1,58,1
|
439 |
+
TCGA-V1-A8MK-01,1,41,1
|
440 |
+
TCGA-V1-A8ML-01,1,63,1
|
441 |
+
TCGA-V1-A8MM-01,1,60,1
|
442 |
+
TCGA-V1-A8MU-01,1,56,1
|
443 |
+
TCGA-V1-A8WL-01,1,64,1
|
444 |
+
TCGA-V1-A8WN-01,1,47,1
|
445 |
+
TCGA-V1-A8WS-01,1,56,1
|
446 |
+
TCGA-V1-A8WV-01,1,52,1
|
447 |
+
TCGA-V1-A8WW-01,1,59,1
|
448 |
+
TCGA-V1-A8X3-01,1,51,1
|
449 |
+
TCGA-V1-A9O5-01,1,64,1
|
450 |
+
TCGA-V1-A9O5-06,1,64,1
|
451 |
+
TCGA-V1-A9O7-01,1,60,1
|
452 |
+
TCGA-V1-A9O9-01,1,56,1
|
453 |
+
TCGA-V1-A9OA-01,1,61,1
|
454 |
+
TCGA-V1-A9OF-01,1,49,1
|
455 |
+
TCGA-V1-A9OH-01,1,63,1
|
456 |
+
TCGA-V1-A9OL-01,1,65,1
|
457 |
+
TCGA-V1-A9OQ-01,1,67,1
|
458 |
+
TCGA-V1-A9OT-01,1,61,1
|
459 |
+
TCGA-V1-A9OX-01,1,56,1
|
460 |
+
TCGA-V1-A9OY-01,1,57,1
|
461 |
+
TCGA-V1-A9Z7-01,1,54,1
|
462 |
+
TCGA-V1-A9Z8-01,1,59,1
|
463 |
+
TCGA-V1-A9Z9-01,1,63,1
|
464 |
+
TCGA-V1-A9ZG-01,1,64,1
|
465 |
+
TCGA-V1-A9ZI-01,1,68,1
|
466 |
+
TCGA-V1-A9ZK-01,1,68,1
|
467 |
+
TCGA-V1-A9ZR-01,1,68,1
|
468 |
+
TCGA-VN-A88I-01,1,59,1
|
469 |
+
TCGA-VN-A88K-01,1,58,1
|
470 |
+
TCGA-VN-A88L-01,1,54,1
|
471 |
+
TCGA-VN-A88M-01,1,55,1
|
472 |
+
TCGA-VN-A88N-01,1,62,1
|
473 |
+
TCGA-VN-A88O-01,1,49,1
|
474 |
+
TCGA-VN-A88P-01,1,60,1
|
475 |
+
TCGA-VN-A88Q-01,1,60,1
|
476 |
+
TCGA-VN-A88R-01,1,53,1
|
477 |
+
TCGA-VN-A943-01,1,71,1
|
478 |
+
TCGA-VP-A872-01,1,60,1
|
479 |
+
TCGA-VP-A875-01,1,67,1
|
480 |
+
TCGA-VP-A876-01,1,46,1
|
481 |
+
TCGA-VP-A878-01,1,58,1
|
482 |
+
TCGA-VP-A879-01,1,70,1
|
483 |
+
TCGA-VP-A87B-01,1,63,1
|
484 |
+
TCGA-VP-A87C-01,1,67,1
|
485 |
+
TCGA-VP-A87D-01,1,54,1
|
486 |
+
TCGA-VP-A87E-01,1,59,1
|
487 |
+
TCGA-VP-A87H-01,1,76,1
|
488 |
+
TCGA-VP-A87J-01,1,56,1
|
489 |
+
TCGA-VP-A87K-01,1,63,1
|
490 |
+
TCGA-VP-AA1N-01,1,70,1
|
491 |
+
TCGA-WW-A8ZI-01,1,70,1
|
492 |
+
TCGA-X4-A8KQ-01,1,65,1
|
493 |
+
TCGA-X4-A8KS-01,1,61,1
|
494 |
+
TCGA-XA-A8JR-01,1,68,1
|
495 |
+
TCGA-XJ-A83F-01,1,67,1
|
496 |
+
TCGA-XJ-A83G-01,1,51,1
|
497 |
+
TCGA-XJ-A83H-01,1,57,1
|
498 |
+
TCGA-XJ-A9DI-01,1,62,1
|
499 |
+
TCGA-XJ-A9DK-01,1,63,1
|
500 |
+
TCGA-XJ-A9DQ-01,1,48,1
|
501 |
+
TCGA-XJ-A9DX-01,1,51,1
|
502 |
+
TCGA-XK-AAIR-01,1,75,1
|
503 |
+
TCGA-XK-AAIV-01,1,63,1
|
504 |
+
TCGA-XK-AAIW-01,1,78,1
|
505 |
+
TCGA-XK-AAJ3-01,1,56,1
|
506 |
+
TCGA-XK-AAJA-01,1,62,1
|
507 |
+
TCGA-XK-AAJP-01,1,66,1
|
508 |
+
TCGA-XK-AAJR-01,1,61,1
|
509 |
+
TCGA-XK-AAJT-01,1,75,1
|
510 |
+
TCGA-XK-AAJU-01,1,65,1
|
511 |
+
TCGA-XK-AAK1-01,1,62,1
|
512 |
+
TCGA-XQ-A8TA-01,1,59,1
|
513 |
+
TCGA-XQ-A8TB-01,1,67,1
|
514 |
+
TCGA-Y6-A8TL-01,1,65,1
|
515 |
+
TCGA-Y6-A9XI-01,1,72,1
|
516 |
+
TCGA-YJ-A8SW-01,1,67,1
|
517 |
+
TCGA-YL-A8HJ-01,1,58,1
|
518 |
+
TCGA-YL-A8HK-01,1,59,1
|
519 |
+
TCGA-YL-A8HL-01,1,58,1
|
520 |
+
TCGA-YL-A8HM-01,1,66,1
|
521 |
+
TCGA-YL-A8HO-01,1,67,1
|
522 |
+
TCGA-YL-A8S8-01,1,68,1
|
523 |
+
TCGA-YL-A8S9-01,1,63,1
|
524 |
+
TCGA-YL-A8SA-01,1,69,1
|
525 |
+
TCGA-YL-A8SB-01,1,62,1
|
526 |
+
TCGA-YL-A8SC-01,1,66,1
|
527 |
+
TCGA-YL-A8SF-01,1,62,1
|
528 |
+
TCGA-YL-A8SH-01,1,69,1
|
529 |
+
TCGA-YL-A8SI-01,1,69,1
|
530 |
+
TCGA-YL-A8SJ-01,1,60,1
|
531 |
+
TCGA-YL-A8SK-01,1,67,1
|
532 |
+
TCGA-YL-A8SL-01,1,74,1
|
533 |
+
TCGA-YL-A8SO-01,1,64,1
|
534 |
+
TCGA-YL-A8SP-01,1,58,1
|
535 |
+
TCGA-YL-A8SQ-01,1,61,1
|
536 |
+
TCGA-YL-A8SR-01,1,64,1
|
537 |
+
TCGA-YL-A9WH-01,1,67,1
|
538 |
+
TCGA-YL-A9WI-01,1,63,1
|
539 |
+
TCGA-YL-A9WJ-01,1,47,1
|
540 |
+
TCGA-YL-A9WK-01,1,63,1
|
541 |
+
TCGA-YL-A9WL-01,1,59,1
|
542 |
+
TCGA-YL-A9WX-01,1,68,1
|
543 |
+
TCGA-YL-A9WY-01,1,57,1
|
544 |
+
TCGA-ZG-A8QW-01,1,72,1
|
545 |
+
TCGA-ZG-A8QX-01,1,56,1
|
546 |
+
TCGA-ZG-A8QY-01,1,67,1
|
547 |
+
TCGA-ZG-A8QZ-01,1,65,1
|
548 |
+
TCGA-ZG-A9KY-01,1,73,1
|
549 |
+
TCGA-ZG-A9L0-01,1,71,1
|
550 |
+
TCGA-ZG-A9L1-01,1,66,1
|
551 |
+
TCGA-ZG-A9L2-01,1,70,1
|
552 |
+
TCGA-ZG-A9L4-01,1,61,1
|
553 |
+
TCGA-ZG-A9L5-01,1,58,1
|
554 |
+
TCGA-ZG-A9L6-01,1,64,1
|
555 |
+
TCGA-ZG-A9L9-01,1,60,1
|
556 |
+
TCGA-ZG-A9LB-01,1,72,1
|
557 |
+
TCGA-ZG-A9LM-01,1,72,1
|
558 |
+
TCGA-ZG-A9LN-01,1,57,1
|
559 |
+
TCGA-ZG-A9LS-01,1,64,1
|
560 |
+
TCGA-ZG-A9LU-01,1,67,1
|
561 |
+
TCGA-ZG-A9LY-01,1,60,1
|
562 |
+
TCGA-ZG-A9LZ-01,1,66,1
|
563 |
+
TCGA-ZG-A9M4-01,1,65,1
|
564 |
+
TCGA-ZG-A9MC-01,1,69,1
|
565 |
+
TCGA-ZG-A9N3-01,1,73,1
|
566 |
+
TCGA-ZG-A9ND-01,1,55,1
|
567 |
+
TCGA-ZG-A9NI-01,1,73,1
|
p3/preprocess/Prostate_Cancer/code/GSE125341.py
ADDED
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Prostate_Cancer"
|
6 |
+
cohort = "GSE125341"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Prostate_Cancer"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Prostate_Cancer/GSE125341"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Prostate_Cancer/GSE125341.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Prostate_Cancer/gene_data/GSE125341.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Prostate_Cancer/clinical_data/GSE125341.csv"
|
16 |
+
json_path = "./output/preprocess/3/Prostate_Cancer/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data using specified prefixes
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(
|
23 |
+
matrix_file,
|
24 |
+
prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'],
|
25 |
+
prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
26 |
+
)
|
27 |
+
|
28 |
+
# Get unique values per clinical feature
|
29 |
+
sample_characteristics = get_unique_values_by_row(clinical_data)
|
30 |
+
|
31 |
+
# Print background info
|
32 |
+
print("Dataset Background Information:")
|
33 |
+
print(f"{background_info}\n")
|
34 |
+
|
35 |
+
# Print sample characteristics
|
36 |
+
print("Sample Characteristics:")
|
37 |
+
for feature, values in sample_characteristics.items():
|
38 |
+
print(f"Feature: {feature}")
|
39 |
+
print(f"Values: {values}\n")
|
40 |
+
# 1. Gene Expression Data Availability
|
41 |
+
# Yes, this is a microarray study of transcriptome profiling in prostate cancer cells
|
42 |
+
is_gene_available = True
|
43 |
+
|
44 |
+
# 2.1 Data Availability
|
45 |
+
# For trait - we can use the cell type info in Feature 1
|
46 |
+
trait_row = 1
|
47 |
+
# Age and gender are not applicable since this is a cell line study
|
48 |
+
age_row = None
|
49 |
+
gender_row = None
|
50 |
+
|
51 |
+
# 2.2 Data Type Conversion Functions
|
52 |
+
def convert_trait(val):
|
53 |
+
"""Convert trait data to binary: 1 for cancer, 0 for normal"""
|
54 |
+
if pd.isna(val):
|
55 |
+
return None
|
56 |
+
# Extract value after colon
|
57 |
+
val = val.split(":")[-1].strip().lower()
|
58 |
+
if "prostate cancer" in val:
|
59 |
+
return 1
|
60 |
+
else:
|
61 |
+
return None
|
62 |
+
|
63 |
+
def convert_age(val):
|
64 |
+
"""Not used but defined to maintain code structure"""
|
65 |
+
return None
|
66 |
+
|
67 |
+
def convert_gender(val):
|
68 |
+
"""Not used but defined to maintain code structure"""
|
69 |
+
return None
|
70 |
+
|
71 |
+
# 3. Save Metadata
|
72 |
+
is_trait_available = trait_row is not None
|
73 |
+
validate_and_save_cohort_info(is_final=False,
|
74 |
+
cohort=cohort,
|
75 |
+
info_path=json_path,
|
76 |
+
is_gene_available=is_gene_available,
|
77 |
+
is_trait_available=is_trait_available)
|
78 |
+
|
79 |
+
# 4. Clinical Feature Extraction
|
80 |
+
if trait_row is not None:
|
81 |
+
clinical_features = geo_select_clinical_features(
|
82 |
+
clinical_df=clinical_data,
|
83 |
+
trait=trait,
|
84 |
+
trait_row=trait_row,
|
85 |
+
convert_trait=convert_trait,
|
86 |
+
age_row=age_row,
|
87 |
+
convert_age=convert_age,
|
88 |
+
gender_row=gender_row,
|
89 |
+
convert_gender=convert_gender
|
90 |
+
)
|
91 |
+
|
92 |
+
# Preview the extracted features
|
93 |
+
preview = preview_df(clinical_features)
|
94 |
+
print("Preview of clinical features:", preview)
|
95 |
+
|
96 |
+
# Save to CSV
|
97 |
+
clinical_features.to_csv(out_clinical_data_file)
|
98 |
+
# Get file paths
|
99 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
100 |
+
|
101 |
+
# Extract gene expression data from matrix file
|
102 |
+
gene_data = get_genetic_data(matrix_file)
|
103 |
+
|
104 |
+
# Print first 20 row IDs and shape of data to help debug
|
105 |
+
print("Shape of gene expression data:", gene_data.shape)
|
106 |
+
print("\nFirst few rows of data:")
|
107 |
+
print(gene_data.head())
|
108 |
+
print("\nFirst 20 gene/probe identifiers:")
|
109 |
+
print(gene_data.index[:20])
|
110 |
+
|
111 |
+
# Inspect a snippet of raw file to verify identifier format
|
112 |
+
import gzip
|
113 |
+
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
|
114 |
+
lines = []
|
115 |
+
for i, line in enumerate(f):
|
116 |
+
if "!series_matrix_table_begin" in line:
|
117 |
+
# Get the next 5 lines after the marker
|
118 |
+
for _ in range(5):
|
119 |
+
lines.append(next(f).strip())
|
120 |
+
break
|
121 |
+
print("\nFirst few lines after matrix marker in raw file:")
|
122 |
+
for line in lines:
|
123 |
+
print(line)
|
124 |
+
# The gene identifiers start with 'A_14_P', which indicates they are Agilent probe IDs, not human gene symbols
|
125 |
+
requires_gene_mapping = True
|
126 |
+
# Extract gene annotation data
|
127 |
+
gene_metadata = get_gene_annotation(soft_file)
|
128 |
+
|
129 |
+
# Try searching for ID patterns in all columns
|
130 |
+
print("All column names:", gene_metadata.columns.tolist())
|
131 |
+
print("\nPreview first few rows of each column to locate numeric IDs:")
|
132 |
+
for col in gene_metadata.columns:
|
133 |
+
sample_values = gene_metadata[col].dropna().head().tolist()
|
134 |
+
print(f"\n{col}:")
|
135 |
+
print(sample_values)
|
136 |
+
|
137 |
+
# Inspect raw file to see unfiltered annotation format
|
138 |
+
import gzip
|
139 |
+
print("\nRaw SOFT file preview:")
|
140 |
+
with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
|
141 |
+
header = []
|
142 |
+
for i, line in enumerate(f):
|
143 |
+
header.append(line.strip())
|
144 |
+
if i >= 10: # Preview first 10 lines
|
145 |
+
break
|
146 |
+
print('\n'.join(header))
|
147 |
+
# 1. Identify relevant columns
|
148 |
+
# Based on data preview, 'ID' contains probe identifiers and 'symbol' contains gene symbols
|
149 |
+
prob_col = 'ID'
|
150 |
+
gene_col = 'symbol'
|
151 |
+
|
152 |
+
# 2. Get gene mapping dataframe
|
153 |
+
mapping_data = get_gene_mapping(gene_metadata, prob_col, gene_col)
|
154 |
+
|
155 |
+
# 3. Apply gene mapping to convert probe-level data to gene expression data
|
156 |
+
gene_data = apply_gene_mapping(gene_data, mapping_data)
|
157 |
+
|
158 |
+
# Preview the transformed data
|
159 |
+
print("Shape of mapped gene expression data:", gene_data.shape)
|
160 |
+
print("\nFirst few rows of mapped gene data:")
|
161 |
+
print(gene_data.head())
|
162 |
+
print("\nFirst 20 gene symbols:")
|
163 |
+
print(gene_data.index[:20])
|
164 |
+
# Load previously saved clinical data
|
165 |
+
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
|
166 |
+
|
167 |
+
# 1. Normalize gene symbols using NCBI synonym information
|
168 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
169 |
+
gene_data.to_csv(out_gene_data_file)
|
170 |
+
|
171 |
+
# 2. Link clinical and genetic data
|
172 |
+
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)
|
173 |
+
|
174 |
+
# 3. Handle missing values
|
175 |
+
linked_data = handle_missing_values(linked_data, trait)
|
176 |
+
|
177 |
+
# 4. Evaluate bias in features
|
178 |
+
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
179 |
+
|
180 |
+
# 5. Record cohort information
|
181 |
+
is_usable = validate_and_save_cohort_info(
|
182 |
+
is_final=True,
|
183 |
+
cohort=cohort,
|
184 |
+
info_path=json_path,
|
185 |
+
is_gene_available=True,
|
186 |
+
is_trait_available=True,
|
187 |
+
is_biased=is_biased,
|
188 |
+
df=linked_data,
|
189 |
+
note="Cell line dataset with mapped gene expression data. Only includes cancer samples."
|
190 |
+
)
|
191 |
+
|
192 |
+
# 6. Save data if usable
|
193 |
+
if is_usable:
|
194 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Prostate_Cancer/code/GSE178631.py
ADDED
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Prostate_Cancer"
|
6 |
+
cohort = "GSE178631"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Prostate_Cancer"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Prostate_Cancer/GSE178631"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Prostate_Cancer/GSE178631.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Prostate_Cancer/gene_data/GSE178631.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Prostate_Cancer/clinical_data/GSE178631.csv"
|
16 |
+
json_path = "./output/preprocess/3/Prostate_Cancer/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data using specified prefixes
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(
|
23 |
+
matrix_file,
|
24 |
+
prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'],
|
25 |
+
prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
26 |
+
)
|
27 |
+
|
28 |
+
# Get unique values per clinical feature
|
29 |
+
sample_characteristics = get_unique_values_by_row(clinical_data)
|
30 |
+
|
31 |
+
# Print background info
|
32 |
+
print("Dataset Background Information:")
|
33 |
+
print(f"{background_info}\n")
|
34 |
+
|
35 |
+
# Print sample characteristics
|
36 |
+
print("Sample Characteristics:")
|
37 |
+
for feature, values in sample_characteristics.items():
|
38 |
+
print(f"Feature: {feature}")
|
39 |
+
print(f"Values: {values}\n")
|
40 |
+
# 1. Gene expression data availability check
|
41 |
+
# Based on background info mentioning "gene expression data" and the use case of RNeasy/miRNeasy kits
|
42 |
+
is_gene_available = True
|
43 |
+
|
44 |
+
# 2.1 Feature availability analysis
|
45 |
+
# For trait: Use ISUP grade group (Feature 3) as binary indicator of tumor aggressiveness
|
46 |
+
trait_row = 3
|
47 |
+
|
48 |
+
# Age and gender data not found in characteristics
|
49 |
+
age_row = None
|
50 |
+
gender_row = None
|
51 |
+
|
52 |
+
# 2.2 Data type conversion functions
|
53 |
+
def convert_trait(value):
|
54 |
+
if pd.isna(value):
|
55 |
+
return None
|
56 |
+
# Extract numeric grade after colon
|
57 |
+
grade = value.split(': ')[1]
|
58 |
+
if grade.isdigit():
|
59 |
+
# Convert to binary: ISUP grade >=3 indicates more aggressive disease
|
60 |
+
return 1 if int(grade) >= 3 else 0
|
61 |
+
return None
|
62 |
+
|
63 |
+
def convert_age(value):
|
64 |
+
return None # Not used
|
65 |
+
|
66 |
+
def convert_gender(value):
|
67 |
+
return None # Not used
|
68 |
+
|
69 |
+
# 3. Save metadata about data availability
|
70 |
+
validate_and_save_cohort_info(is_final=False,
|
71 |
+
cohort=cohort,
|
72 |
+
info_path=json_path,
|
73 |
+
is_gene_available=is_gene_available,
|
74 |
+
is_trait_available=trait_row is not None)
|
75 |
+
|
76 |
+
# 4. Extract clinical features
|
77 |
+
if trait_row is not None:
|
78 |
+
selected_clinical_df = geo_select_clinical_features(
|
79 |
+
clinical_df=clinical_data,
|
80 |
+
trait=trait,
|
81 |
+
trait_row=trait_row,
|
82 |
+
convert_trait=convert_trait,
|
83 |
+
age_row=age_row,
|
84 |
+
convert_age=convert_age,
|
85 |
+
gender_row=gender_row,
|
86 |
+
convert_gender=convert_gender
|
87 |
+
)
|
88 |
+
|
89 |
+
# Preview the extracted data
|
90 |
+
print("Preview of selected clinical features:")
|
91 |
+
print(preview_df(selected_clinical_df))
|
92 |
+
|
93 |
+
# Save clinical data
|
94 |
+
selected_clinical_df.to_csv(out_clinical_data_file)
|
95 |
+
# Get file paths
|
96 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
97 |
+
|
98 |
+
# Extract gene expression data from matrix file
|
99 |
+
gene_data = get_genetic_data(matrix_file)
|
100 |
+
|
101 |
+
# Print first 20 row IDs and shape of data to help debug
|
102 |
+
print("Shape of gene expression data:", gene_data.shape)
|
103 |
+
print("\nFirst few rows of data:")
|
104 |
+
print(gene_data.head())
|
105 |
+
print("\nFirst 20 gene/probe identifiers:")
|
106 |
+
print(gene_data.index[:20])
|
107 |
+
|
108 |
+
# Inspect a snippet of raw file to verify identifier format
|
109 |
+
import gzip
|
110 |
+
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
|
111 |
+
lines = []
|
112 |
+
for i, line in enumerate(f):
|
113 |
+
if "!series_matrix_table_begin" in line:
|
114 |
+
# Get the next 5 lines after the marker
|
115 |
+
for _ in range(5):
|
116 |
+
lines.append(next(f).strip())
|
117 |
+
break
|
118 |
+
print("\nFirst few lines after matrix marker in raw file:")
|
119 |
+
for line in lines:
|
120 |
+
print(line)
|
121 |
+
# Based on the identifier pattern "ILMN_", these are Illumina probes
|
122 |
+
# rather than direct gene symbols, so mapping will be required
|
123 |
+
requires_gene_mapping = True
|
124 |
+
# Extract gene annotation data
|
125 |
+
gene_metadata = get_gene_annotation(soft_file)
|
126 |
+
|
127 |
+
# Try searching for ID patterns in all columns
|
128 |
+
print("All column names:", gene_metadata.columns.tolist())
|
129 |
+
print("\nPreview first few rows of each column to locate numeric IDs:")
|
130 |
+
for col in gene_metadata.columns:
|
131 |
+
sample_values = gene_metadata[col].dropna().head().tolist()
|
132 |
+
print(f"\n{col}:")
|
133 |
+
print(sample_values)
|
134 |
+
|
135 |
+
# Inspect raw file to see unfiltered annotation format
|
136 |
+
import gzip
|
137 |
+
print("\nRaw SOFT file preview:")
|
138 |
+
with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
|
139 |
+
header = []
|
140 |
+
for i, line in enumerate(f):
|
141 |
+
header.append(line.strip())
|
142 |
+
if i >= 10: # Preview first 10 lines
|
143 |
+
break
|
144 |
+
print('\n'.join(header))
|
145 |
+
# Identify mapping columns from annotation data
|
146 |
+
# 'Probe_Id' matches the IDs in gene expression data
|
147 |
+
# 'ILMN_Gene' contains the gene symbols to map to
|
148 |
+
mapping_df = get_gene_mapping(gene_metadata, prob_col='Probe_Id', gene_col='ILMN_Gene')
|
149 |
+
|
150 |
+
# Convert probe-level data to gene-level expression
|
151 |
+
gene_data = apply_gene_mapping(gene_data, mapping_df)
|
152 |
+
|
153 |
+
# Save raw gene expression data
|
154 |
+
gene_data.to_csv(out_gene_data_file)
|
p3/preprocess/Prostate_Cancer/code/GSE192817.py
ADDED
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Prostate_Cancer"
|
6 |
+
cohort = "GSE192817"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Prostate_Cancer"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Prostate_Cancer/GSE192817"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Prostate_Cancer/GSE192817.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Prostate_Cancer/gene_data/GSE192817.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Prostate_Cancer/clinical_data/GSE192817.csv"
|
16 |
+
json_path = "./output/preprocess/3/Prostate_Cancer/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data using specified prefixes
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(
|
23 |
+
matrix_file,
|
24 |
+
prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'],
|
25 |
+
prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
26 |
+
)
|
27 |
+
|
28 |
+
# Get unique values per clinical feature
|
29 |
+
sample_characteristics = get_unique_values_by_row(clinical_data)
|
30 |
+
|
31 |
+
# Print background info
|
32 |
+
print("Dataset Background Information:")
|
33 |
+
print(f"{background_info}\n")
|
34 |
+
|
35 |
+
# Print sample characteristics
|
36 |
+
print("Sample Characteristics:")
|
37 |
+
for feature, values in sample_characteristics.items():
|
38 |
+
print(f"Feature: {feature}")
|
39 |
+
print(f"Values: {values}\n")
|
40 |
+
# 1. Gene Expression Data Availability
|
41 |
+
is_gene_available = True # Based on title and summary, this is gene expression data studying cellular mechanisms
|
42 |
+
|
43 |
+
# 2.1 Data Availability
|
44 |
+
trait_row = None # No prostate cancer status - all samples are cancer cell lines
|
45 |
+
age_row = None # No age data available
|
46 |
+
gender_row = None # No gender data - these are cell lines
|
47 |
+
|
48 |
+
# 2.2 Data Type Conversion Functions
|
49 |
+
def convert_trait(x):
|
50 |
+
return None # Not used since trait_row is None
|
51 |
+
|
52 |
+
def convert_age(x):
|
53 |
+
return None # Not used since age_row is None
|
54 |
+
|
55 |
+
def convert_gender(x):
|
56 |
+
return None # Not used since gender_row is None
|
57 |
+
|
58 |
+
# 3. Save Metadata
|
59 |
+
validate_and_save_cohort_info(
|
60 |
+
is_final=False,
|
61 |
+
cohort=cohort,
|
62 |
+
info_path=json_path,
|
63 |
+
is_gene_available=is_gene_available,
|
64 |
+
is_trait_available=False # No trait data available since these are cell lines
|
65 |
+
)
|
66 |
+
|
67 |
+
# 4. Clinical Feature Extraction
|
68 |
+
# Skip this step since trait_row is None
|
69 |
+
# Get file paths
|
70 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
71 |
+
|
72 |
+
# Extract gene expression data from matrix file
|
73 |
+
gene_data = get_genetic_data(matrix_file)
|
74 |
+
|
75 |
+
# Print first 20 row IDs and shape of data to help debug
|
76 |
+
print("Shape of gene expression data:", gene_data.shape)
|
77 |
+
print("\nFirst few rows of data:")
|
78 |
+
print(gene_data.head())
|
79 |
+
print("\nFirst 20 gene/probe identifiers:")
|
80 |
+
print(gene_data.index[:20])
|
81 |
+
|
82 |
+
# Inspect a snippet of raw file to verify identifier format
|
83 |
+
import gzip
|
84 |
+
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
|
85 |
+
lines = []
|
86 |
+
for i, line in enumerate(f):
|
87 |
+
if "!series_matrix_table_begin" in line:
|
88 |
+
# Get the next 5 lines after the marker
|
89 |
+
for _ in range(5):
|
90 |
+
lines.append(next(f).strip())
|
91 |
+
break
|
92 |
+
print("\nFirst few lines after matrix marker in raw file:")
|
93 |
+
for line in lines:
|
94 |
+
print(line)
|
95 |
+
# The gene identifiers appear to be simple numerical indices (1, 2, 3, etc.)
|
96 |
+
# rather than standard human gene symbols or probe IDs
|
97 |
+
# This indicates we need to map these indices to actual gene symbols
|
98 |
+
requires_gene_mapping = True
|
99 |
+
# Extract gene annotation data
|
100 |
+
gene_metadata = get_gene_annotation(soft_file)
|
101 |
+
|
102 |
+
# Try searching for ID patterns in all columns
|
103 |
+
print("All column names:", gene_metadata.columns.tolist())
|
104 |
+
print("\nPreview first few rows of each column to locate numeric IDs:")
|
105 |
+
for col in gene_metadata.columns:
|
106 |
+
sample_values = gene_metadata[col].dropna().head().tolist()
|
107 |
+
print(f"\n{col}:")
|
108 |
+
print(sample_values)
|
109 |
+
|
110 |
+
# Inspect raw file to see unfiltered annotation format
|
111 |
+
import gzip
|
112 |
+
print("\nRaw SOFT file preview:")
|
113 |
+
with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
|
114 |
+
header = []
|
115 |
+
for i, line in enumerate(f):
|
116 |
+
header.append(line.strip())
|
117 |
+
if i >= 10: # Preview first 10 lines
|
118 |
+
break
|
119 |
+
print('\n'.join(header))
|
120 |
+
# 1. Identify mapping keys:
|
121 |
+
# 'ID' in gene_metadata matches the numeric indices in gene_data
|
122 |
+
# 'GENE_SYMBOL' contains the target gene symbols
|
123 |
+
|
124 |
+
# 2. Get gene mapping dataframe
|
125 |
+
mapping_data = get_gene_mapping(gene_metadata, 'ID', 'GENE_SYMBOL')
|
126 |
+
|
127 |
+
# 3. Apply mapping to convert probe measurements to gene expression values
|
128 |
+
gene_data = apply_gene_mapping(gene_data, mapping_data)
|
129 |
+
|
130 |
+
# Preview the resulting gene expression data
|
131 |
+
print("\nShape of mapped gene expression data:", gene_data.shape)
|
132 |
+
print("\nFirst few rows of mapped data:")
|
133 |
+
print(gene_data.head())
|
134 |
+
print("\nFirst few gene symbols:")
|
135 |
+
print(gene_data.index[:20])
|
136 |
+
# 1. Normalize gene symbols
|
137 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
138 |
+
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
|
139 |
+
normalized_gene_data.to_csv(out_gene_data_file)
|
140 |
+
|
141 |
+
# Since we determined in step 2 that no clinical features are available
|
142 |
+
# (all samples are cell lines with no trait data), we cannot construct a valid linked dataset.
|
143 |
+
# Set is_biased=True since the dataset cannot be used for trait association analysis.
|
144 |
+
|
145 |
+
is_usable = validate_and_save_cohort_info(
|
146 |
+
is_final=True,
|
147 |
+
cohort=cohort,
|
148 |
+
info_path=json_path,
|
149 |
+
is_gene_available=True,
|
150 |
+
is_trait_available=False,
|
151 |
+
is_biased=True, # Dataset is biased since it lacks trait data
|
152 |
+
df=normalized_gene_data,
|
153 |
+
note="Contains normalized gene expression data from cell lines but lacks clinical trait data required for association analysis."
|
154 |
+
)
|
155 |
+
|
156 |
+
# Do not save linked data since trait information is not available and dataset is not usable
|
p3/preprocess/Prostate_Cancer/code/GSE200879.py
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Prostate_Cancer"
|
6 |
+
cohort = "GSE200879"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Prostate_Cancer"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Prostate_Cancer/GSE200879"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Prostate_Cancer/GSE200879.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Prostate_Cancer/gene_data/GSE200879.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Prostate_Cancer/clinical_data/GSE200879.csv"
|
16 |
+
json_path = "./output/preprocess/3/Prostate_Cancer/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data using specified prefixes
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(
|
23 |
+
matrix_file,
|
24 |
+
prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'],
|
25 |
+
prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
26 |
+
)
|
27 |
+
|
28 |
+
# Get unique values per clinical feature
|
29 |
+
sample_characteristics = get_unique_values_by_row(clinical_data)
|
30 |
+
|
31 |
+
# Print background info
|
32 |
+
print("Dataset Background Information:")
|
33 |
+
print(f"{background_info}\n")
|
34 |
+
|
35 |
+
# Print sample characteristics
|
36 |
+
print("Sample Characteristics:")
|
37 |
+
for feature, values in sample_characteristics.items():
|
38 |
+
print(f"Feature: {feature}")
|
39 |
+
print(f"Values: {values}\n")
|
40 |
+
# 1. Gene Expression Data Availability
|
41 |
+
# Background info mentions "Transcriptomics" so gene expression data should be available
|
42 |
+
is_gene_available = True
|
43 |
+
|
44 |
+
# 2. Variable Availability and Data Type Conversion
|
45 |
+
|
46 |
+
# 2.1 Data Availability
|
47 |
+
# Trait (tumor vs normal) is in row 0
|
48 |
+
trait_row = 0
|
49 |
+
|
50 |
+
# No age data available
|
51 |
+
age_row = None
|
52 |
+
|
53 |
+
# No gender data available (typically all male in prostate cancer studies)
|
54 |
+
gender_row = None
|
55 |
+
|
56 |
+
# 2.2 Data Type Conversion Functions
|
57 |
+
def convert_trait(x):
|
58 |
+
if pd.isna(x) or not isinstance(x, str):
|
59 |
+
return None
|
60 |
+
val = x.split(': ')[1].lower() if ': ' in x else x.lower()
|
61 |
+
if 'tumor' in val:
|
62 |
+
return 1
|
63 |
+
elif 'normal' in val:
|
64 |
+
return 0
|
65 |
+
return None
|
66 |
+
|
67 |
+
def convert_age(x):
|
68 |
+
# Not used since age data not available
|
69 |
+
return None
|
70 |
+
|
71 |
+
def convert_gender(x):
|
72 |
+
# Not used since gender data not available
|
73 |
+
return None
|
74 |
+
|
75 |
+
# 3. Save Metadata
|
76 |
+
validate_and_save_cohort_info(
|
77 |
+
is_final=False,
|
78 |
+
cohort=cohort,
|
79 |
+
info_path=json_path,
|
80 |
+
is_gene_available=is_gene_available,
|
81 |
+
is_trait_available=(trait_row is not None)
|
82 |
+
)
|
83 |
+
|
84 |
+
# 4. Clinical Feature Extraction
|
85 |
+
# Since trait_row is not None, extract clinical features
|
86 |
+
selected_clinical_df = geo_select_clinical_features(
|
87 |
+
clinical_df=clinical_data,
|
88 |
+
trait=trait,
|
89 |
+
trait_row=trait_row,
|
90 |
+
convert_trait=convert_trait,
|
91 |
+
age_row=age_row,
|
92 |
+
convert_age=convert_age,
|
93 |
+
gender_row=gender_row,
|
94 |
+
convert_gender=convert_gender
|
95 |
+
)
|
96 |
+
|
97 |
+
# Preview the extracted features
|
98 |
+
print("Preview of selected clinical features:")
|
99 |
+
print(preview_df(selected_clinical_df))
|
100 |
+
|
101 |
+
# Save clinical data
|
102 |
+
selected_clinical_df.to_csv(out_clinical_data_file)
|
103 |
+
# Get file paths
|
104 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
105 |
+
|
106 |
+
# Extract gene expression data from matrix file
|
107 |
+
gene_data = get_genetic_data(matrix_file)
|
108 |
+
|
109 |
+
# Print first 20 row IDs and shape of data to help debug
|
110 |
+
print("Shape of gene expression data:", gene_data.shape)
|
111 |
+
print("\nFirst few rows of data:")
|
112 |
+
print(gene_data.head())
|
113 |
+
print("\nFirst 20 gene/probe identifiers:")
|
114 |
+
print(gene_data.index[:20])
|
115 |
+
|
116 |
+
# Inspect a snippet of raw file to verify identifier format
|
117 |
+
import gzip
|
118 |
+
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
|
119 |
+
lines = []
|
120 |
+
for i, line in enumerate(f):
|
121 |
+
if "!series_matrix_table_begin" in line:
|
122 |
+
# Get the next 5 lines after the marker
|
123 |
+
for _ in range(5):
|
124 |
+
lines.append(next(f).strip())
|
125 |
+
break
|
126 |
+
print("\nFirst few lines after matrix marker in raw file:")
|
127 |
+
for line in lines:
|
128 |
+
print(line)
|
129 |
+
# These appear to be custom identifiers starting with "GSHG" rather than standard human gene symbols
|
130 |
+
# They will need to be mapped to proper gene symbols
|
131 |
+
requires_gene_mapping = True
|
132 |
+
# Extract gene annotation data
|
133 |
+
gene_metadata = get_gene_annotation(soft_file)
|
134 |
+
|
135 |
+
# Try searching for ID patterns in all columns
|
136 |
+
print("All column names:", gene_metadata.columns.tolist())
|
137 |
+
print("\nPreview first few rows of each column to locate numeric IDs:")
|
138 |
+
for col in gene_metadata.columns:
|
139 |
+
sample_values = gene_metadata[col].dropna().head().tolist()
|
140 |
+
print(f"\n{col}:")
|
141 |
+
print(sample_values)
|
142 |
+
|
143 |
+
# Inspect raw file to see unfiltered annotation format
|
144 |
+
import gzip
|
145 |
+
print("\nRaw SOFT file preview:")
|
146 |
+
with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
|
147 |
+
header = []
|
148 |
+
for i, line in enumerate(f):
|
149 |
+
header.append(line.strip())
|
150 |
+
if i >= 10: # Preview first 10 lines
|
151 |
+
break
|
152 |
+
print('\n'.join(header))
|
153 |
+
# 1. Determine mapping columns - 'ID' column matches gene identifiers in expression data,
|
154 |
+
# and 'Gene Symbol' contains the target gene symbols
|
155 |
+
prob_col = 'ID'
|
156 |
+
gene_col = 'Gene Symbol'
|
157 |
+
|
158 |
+
# 2. Get gene mapping from annotation data
|
159 |
+
mapping_df = get_gene_mapping(gene_metadata, prob_col, gene_col)
|
160 |
+
|
161 |
+
# 3. Apply gene mapping and convert probe values to gene expression
|
162 |
+
gene_data = apply_gene_mapping(gene_data, mapping_df)
|
163 |
+
|
164 |
+
# Preview result
|
165 |
+
print("Shape of gene expression data after mapping:", gene_data.shape)
|
166 |
+
print("\nFirst few rows of mapped gene expression data:")
|
167 |
+
print(gene_data.head())
|
168 |
+
# 1. Normalize gene symbols using NCBI synonym information and save
|
169 |
+
try:
|
170 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
171 |
+
gene_data.to_csv(out_gene_data_file)
|
172 |
+
except Exception as e:
|
173 |
+
print(f"Warning: Gene symbol normalization failed, using original mapped gene symbols. Error: {e}")
|
174 |
+
|
175 |
+
# 2. Link clinical and gene expression data
|
176 |
+
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
|
177 |
+
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)
|
178 |
+
|
179 |
+
# 3. Handle missing values systematically
|
180 |
+
linked_data = handle_missing_values(linked_data, trait)
|
181 |
+
|
182 |
+
# 4. Check for bias in trait and demographic features
|
183 |
+
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
184 |
+
|
185 |
+
# 5. Validate and save cohort information
|
186 |
+
# If gene normalization failed but the data is otherwise usable, note this in metadata
|
187 |
+
note = "Contains gene expression data with custom probe-to-gene mapping." if 'GSHG' in str(gene_data.index[:5]) else "Contains normalized gene expression data."
|
188 |
+
|
189 |
+
is_usable = validate_and_save_cohort_info(
|
190 |
+
is_final=True,
|
191 |
+
cohort=cohort,
|
192 |
+
info_path=json_path,
|
193 |
+
is_gene_available=True,
|
194 |
+
is_trait_available=True,
|
195 |
+
is_biased=is_biased,
|
196 |
+
df=linked_data,
|
197 |
+
note=note
|
198 |
+
)
|
199 |
+
|
200 |
+
# 6. Save processed data if usable
|
201 |
+
if is_usable:
|
202 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Prostate_Cancer/code/GSE201805.py
ADDED
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Prostate_Cancer"
|
6 |
+
cohort = "GSE201805"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Prostate_Cancer"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Prostate_Cancer/GSE201805"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Prostate_Cancer/GSE201805.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Prostate_Cancer/gene_data/GSE201805.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Prostate_Cancer/clinical_data/GSE201805.csv"
|
16 |
+
json_path = "./output/preprocess/3/Prostate_Cancer/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data using specified prefixes
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(
|
23 |
+
matrix_file,
|
24 |
+
prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'],
|
25 |
+
prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
26 |
+
)
|
27 |
+
|
28 |
+
# Get unique values per clinical feature
|
29 |
+
sample_characteristics = get_unique_values_by_row(clinical_data)
|
30 |
+
|
31 |
+
# Print background info
|
32 |
+
print("Dataset Background Information:")
|
33 |
+
print(f"{background_info}\n")
|
34 |
+
|
35 |
+
# Print sample characteristics
|
36 |
+
print("Sample Characteristics:")
|
37 |
+
for feature, values in sample_characteristics.items():
|
38 |
+
print(f"Feature: {feature}")
|
39 |
+
print(f"Values: {values}\n")
|
40 |
+
# Check gene expression data availability
|
41 |
+
# Based on series title and summary, this is a gene expression study
|
42 |
+
is_gene_available = True
|
43 |
+
|
44 |
+
# Track trait data availability
|
45 |
+
# Treatment arm can indicate prostate cancer severity/response
|
46 |
+
trait_row = 5 # randomization arm row
|
47 |
+
def convert_trait(value):
|
48 |
+
if pd.isna(value):
|
49 |
+
return None
|
50 |
+
value = value.split(": ")[-1].strip()
|
51 |
+
# Treatment arm indicates disease severity/intervention status
|
52 |
+
return 1 if value == "Treatment" else 0
|
53 |
+
|
54 |
+
# Track age data availability
|
55 |
+
age_row = 3 # age row
|
56 |
+
def convert_age(value):
|
57 |
+
if pd.isna(value):
|
58 |
+
return None
|
59 |
+
try:
|
60 |
+
# Extract numeric age value after colon
|
61 |
+
age = int(value.split(": ")[-1].strip())
|
62 |
+
return age
|
63 |
+
except:
|
64 |
+
return None
|
65 |
+
|
66 |
+
# Track gender data availability
|
67 |
+
# This is a prostate cancer study - all subjects are male
|
68 |
+
gender_row = None # gender not needed since all male
|
69 |
+
def convert_gender(value):
|
70 |
+
return 1 # all male
|
71 |
+
|
72 |
+
# Save metadata about data availability
|
73 |
+
validate_and_save_cohort_info(
|
74 |
+
is_final=False,
|
75 |
+
cohort=cohort,
|
76 |
+
info_path=json_path,
|
77 |
+
is_gene_available=is_gene_available,
|
78 |
+
is_trait_available=trait_row is not None
|
79 |
+
)
|
80 |
+
|
81 |
+
# Extract clinical features using library function
|
82 |
+
clinical_features = geo_select_clinical_features(
|
83 |
+
clinical_df=clinical_data,
|
84 |
+
trait=trait,
|
85 |
+
trait_row=trait_row,
|
86 |
+
convert_trait=convert_trait,
|
87 |
+
age_row=age_row,
|
88 |
+
convert_age=convert_age
|
89 |
+
)
|
90 |
+
|
91 |
+
# Preview the extracted features
|
92 |
+
preview = preview_df(clinical_features)
|
93 |
+
print("Preview of extracted clinical features:")
|
94 |
+
print(preview)
|
95 |
+
|
96 |
+
# Save clinical features
|
97 |
+
clinical_features.to_csv(out_clinical_data_file)
|
98 |
+
# Get file paths
|
99 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
100 |
+
|
101 |
+
# Extract gene expression data from matrix file
|
102 |
+
gene_data = get_genetic_data(matrix_file)
|
103 |
+
|
104 |
+
# Print first 20 row IDs and shape of data to help debug
|
105 |
+
print("Shape of gene expression data:", gene_data.shape)
|
106 |
+
print("\nFirst few rows of data:")
|
107 |
+
print(gene_data.head())
|
108 |
+
print("\nFirst 20 gene/probe identifiers:")
|
109 |
+
print(gene_data.index[:20])
|
110 |
+
|
111 |
+
# Inspect a snippet of raw file to verify identifier format
|
112 |
+
import gzip
|
113 |
+
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
|
114 |
+
lines = []
|
115 |
+
for i, line in enumerate(f):
|
116 |
+
if "!series_matrix_table_begin" in line:
|
117 |
+
# Get the next 5 lines after the marker
|
118 |
+
for _ in range(5):
|
119 |
+
lines.append(next(f).strip())
|
120 |
+
break
|
121 |
+
print("\nFirst few lines after matrix marker in raw file:")
|
122 |
+
for line in lines:
|
123 |
+
print(line)
|
124 |
+
# The identifiers appear to be numeric IDs (e.g. 2315554, 2315633, etc.)
|
125 |
+
# These are not standard human gene symbols which are typically alphanumeric (e.g. BRCA1, TP53)
|
126 |
+
# Therefore gene mapping will be required
|
127 |
+
|
128 |
+
requires_gene_mapping = True
|
129 |
+
# Extract gene annotation data
|
130 |
+
gene_metadata = get_gene_annotation(soft_file)
|
131 |
+
|
132 |
+
# Try searching for ID patterns in all columns
|
133 |
+
print("All column names:", gene_metadata.columns.tolist())
|
134 |
+
print("\nPreview first few rows of each column to locate numeric IDs:")
|
135 |
+
for col in gene_metadata.columns:
|
136 |
+
sample_values = gene_metadata[col].dropna().head().tolist()
|
137 |
+
print(f"\n{col}:")
|
138 |
+
print(sample_values)
|
139 |
+
|
140 |
+
# Inspect raw file to see unfiltered annotation format
|
141 |
+
import gzip
|
142 |
+
print("\nRaw SOFT file preview:")
|
143 |
+
with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
|
144 |
+
header = []
|
145 |
+
for i, line in enumerate(f):
|
146 |
+
header.append(line.strip())
|
147 |
+
if i >= 10: # Preview first 10 lines
|
148 |
+
break
|
149 |
+
print('\n'.join(header))
|
150 |
+
# From the preview, 'ID' column matches numeric identifiers in gene expression data
|
151 |
+
# 'gene_assignment' contains gene symbols between '//' delimiters
|
152 |
+
|
153 |
+
# Get probe-to-gene mapping
|
154 |
+
mapping_data = get_gene_mapping(gene_metadata, 'ID', 'gene_assignment')
|
155 |
+
|
156 |
+
# Apply mapping to convert probe-level to gene-level expression
|
157 |
+
gene_data = apply_gene_mapping(gene_data, mapping_data)
|
158 |
+
|
159 |
+
# Preview results
|
160 |
+
print("Shape of gene expression data after mapping:", gene_data.shape)
|
161 |
+
print("\nFirst few gene symbols and their expression values:")
|
162 |
+
print(gene_data.head())
|
163 |
+
# Save probe-level gene data
|
164 |
+
gene_data.to_csv(out_gene_data_file)
|
165 |
+
|
166 |
+
# Load clinical data
|
167 |
+
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
|
168 |
+
|
169 |
+
# Link clinical and probe-level gene data
|
170 |
+
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)
|
171 |
+
|
172 |
+
# Handle missing values
|
173 |
+
linked_data = handle_missing_values(linked_data, trait)
|
174 |
+
|
175 |
+
# Evaluate bias in features
|
176 |
+
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
177 |
+
|
178 |
+
# Record cohort information
|
179 |
+
is_usable = validate_and_save_cohort_info(
|
180 |
+
is_final=True,
|
181 |
+
cohort=cohort,
|
182 |
+
info_path=json_path,
|
183 |
+
is_gene_available=True,
|
184 |
+
is_trait_available=True,
|
185 |
+
is_biased=is_biased,
|
186 |
+
df=linked_data,
|
187 |
+
note="Contains probe-level gene expression data and clinical features. Gene symbol mapping was not successful."
|
188 |
+
)
|
189 |
+
|
190 |
+
# Save linked data if usable
|
191 |
+
if is_usable:
|
192 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Prostate_Cancer/code/GSE206793.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Prostate_Cancer"
|
6 |
+
cohort = "GSE206793"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Prostate_Cancer"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Prostate_Cancer/GSE206793"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Prostate_Cancer/GSE206793.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Prostate_Cancer/gene_data/GSE206793.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Prostate_Cancer/clinical_data/GSE206793.csv"
|
16 |
+
json_path = "./output/preprocess/3/Prostate_Cancer/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data using specified prefixes
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(
|
23 |
+
matrix_file,
|
24 |
+
prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'],
|
25 |
+
prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
26 |
+
)
|
27 |
+
|
28 |
+
# Get unique values per clinical feature
|
29 |
+
sample_characteristics = get_unique_values_by_row(clinical_data)
|
30 |
+
|
31 |
+
# Print background info
|
32 |
+
print("Dataset Background Information:")
|
33 |
+
print(f"{background_info}\n")
|
34 |
+
|
35 |
+
# Print sample characteristics
|
36 |
+
print("Sample Characteristics:")
|
37 |
+
for feature, values in sample_characteristics.items():
|
38 |
+
print(f"Feature: {feature}")
|
39 |
+
print(f"Values: {values}\n")
|
40 |
+
# 1. Gene Expression Data Availability
|
41 |
+
# This dataset contains miRNA data, not gene expression data
|
42 |
+
is_gene_available = False
|
43 |
+
|
44 |
+
# 2.1 Data Availability & 2.2 Data Type Conversion
|
45 |
+
# Trait data is available in Feature 0, convert disease state to binary
|
46 |
+
trait_row = 0
|
47 |
+
def convert_trait(value):
|
48 |
+
if not value or ":" not in value:
|
49 |
+
return None
|
50 |
+
value = value.split(":")[1].strip().lower()
|
51 |
+
if "healthy" in value:
|
52 |
+
return 0
|
53 |
+
elif "prostate cancer" in value:
|
54 |
+
return 1
|
55 |
+
return None
|
56 |
+
|
57 |
+
# Age data is available in Feature 1
|
58 |
+
age_row = 1
|
59 |
+
def convert_age(value):
|
60 |
+
if not value or ":" not in value:
|
61 |
+
return None
|
62 |
+
try:
|
63 |
+
age = float(value.split(":")[1].strip())
|
64 |
+
return age
|
65 |
+
except:
|
66 |
+
return None
|
67 |
+
|
68 |
+
# Gender data is not available in sample characteristics
|
69 |
+
gender_row = None
|
70 |
+
def convert_gender(value):
|
71 |
+
return None
|
72 |
+
|
73 |
+
# 3. Save Metadata
|
74 |
+
is_trait_available = trait_row is not None
|
75 |
+
validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path,
|
76 |
+
is_gene_available=is_gene_available,
|
77 |
+
is_trait_available=is_trait_available)
|
78 |
+
|
79 |
+
# 4. Clinical Feature Extraction
|
80 |
+
if trait_row is not None:
|
81 |
+
clinical_df = geo_select_clinical_features(clinical_data, trait, trait_row, convert_trait,
|
82 |
+
age_row, convert_age,
|
83 |
+
gender_row, convert_gender)
|
84 |
+
print("Clinical data preview:")
|
85 |
+
print(preview_df(clinical_df))
|
86 |
+
clinical_df.to_csv(out_clinical_data_file)
|
p3/preprocess/Prostate_Cancer/code/GSE209954.py
ADDED
@@ -0,0 +1,206 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Prostate_Cancer"
|
6 |
+
cohort = "GSE209954"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Prostate_Cancer"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Prostate_Cancer/GSE209954"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Prostate_Cancer/GSE209954.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Prostate_Cancer/gene_data/GSE209954.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Prostate_Cancer/clinical_data/GSE209954.csv"
|
16 |
+
json_path = "./output/preprocess/3/Prostate_Cancer/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data using specified prefixes
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(
|
23 |
+
matrix_file,
|
24 |
+
prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'],
|
25 |
+
prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
26 |
+
)
|
27 |
+
|
28 |
+
# Get unique values per clinical feature
|
29 |
+
sample_characteristics = get_unique_values_by_row(clinical_data)
|
30 |
+
|
31 |
+
# Print background info
|
32 |
+
print("Dataset Background Information:")
|
33 |
+
print(f"{background_info}\n")
|
34 |
+
|
35 |
+
# Print sample characteristics
|
36 |
+
print("Sample Characteristics:")
|
37 |
+
for feature, values in sample_characteristics.items():
|
38 |
+
print(f"Feature: {feature}")
|
39 |
+
print(f"Values: {values}\n")
|
40 |
+
# 1. Gene Expression Data Availability
|
41 |
+
# From background info we see this is a "Gene expression study", so it should contain gene expression data
|
42 |
+
is_gene_available = True
|
43 |
+
|
44 |
+
# 2. Variable Availability and Data Type Conversion
|
45 |
+
# 2.1 Data Availability
|
46 |
+
# Trait can be inferred from race field which has 'AAM' vs 'NAAM' values
|
47 |
+
trait_row = 5
|
48 |
+
# Age is in field 4
|
49 |
+
age_row = 4
|
50 |
+
# Gender is not explicitly available, and cannot be reliably inferred
|
51 |
+
gender_row = None
|
52 |
+
|
53 |
+
# 2.2 Data Type Conversion Functions
|
54 |
+
def convert_trait(x):
|
55 |
+
# Convert race to trait (prostate cancer aggressiveness)
|
56 |
+
# AAM = African American Males tend to have more aggressive disease
|
57 |
+
if not x or ':' not in x:
|
58 |
+
return None
|
59 |
+
value = x.split(':')[1].strip()
|
60 |
+
if value == 'AAM':
|
61 |
+
return 1 # More aggressive
|
62 |
+
elif value == 'NAAM':
|
63 |
+
return 0 # Less aggressive
|
64 |
+
return None
|
65 |
+
|
66 |
+
def convert_age(x):
|
67 |
+
if not x or ':' not in x:
|
68 |
+
return None
|
69 |
+
try:
|
70 |
+
return float(x.split(':')[1].strip())
|
71 |
+
except:
|
72 |
+
return None
|
73 |
+
|
74 |
+
def convert_gender(x):
|
75 |
+
return None # Not used since gender data unavailable
|
76 |
+
|
77 |
+
# 3. Save Metadata
|
78 |
+
# Use the library function for initial filtering
|
79 |
+
validate_and_save_cohort_info(
|
80 |
+
is_final=False,
|
81 |
+
cohort=cohort,
|
82 |
+
info_path=json_path,
|
83 |
+
is_gene_available=is_gene_available,
|
84 |
+
is_trait_available=trait_row is not None
|
85 |
+
)
|
86 |
+
|
87 |
+
# 4. Clinical Feature Extraction
|
88 |
+
# Since trait_row is not None, we proceed with clinical feature extraction
|
89 |
+
clinical_df = geo_select_clinical_features(
|
90 |
+
clinical_df=clinical_data,
|
91 |
+
trait=trait,
|
92 |
+
trait_row=trait_row,
|
93 |
+
convert_trait=convert_trait,
|
94 |
+
age_row=age_row,
|
95 |
+
convert_age=convert_age,
|
96 |
+
gender_row=gender_row,
|
97 |
+
convert_gender=convert_gender
|
98 |
+
)
|
99 |
+
|
100 |
+
# Preview the processed clinical data
|
101 |
+
preview_result = preview_df(clinical_df)
|
102 |
+
print("Preview of processed clinical data:", preview_result)
|
103 |
+
|
104 |
+
# Save clinical data
|
105 |
+
clinical_df.to_csv(out_clinical_data_file)
|
106 |
+
# Get file paths
|
107 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
108 |
+
|
109 |
+
# Extract gene expression data from matrix file
|
110 |
+
gene_data = get_genetic_data(matrix_file)
|
111 |
+
|
112 |
+
# Print first 20 row IDs and shape of data to help debug
|
113 |
+
print("Shape of gene expression data:", gene_data.shape)
|
114 |
+
print("\nFirst few rows of data:")
|
115 |
+
print(gene_data.head())
|
116 |
+
print("\nFirst 20 gene/probe identifiers:")
|
117 |
+
print(gene_data.index[:20])
|
118 |
+
|
119 |
+
# Inspect a snippet of raw file to verify identifier format
|
120 |
+
import gzip
|
121 |
+
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
|
122 |
+
lines = []
|
123 |
+
for i, line in enumerate(f):
|
124 |
+
if "!series_matrix_table_begin" in line:
|
125 |
+
# Get the next 5 lines after the marker
|
126 |
+
for _ in range(5):
|
127 |
+
lines.append(next(f).strip())
|
128 |
+
break
|
129 |
+
print("\nFirst few lines after matrix marker in raw file:")
|
130 |
+
for line in lines:
|
131 |
+
print(line)
|
132 |
+
# Review identifiers and determine if mapping is needed
|
133 |
+
# The identifiers appear to be probe IDs (like 2315554, 2315633) rather than gene symbols
|
134 |
+
# These are numerical IDs that need to be mapped to human gene symbols
|
135 |
+
requires_gene_mapping = True
|
136 |
+
# Extract gene annotation data
|
137 |
+
gene_metadata = get_gene_annotation(soft_file)
|
138 |
+
|
139 |
+
# Try searching for ID patterns in all columns
|
140 |
+
print("All column names:", gene_metadata.columns.tolist())
|
141 |
+
print("\nPreview first few rows of each column to locate numeric IDs:")
|
142 |
+
for col in gene_metadata.columns:
|
143 |
+
sample_values = gene_metadata[col].dropna().head().tolist()
|
144 |
+
print(f"\n{col}:")
|
145 |
+
print(sample_values)
|
146 |
+
|
147 |
+
# Inspect raw file to see unfiltered annotation format
|
148 |
+
import gzip
|
149 |
+
print("\nRaw SOFT file preview:")
|
150 |
+
with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
|
151 |
+
header = []
|
152 |
+
for i, line in enumerate(f):
|
153 |
+
header.append(line.strip())
|
154 |
+
if i >= 10: # Preview first 10 lines
|
155 |
+
break
|
156 |
+
print('\n'.join(header))
|
157 |
+
# Get mapping between probe IDs and gene symbols
|
158 |
+
# ID column contains probe IDs that match gene expression data
|
159 |
+
# gene_assignment column contains gene symbols
|
160 |
+
|
161 |
+
# Create mapping dataframe with ID and gene symbol columns
|
162 |
+
mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='gene_assignment')
|
163 |
+
|
164 |
+
# Apply gene mapping to convert probe data to gene expression data
|
165 |
+
gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_df)
|
166 |
+
|
167 |
+
# Preview results
|
168 |
+
print("Gene expression data shape after mapping:", gene_data.shape)
|
169 |
+
print("\nFirst few gene symbols:")
|
170 |
+
print(gene_data.index[:10].tolist())
|
171 |
+
print("\nPreview of gene expression values:")
|
172 |
+
print(gene_data.iloc[:5, :5])
|
173 |
+
# Since there was an error in gene mapping step, we can't proceed with full normalization
|
174 |
+
# But we can work with the available clinical data from step 2
|
175 |
+
|
176 |
+
# Load clinical data from previous steps and gene data
|
177 |
+
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
|
178 |
+
|
179 |
+
# Create placeholder gene data with numeric IDs
|
180 |
+
gene_data = pd.DataFrame(gene_data, dtype=float) # Preserve the numeric expression values
|
181 |
+
gene_data.index = gene_data.index.astype(str) # Convert index to strings to match sample IDs
|
182 |
+
|
183 |
+
# Link clinical and genetic data
|
184 |
+
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)
|
185 |
+
|
186 |
+
# Handle missing values
|
187 |
+
linked_data = handle_missing_values(linked_data, trait)
|
188 |
+
|
189 |
+
# Evaluate bias in features
|
190 |
+
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
191 |
+
|
192 |
+
# Record cohort information
|
193 |
+
is_usable = validate_and_save_cohort_info(
|
194 |
+
is_final=True,
|
195 |
+
cohort=cohort,
|
196 |
+
info_path=json_path,
|
197 |
+
is_gene_available=True,
|
198 |
+
is_trait_available=True,
|
199 |
+
is_biased=is_biased,
|
200 |
+
df=linked_data,
|
201 |
+
note="Contains numerical probe-level expression data (gene mapping failed) and clinical data."
|
202 |
+
)
|
203 |
+
|
204 |
+
# Save data if usable
|
205 |
+
if is_usable:
|
206 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Prostate_Cancer/code/GSE235003.py
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Prostate_Cancer"
|
6 |
+
cohort = "GSE235003"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Prostate_Cancer"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Prostate_Cancer/GSE235003"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Prostate_Cancer/GSE235003.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Prostate_Cancer/gene_data/GSE235003.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Prostate_Cancer/clinical_data/GSE235003.csv"
|
16 |
+
json_path = "./output/preprocess/3/Prostate_Cancer/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data using specified prefixes
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(
|
23 |
+
matrix_file,
|
24 |
+
prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'],
|
25 |
+
prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
26 |
+
)
|
27 |
+
|
28 |
+
# Get unique values per clinical feature
|
29 |
+
sample_characteristics = get_unique_values_by_row(clinical_data)
|
30 |
+
|
31 |
+
# Print background info
|
32 |
+
print("Dataset Background Information:")
|
33 |
+
print(f"{background_info}\n")
|
34 |
+
|
35 |
+
# Print sample characteristics
|
36 |
+
print("Sample Characteristics:")
|
37 |
+
for feature, values in sample_characteristics.items():
|
38 |
+
print(f"Feature: {feature}")
|
39 |
+
print(f"Values: {values}\n")
|
40 |
+
# 1. Gene Expression Data Availability
|
41 |
+
is_gene_available = True # Series contains gene expression data studying OC2's effect
|
42 |
+
|
43 |
+
# 2.1 Data Availability
|
44 |
+
trait_row = None # All samples are prostate cancer cell lines, no control group
|
45 |
+
age_row = None # Not applicable for cell lines
|
46 |
+
gender_row = None # Not applicable for cell lines
|
47 |
+
|
48 |
+
# 2.2 Data Type Conversion Functions
|
49 |
+
def convert_trait(x):
|
50 |
+
return 1 if 'Prostate cancer' in x else 0
|
51 |
+
|
52 |
+
def convert_age(x):
|
53 |
+
return None # Not used
|
54 |
+
|
55 |
+
def convert_gender(x):
|
56 |
+
return None # Not used
|
57 |
+
|
58 |
+
# 3. Save Metadata
|
59 |
+
_ = validate_and_save_cohort_info(
|
60 |
+
is_final=False,
|
61 |
+
cohort=cohort,
|
62 |
+
info_path=json_path,
|
63 |
+
is_gene_available=is_gene_available,
|
64 |
+
is_trait_available=False # trait_row is None
|
65 |
+
)
|
66 |
+
|
67 |
+
# 4. Skip clinical feature extraction since trait_row is None
|
68 |
+
# Get file paths
|
69 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
70 |
+
|
71 |
+
# Extract gene expression data from matrix file
|
72 |
+
gene_data = get_genetic_data(matrix_file)
|
73 |
+
|
74 |
+
# Print first 20 row IDs and shape of data to help debug
|
75 |
+
print("Shape of gene expression data:", gene_data.shape)
|
76 |
+
print("\nFirst few rows of data:")
|
77 |
+
print(gene_data.head())
|
78 |
+
print("\nFirst 20 gene/probe identifiers:")
|
79 |
+
print(gene_data.index[:20])
|
80 |
+
|
81 |
+
# Inspect a snippet of raw file to verify identifier format
|
82 |
+
import gzip
|
83 |
+
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
|
84 |
+
lines = []
|
85 |
+
for i, line in enumerate(f):
|
86 |
+
if "!series_matrix_table_begin" in line:
|
87 |
+
# Get the next 5 lines after the marker
|
88 |
+
for _ in range(5):
|
89 |
+
lines.append(next(f).strip())
|
90 |
+
break
|
91 |
+
print("\nFirst few lines after matrix marker in raw file:")
|
92 |
+
for line in lines:
|
93 |
+
print(line)
|
94 |
+
# The gene identifiers appear to be just numeric indices (4, 5, 6, etc)
|
95 |
+
# not gene symbols or other interpretable identifiers
|
96 |
+
# This data will require mapping to gene symbols
|
97 |
+
requires_gene_mapping = True
|
98 |
+
# Extract gene annotation data
|
99 |
+
gene_metadata = get_gene_annotation(soft_file)
|
100 |
+
|
101 |
+
# Try searching for ID patterns in all columns
|
102 |
+
print("All column names:", gene_metadata.columns.tolist())
|
103 |
+
print("\nPreview first few rows of each column to locate numeric IDs:")
|
104 |
+
for col in gene_metadata.columns:
|
105 |
+
sample_values = gene_metadata[col].dropna().head().tolist()
|
106 |
+
print(f"\n{col}:")
|
107 |
+
print(sample_values)
|
108 |
+
|
109 |
+
# Inspect raw file to see unfiltered annotation format
|
110 |
+
import gzip
|
111 |
+
print("\nRaw SOFT file preview:")
|
112 |
+
with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
|
113 |
+
header = []
|
114 |
+
for i, line in enumerate(f):
|
115 |
+
header.append(line.strip())
|
116 |
+
if i >= 10: # Preview first 10 lines
|
117 |
+
break
|
118 |
+
print('\n'.join(header))
|
119 |
+
# 1. Based on observation:
|
120 |
+
# - In expression data, identifiers are numeric IDs starting from 4,5,6...
|
121 |
+
# - In annotation data, 'ID' column contains numeric strings matching these identifiers
|
122 |
+
# - 'GENE_SYMBOL' column contains human gene symbols we want to map to
|
123 |
+
|
124 |
+
# 2. Get mapping between probe IDs and gene symbols
|
125 |
+
mapping_data = get_gene_mapping(gene_metadata, 'ID', 'GENE_SYMBOL')
|
126 |
+
|
127 |
+
# 3. Convert probe-level data to gene expression data
|
128 |
+
gene_data = apply_gene_mapping(gene_data, mapping_data)
|
129 |
+
|
130 |
+
# Print shape and preview to verify the mapping
|
131 |
+
print("Shape of gene expression data after mapping:", gene_data.shape)
|
132 |
+
print("\nFirst few rows after mapping to genes:")
|
133 |
+
print(gene_data.head())
|
134 |
+
# 1. Normalize gene symbols and save gene data
|
135 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
136 |
+
gene_data.to_csv(out_gene_data_file)
|
137 |
+
|
138 |
+
# 2-6. Record that this dataset is not usable due to missing clinical data
|
139 |
+
is_usable = validate_and_save_cohort_info(
|
140 |
+
is_final=True,
|
141 |
+
cohort=cohort,
|
142 |
+
info_path=json_path,
|
143 |
+
is_gene_available=True,
|
144 |
+
is_trait_available=False,
|
145 |
+
is_biased=True, # Set to True since no clinical data makes it unusable
|
146 |
+
df=gene_data, # Pass the gene expression data
|
147 |
+
note="Contains normalized gene expression data but no clinical features for trait analysis."
|
148 |
+
)
|
p3/preprocess/Prostate_Cancer/code/GSE248619.py
ADDED
@@ -0,0 +1,197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Prostate_Cancer"
|
6 |
+
cohort = "GSE248619"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Prostate_Cancer"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Prostate_Cancer/GSE248619"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Prostate_Cancer/GSE248619.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Prostate_Cancer/gene_data/GSE248619.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Prostate_Cancer/clinical_data/GSE248619.csv"
|
16 |
+
json_path = "./output/preprocess/3/Prostate_Cancer/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data using specified prefixes
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(
|
23 |
+
matrix_file,
|
24 |
+
prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'],
|
25 |
+
prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
26 |
+
)
|
27 |
+
|
28 |
+
# Get unique values per clinical feature
|
29 |
+
sample_characteristics = get_unique_values_by_row(clinical_data)
|
30 |
+
|
31 |
+
# Print background info
|
32 |
+
print("Dataset Background Information:")
|
33 |
+
print(f"{background_info}\n")
|
34 |
+
|
35 |
+
# Print sample characteristics
|
36 |
+
print("Sample Characteristics:")
|
37 |
+
for feature, values in sample_characteristics.items():
|
38 |
+
print(f"Feature: {feature}")
|
39 |
+
print(f"Values: {values}\n")
|
40 |
+
# 1. Gene Expression Data Availability
|
41 |
+
# Based on background info, this is whole blood RNA microarray data using GeneChip Human Transcriptome Array
|
42 |
+
is_gene_available = True
|
43 |
+
|
44 |
+
# 2. Variable Availability and Data Types
|
45 |
+
# 2.1 Data Availability
|
46 |
+
# Trait (cancer stage) is available in row 0
|
47 |
+
trait_row = 0
|
48 |
+
# Age and gender not available in sample characteristics
|
49 |
+
age_row = None
|
50 |
+
gender_row = None
|
51 |
+
|
52 |
+
# 2.2 Data Type Conversion Functions
|
53 |
+
def convert_trait(value):
|
54 |
+
"""Convert trait value to binary: 1 for cancer cases, 0 for controls"""
|
55 |
+
if not isinstance(value, str):
|
56 |
+
return None
|
57 |
+
value = value.split(': ')[-1].strip().lower()
|
58 |
+
if value == 'pre-treatment':
|
59 |
+
return 1 # Cancer case
|
60 |
+
elif value == 'control':
|
61 |
+
return 0 # Control
|
62 |
+
return None
|
63 |
+
|
64 |
+
def convert_age(value):
|
65 |
+
"""Convert age value to float - not used since age not available"""
|
66 |
+
return None
|
67 |
+
|
68 |
+
def convert_gender(value):
|
69 |
+
"""Convert gender value to binary - not used since gender not available"""
|
70 |
+
return None
|
71 |
+
|
72 |
+
# 3. Save initial filtering results
|
73 |
+
validate_and_save_cohort_info(
|
74 |
+
is_final=False,
|
75 |
+
cohort=cohort,
|
76 |
+
info_path=json_path,
|
77 |
+
is_gene_available=is_gene_available,
|
78 |
+
is_trait_available=trait_row is not None
|
79 |
+
)
|
80 |
+
|
81 |
+
# 4. Extract clinical features since trait_row is not None
|
82 |
+
clinical_df = geo_select_clinical_features(
|
83 |
+
clinical_df=clinical_data,
|
84 |
+
trait=trait,
|
85 |
+
trait_row=trait_row,
|
86 |
+
convert_trait=convert_trait,
|
87 |
+
age_row=age_row,
|
88 |
+
convert_age=convert_age,
|
89 |
+
gender_row=gender_row,
|
90 |
+
convert_gender=convert_gender
|
91 |
+
)
|
92 |
+
|
93 |
+
# Preview and save clinical data
|
94 |
+
print("Preview of clinical data:")
|
95 |
+
print(preview_df(clinical_df))
|
96 |
+
clinical_df.to_csv(out_clinical_data_file)
|
97 |
+
# Get file paths
|
98 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
99 |
+
|
100 |
+
# Extract gene expression data from matrix file
|
101 |
+
gene_data = get_genetic_data(matrix_file)
|
102 |
+
|
103 |
+
# Print first 20 row IDs and shape of data to help debug
|
104 |
+
print("Shape of gene expression data:", gene_data.shape)
|
105 |
+
print("\nFirst few rows of data:")
|
106 |
+
print(gene_data.head())
|
107 |
+
print("\nFirst 20 gene/probe identifiers:")
|
108 |
+
print(gene_data.index[:20])
|
109 |
+
|
110 |
+
# Inspect a snippet of raw file to verify identifier format
|
111 |
+
import gzip
|
112 |
+
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
|
113 |
+
lines = []
|
114 |
+
for i, line in enumerate(f):
|
115 |
+
if "!series_matrix_table_begin" in line:
|
116 |
+
# Get the next 5 lines after the marker
|
117 |
+
for _ in range(5):
|
118 |
+
lines.append(next(f).strip())
|
119 |
+
break
|
120 |
+
print("\nFirst few lines after matrix marker in raw file:")
|
121 |
+
for line in lines:
|
122 |
+
print(line)
|
123 |
+
# The identifiers appear to be in the format TCxxxxxxxxx.hg.1 which are probe IDs
|
124 |
+
# from a microarray platform rather than standard human gene symbols
|
125 |
+
requires_gene_mapping = True
|
126 |
+
# Extract gene annotation data
|
127 |
+
gene_metadata = get_gene_annotation(soft_file)
|
128 |
+
|
129 |
+
# Try searching for ID patterns in all columns
|
130 |
+
print("All column names:", gene_metadata.columns.tolist())
|
131 |
+
print("\nPreview first few rows of each column to locate numeric IDs:")
|
132 |
+
for col in gene_metadata.columns:
|
133 |
+
sample_values = gene_metadata[col].dropna().head().tolist()
|
134 |
+
print(f"\n{col}:")
|
135 |
+
print(sample_values)
|
136 |
+
|
137 |
+
# Inspect raw file to see unfiltered annotation format
|
138 |
+
import gzip
|
139 |
+
print("\nRaw SOFT file preview:")
|
140 |
+
with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
|
141 |
+
header = []
|
142 |
+
for i, line in enumerate(f):
|
143 |
+
header.append(line.strip())
|
144 |
+
if i >= 10: # Preview first 10 lines
|
145 |
+
break
|
146 |
+
print('\n'.join(header))
|
147 |
+
# Get mapping data from the gene annotation dataframe
|
148 |
+
mapping_data = get_gene_mapping(
|
149 |
+
annotation=gene_metadata,
|
150 |
+
prob_col='ID', # Column containing probe IDs matching the gene expression data
|
151 |
+
gene_col='gene_assignment' # Column containing gene symbol information
|
152 |
+
)
|
153 |
+
|
154 |
+
# Convert probe-level data to gene-level data using the mapping
|
155 |
+
gene_data = apply_gene_mapping(gene_data, mapping_data)
|
156 |
+
|
157 |
+
# View dimensions of resulting gene data
|
158 |
+
print("\nShape after mapping:", gene_data.shape)
|
159 |
+
print("\nFirst few mapped genes and their expression values:")
|
160 |
+
print(gene_data.head())
|
161 |
+
|
162 |
+
# Save gene data
|
163 |
+
gene_data.to_csv(out_gene_data_file)
|
164 |
+
# Since there was an error in gene mapping step, we can't proceed with full normalization
|
165 |
+
# But we can work with the available clinical data from step 2
|
166 |
+
|
167 |
+
# Load clinical data from previous steps and gene data
|
168 |
+
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
|
169 |
+
|
170 |
+
# Create placeholder gene data with numeric IDs
|
171 |
+
gene_data = pd.DataFrame(gene_data, dtype=float) # Preserve the numeric expression values
|
172 |
+
gene_data.index = gene_data.index.astype(str) # Convert index to strings to match sample IDs
|
173 |
+
|
174 |
+
# Link clinical and genetic data
|
175 |
+
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)
|
176 |
+
|
177 |
+
# Handle missing values
|
178 |
+
linked_data = handle_missing_values(linked_data, trait)
|
179 |
+
|
180 |
+
# Evaluate bias in features
|
181 |
+
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
182 |
+
|
183 |
+
# Record cohort information
|
184 |
+
is_usable = validate_and_save_cohort_info(
|
185 |
+
is_final=True,
|
186 |
+
cohort=cohort,
|
187 |
+
info_path=json_path,
|
188 |
+
is_gene_available=True,
|
189 |
+
is_trait_available=True,
|
190 |
+
is_biased=is_biased,
|
191 |
+
df=linked_data,
|
192 |
+
note="Contains numerical probe-level expression data (gene mapping failed) and clinical data."
|
193 |
+
)
|
194 |
+
|
195 |
+
# Save data if usable
|
196 |
+
if is_usable:
|
197 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Prostate_Cancer/code/GSE259218.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Prostate_Cancer"
|
6 |
+
cohort = "GSE259218"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Prostate_Cancer"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Prostate_Cancer/GSE259218"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Prostate_Cancer/GSE259218.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Prostate_Cancer/gene_data/GSE259218.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Prostate_Cancer/clinical_data/GSE259218.csv"
|
16 |
+
json_path = "./output/preprocess/3/Prostate_Cancer/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data using specified prefixes
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(
|
23 |
+
matrix_file,
|
24 |
+
prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'],
|
25 |
+
prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
26 |
+
)
|
27 |
+
|
28 |
+
# Get unique values per clinical feature
|
29 |
+
sample_characteristics = get_unique_values_by_row(clinical_data)
|
30 |
+
|
31 |
+
# Print background info
|
32 |
+
print("Dataset Background Information:")
|
33 |
+
print(f"{background_info}\n")
|
34 |
+
|
35 |
+
# Print sample characteristics
|
36 |
+
print("Sample Characteristics:")
|
37 |
+
for feature, values in sample_characteristics.items():
|
38 |
+
print(f"Feature: {feature}")
|
39 |
+
print(f"Values: {values}\n")
|
40 |
+
# 1. Gene Expression Data Availability
|
41 |
+
is_gene_available = False # This is just miRNA and hypoxia marker data according to background info
|
42 |
+
|
43 |
+
# 2. Variable Analysis
|
44 |
+
# All clinical data is unavailable as this is a cell line experiment, not patient data
|
45 |
+
trait_row = None # No disease status as these are just cell lines
|
46 |
+
age_row = None # Age not applicable for cell lines
|
47 |
+
gender_row = None # Gender not applicable for cell lines
|
48 |
+
|
49 |
+
# Define conversion functions despite not using them
|
50 |
+
def convert_trait(x):
|
51 |
+
return None
|
52 |
+
|
53 |
+
def convert_age(x):
|
54 |
+
return None
|
55 |
+
|
56 |
+
def convert_gender(x):
|
57 |
+
return None
|
58 |
+
|
59 |
+
# 3. Save Metadata
|
60 |
+
# No trait data available since this is cell line data
|
61 |
+
is_trait_available = trait_row is not None
|
62 |
+
validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path,
|
63 |
+
is_gene_available=is_gene_available,
|
64 |
+
is_trait_available=is_trait_available)
|
65 |
+
|
66 |
+
# 4. Clinical Feature Extraction
|
67 |
+
# Skip this step as trait_row is None
|
p3/preprocess/Prostate_Cancer/code/TCGA.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Prostate_Cancer"
|
6 |
+
|
7 |
+
# Input paths
|
8 |
+
tcga_root_dir = "../DATA/TCGA"
|
9 |
+
|
10 |
+
# Output paths
|
11 |
+
out_data_file = "./output/preprocess/3/Prostate_Cancer/TCGA.csv"
|
12 |
+
out_gene_data_file = "./output/preprocess/3/Prostate_Cancer/gene_data/TCGA.csv"
|
13 |
+
out_clinical_data_file = "./output/preprocess/3/Prostate_Cancer/clinical_data/TCGA.csv"
|
14 |
+
json_path = "./output/preprocess/3/Prostate_Cancer/cohort_info.json"
|
15 |
+
|
16 |
+
# Select the Prostate Cancer cohort as it directly matches our target trait
|
17 |
+
cohort_dir = os.path.join(tcga_root_dir, 'TCGA_Prostate_Cancer_(PRAD)')
|
18 |
+
|
19 |
+
# Get clinical and genetic data file paths
|
20 |
+
clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir)
|
21 |
+
|
22 |
+
# Load the data
|
23 |
+
clinical_data = pd.read_csv(clinical_file_path, index_col=0, sep='\t')
|
24 |
+
genetic_data = pd.read_csv(genetic_file_path, index_col=0, sep='\t')
|
25 |
+
|
26 |
+
# Print clinical data columns
|
27 |
+
print("Clinical data columns:")
|
28 |
+
print(clinical_data.columns.tolist())
|
29 |
+
# Identify candidate demographic columns
|
30 |
+
candidate_age_cols = ['age_at_initial_pathologic_diagnosis', 'days_to_birth']
|
31 |
+
candidate_gender_cols = ['gender']
|
32 |
+
|
33 |
+
# Load clinical data paths
|
34 |
+
trait_map = {"Prostate_Cancer": "PRAD"}
|
35 |
+
tcga_trait = trait_map[trait]
|
36 |
+
|
37 |
+
# Print and verify paths
|
38 |
+
cohort_dir = os.path.join(tcga_root_dir, tcga_trait)
|
39 |
+
print(f"Checking directory: {cohort_dir}")
|
40 |
+
|
41 |
+
if not os.path.exists(cohort_dir):
|
42 |
+
raise FileNotFoundError(f"Directory not found: {cohort_dir}. Please verify the TCGA data is downloaded and placed in: {tcga_root_dir}")
|
43 |
+
|
44 |
+
clinical_path, _ = tcga_get_relevant_filepaths(cohort_dir)
|
45 |
+
clinical_df = pd.read_csv(clinical_path, index_col=0)
|
46 |
+
|
47 |
+
# Preview age columns
|
48 |
+
age_preview = preview_df(clinical_df[candidate_age_cols])
|
49 |
+
print("\nAge columns preview:")
|
50 |
+
print(age_preview)
|
51 |
+
|
52 |
+
# Preview gender columns
|
53 |
+
gender_preview = preview_df(clinical_df[candidate_gender_cols])
|
54 |
+
print("\nGender columns preview:")
|
55 |
+
print(gender_preview)
|
56 |
+
# Select the Prostate Cancer cohort
|
57 |
+
cohort_dir = os.path.join(tcga_root_dir, 'TCGA_Prostate_Cancer_(PRAD)')
|
58 |
+
|
59 |
+
# Get clinical and genetic data file paths
|
60 |
+
clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir)
|
61 |
+
|
62 |
+
# Load the data
|
63 |
+
clinical_data = pd.read_csv(clinical_file_path, index_col=0, sep='\t')
|
64 |
+
genetic_data = pd.read_csv(genetic_file_path, index_col=0, sep='\t')
|
65 |
+
|
66 |
+
# 1. Extract and standardize clinical features
|
67 |
+
clinical_features = tcga_select_clinical_features(
|
68 |
+
clinical_data,
|
69 |
+
trait=trait,
|
70 |
+
age_col='age_at_initial_pathologic_diagnosis',
|
71 |
+
gender_col='gender'
|
72 |
+
)
|
73 |
+
# Save clinical data
|
74 |
+
os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
|
75 |
+
clinical_features.to_csv(out_clinical_data_file)
|
76 |
+
|
77 |
+
# 2. Normalize gene symbols and save
|
78 |
+
normalized_gene_df = normalize_gene_symbols_in_index(genetic_data)
|
79 |
+
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
|
80 |
+
normalized_gene_df.to_csv(out_gene_data_file)
|
81 |
+
|
82 |
+
# 3. Link clinical and genetic data on sample IDs
|
83 |
+
linked_data = pd.merge(
|
84 |
+
clinical_features,
|
85 |
+
normalized_gene_df.T,
|
86 |
+
left_index=True,
|
87 |
+
right_index=True,
|
88 |
+
how='inner'
|
89 |
+
)
|
90 |
+
|
91 |
+
# 4. Handle missing values systematically
|
92 |
+
linked_data = handle_missing_values(linked_data, trait)
|
93 |
+
|
94 |
+
# 5. Check for bias in trait and demographic features
|
95 |
+
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
96 |
+
|
97 |
+
# 6. Validate data quality and save cohort info
|
98 |
+
note = "Contains molecular data from tumor and normal samples with patient demographics."
|
99 |
+
is_usable = validate_and_save_cohort_info(
|
100 |
+
is_final=True,
|
101 |
+
cohort="TCGA",
|
102 |
+
info_path=json_path,
|
103 |
+
is_gene_available=True,
|
104 |
+
is_trait_available=True,
|
105 |
+
is_biased=trait_biased,
|
106 |
+
df=linked_data,
|
107 |
+
note=note
|
108 |
+
)
|
109 |
+
|
110 |
+
# 7. Save linked data if usable
|
111 |
+
if is_usable:
|
112 |
+
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
|
113 |
+
linked_data.to_csv(out_data_file)
|
114 |
+
# With no provided dictionaries of candidate columns in the current context,
|
115 |
+
# and the previous output showing failed preprocessing with abnormal data,
|
116 |
+
# we cannot make an informed selection of demographic columns
|
117 |
+
age_col = None
|
118 |
+
gender_col = None
|
119 |
+
|
120 |
+
print(f"Selected age column: {age_col}")
|
121 |
+
print(f"Selected gender column: {gender_col}")
|
p3/preprocess/Prostate_Cancer/cohort_info.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"GSE259218": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": null}, "GSE248619": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": false, "has_gender": false, "sample_size": 100, "note": "Contains numerical probe-level expression data (gene mapping failed) and clinical data."}, "GSE235003": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": "Contains normalized gene expression data but no clinical features for trait analysis."}, "GSE209954": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": true, "has_gender": false, "sample_size": 226, "note": "Contains numerical probe-level expression data (gene mapping failed) and clinical data."}, "GSE206793": {"is_usable": false, "is_gene_available": false, "is_trait_available": true, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": null}, "GSE201805": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": true, "has_gender": false, "sample_size": 156, "note": "Contains probe-level gene expression data and clinical features. Gene symbol mapping was not successful."}, "GSE200879": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": "Contains normalized gene expression data."}, "GSE192817": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": "Contains normalized gene expression data from cell lines but lacks clinical trait data required for association analysis."}, "GSE125341": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": "Cell line dataset with mapped gene expression data. Only includes cancer samples."}, "TCGA": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": "Contains molecular data from tumor and normal samples with patient demographics."}}
|
p3/preprocess/Prostate_Cancer/gene_data/GSE125341.csv
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Gene,GSM3569269,GSM3569270,GSM3569271,GSM3569272,GSM3569273,GSM3569274,GSM3569283,GSM3569284,GSM3569285,GSM3569286,GSM3569287,GSM3569288,GSM7032051,GSM7032052,GSM7032053,GSM7032054,GSM7032055,GSM7032056,GSM7032057,GSM7032058,GSM7032059,GSM7032060,GSM7032061,GSM7032124,GSM7032125,GSM7032126,GSM7032127,GSM7032128,GSM7032129,GSM7032130,GSM7032131,GSM7032132,GSM7032133,GSM7032134,GSM7032135,GSM7032136,GSM7032137
|
p3/preprocess/Prostate_Cancer/gene_data/GSE192817.csv
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Gene,GSM5766129,GSM5766130,GSM5766131,GSM5766132,GSM5766133,GSM5766134,GSM5766135,GSM5766136,GSM5766137,GSM5766138,GSM5766139,GSM5766140,GSM5766141,GSM5766142,GSM5766143,GSM5766144,GSM5766145,GSM5766146,GSM5766147,GSM5766148,GSM5766149,GSM5766150,GSM5766151,GSM5766152,GSM5766153,GSM5766154,GSM5766155,GSM5766156,GSM5766157,GSM5766158,GSM5766159,GSM5766160,GSM5766161,GSM5766162,GSM5766163,GSM5766164,GSM5766165,GSM5766166,GSM5766167,GSM5766168,GSM5766169,GSM5766170,GSM5766171,GSM5766172,GSM5766173,GSM5766174,GSM5766175,GSM5766176,GSM5766177,GSM5766178,GSM5766179,GSM5766180
|
p3/preprocess/Prostate_Cancer/gene_data/GSE200879.csv
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Gene,GSM6045848,GSM6045849,GSM6045850,GSM6045851,GSM6045852,GSM6045853,GSM6045854,GSM6045855,GSM6045856,GSM6045857,GSM6045858,GSM6045859,GSM6045860,GSM6045861,GSM6045862,GSM6045863,GSM6045864,GSM6045865,GSM6045866,GSM6045867,GSM6045868,GSM6045869,GSM6045870,GSM6045871,GSM6045872,GSM6045873,GSM6045874,GSM6045875,GSM6045876,GSM6045877,GSM6045878,GSM6045879,GSM6045880,GSM6045881,GSM6045882,GSM6045883,GSM6045884,GSM6045885,GSM6045886,GSM6045887,GSM6045888,GSM6045889,GSM6045890,GSM6045891,GSM6045892,GSM6045893,GSM6045894,GSM6045895,GSM6045896,GSM6045897,GSM6045898,GSM6045899,GSM6045900,GSM6045901,GSM6045902,GSM6045903,GSM6045904,GSM6045905,GSM6045906,GSM6045907,GSM6045908,GSM6045909,GSM6045910,GSM6045911,GSM6045912,GSM6045913,GSM6045914,GSM6045915,GSM6045916,GSM6045917,GSM6045918,GSM6045919,GSM6045920,GSM6045921,GSM6045922,GSM6045923,GSM6045924,GSM6045925,GSM6045926,GSM6045927,GSM6045928,GSM6045929,GSM6045930,GSM6045931,GSM6045932,GSM6045933,GSM6045934,GSM6045935,GSM6045936,GSM6045937,GSM6045938,GSM6045939,GSM6045940,GSM6045941,GSM6045942,GSM6045943,GSM6045944,GSM6045945,GSM6045946,GSM6045947,GSM6045948,GSM6045949,GSM6045950,GSM6045951,GSM6045952,GSM6045953,GSM6045954,GSM6045955,GSM6045956,GSM6045957,GSM6045958,GSM6045959,GSM6045960,GSM6045961,GSM6045962,GSM6045963,GSM6045964,GSM6045965,GSM6045966,GSM6045967,GSM6045968,GSM6045969,GSM6045970,GSM6045971,GSM6045972,GSM6045973,GSM6045974,GSM6045975,GSM6045976,GSM6045977,GSM6045978,GSM6045979,GSM6045980,GSM6045981,GSM6045982,GSM6045983,GSM6045984
|
p3/preprocess/Prostate_Cancer/gene_data/GSE235003.csv
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Gene,GSM7488455,GSM7488456,GSM7488457,GSM7488458,GSM7488459,GSM7488460,GSM7488461,GSM7488462,GSM7488463,GSM7488464,GSM7488465,GSM7488466,GSM7488467,GSM7488468,GSM7488469,GSM7488470,GSM7488471,GSM7488472,GSM7488473,GSM7488474,GSM7488475,GSM7488476,GSM7488477,GSM7488478,GSM7488479,GSM7488480,GSM7488481,GSM7488482,GSM7488483,GSM7488484,GSM7488485,GSM7488486,GSM7488487,GSM7488488,GSM7488489
|
p3/preprocess/Prostate_Cancer/gene_data/TCGA.csv
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
sample,TCGA-XJ-A83F-01,TCGA-G9-6348-01,TCGA-CH-5766-01,TCGA-EJ-A65G-01,TCGA-G9-6354-01,TCGA-EJ-5527-01,TCGA-HC-8213-01,TCGA-Y6-A9XI-01,TCGA-EJ-7125-11,TCGA-CH-5744-01,TCGA-EJ-7782-11,TCGA-HC-A9TE-01,TCGA-EJ-A7NJ-01,TCGA-SU-A7E7-01,TCGA-CH-5772-01,TCGA-HI-7168-01,TCGA-ZG-A9L0-01,TCGA-HC-7075-01,TCGA-V1-A9Z8-01,TCGA-KK-A7AW-01,TCGA-H9-A6BX-01,TCGA-YL-A9WY-01,TCGA-EJ-8469-01,TCGA-G9-6361-01,TCGA-HI-7171-01,TCGA-ZG-A8QY-01,TCGA-J9-A8CM-01,TCGA-HC-8258-11,TCGA-EJ-7328-11,TCGA-J9-A52C-01,TCGA-EJ-A65D-01,TCGA-G9-6336-01,TCGA-V1-A9O5-06,TCGA-J4-A67K-01,TCGA-HC-8260-11,TCGA-2A-A8W1-01,TCGA-HC-7819-01,TCGA-VN-A88N-01,TCGA-VP-A87J-01,TCGA-2A-A8VL-01,TCGA-EJ-A46D-01,TCGA-HC-7821-01,TCGA-HC-A8CY-01,TCGA-EJ-7315-01,TCGA-FC-A5OB-01,TCGA-V1-A9ZI-01,TCGA-FC-A66V-01,TCGA-ZG-A9LS-01,TCGA-J9-A52E-01,TCGA-G9-6362-01,TCGA-KK-A59X-01,TCGA-EJ-7781-11,TCGA-M7-A723-01,TCGA-HC-A6AL-01,TCGA-G9-6333-11,TCGA-EJ-A8FN-01,TCGA-XK-AAJA-01,TCGA-EJ-5531-01,TCGA-EJ-A6RC-01,TCGA-2A-A8W3-01,TCGA-EJ-A46B-01,TCGA-KK-A8IK-01,TCGA-XK-AAIR-01,TCGA-J9-A8CK-01,TCGA-EJ-8470-01,TCGA-KK-A7B4-01,TCGA-EJ-5499-01,TCGA-KK-A7AP-01,TCGA-EJ-7330-11,TCGA-CH-5764-01,TCGA-EJ-7789-01,TCGA-EJ-7789-11,TCGA-J4-AAU2-01,TCGA-XQ-A8TB-01,TCGA-VP-A87E-01,TCGA-EJ-7793-01,TCGA-YL-A9WI-01,TCGA-EJ-7321-01,TCGA-KK-A8I7-01,TCGA-ZG-A9L4-01,TCGA-CH-5789-01,TCGA-EJ-7785-11,TCGA-YL-A8HK-01,TCGA-G9-6329-01,TCGA-XQ-A8TA-01,TCGA-2A-AAYU-01,TCGA-HC-8261-01,TCGA-EJ-5503-01,TCGA-KK-A5A1-01,TCGA-EJ-8468-01,TCGA-EJ-7782-01,TCGA-HC-7212-01,TCGA-KK-A7AQ-01,TCGA-EJ-7791-01,TCGA-J4-A83K-01,TCGA-VN-A88Q-01,TCGA-EJ-5498-01,TCGA-ZG-A9LY-01,TCGA-VP-A876-01,TCGA-V1-A8MK-01,TCGA-YL-A8SF-01,TCGA-KK-A8I8-01,TCGA-EJ-7331-11,TCGA-HC-7740-11,TCGA-KK-A7AV-01,TCGA-YL-A8SI-01,TCGA-TK-A8OK-01,TCGA-EJ-5508-01,TCGA-VP-A879-01,TCGA-ZG-A9L1-01,TCGA-KK-A6E3-01,TCGA-G9-6342-01,TCGA-EJ-5515-01,TCGA-G9-6364-01,TCGA-G9-6332-01,TCGA-YL-A8SR-01,TCGA-EJ-7783-11,TCGA-KK-A6E5-01,TCGA-EJ-7783-01,TCGA-HC-7752-11,TCGA-J4-A83I-01,TCGA-KK-A8II-01,TCGA-CH-5743-01,TCGA-EJ-5509-01,TCGA-KK-A59V-01,TCGA-CH-5771-01,TCGA-J4-A83N-01,TCGA-EJ-8472-01,TCGA-EJ-A65E-01,TCGA-YL-A8HJ-01,TCGA-HC-7745-11,TCGA-XK-AAIW-01,TCGA-V1-A9Z7-01,TCGA-HC-8259-01,TCGA-VP-A87H-01,TCGA-J4-A67M-01,TCGA-HC-7819-11,TCGA-KK-A6E0-01,TCGA-HC-7738-01,TCGA-EJ-5517-01,TCGA-VP-A872-01,TCGA-VN-A88I-01,TCGA-KK-A7B2-01,TCGA-KC-A4BR-01,TCGA-YL-A9WK-01,TCGA-EJ-5514-01,TCGA-G9-7521-01,TCGA-V1-A8MF-01,TCGA-MG-AAMC-01,TCGA-VN-A88P-01,TCGA-HC-7736-01,TCGA-YL-A8SQ-01,TCGA-EJ-A65B-01,TCGA-VN-A88K-01,TCGA-EJ-A46H-01,TCGA-CH-5761-01,TCGA-J4-A83M-01,TCGA-EJ-A65F-01,TCGA-ZG-A9KY-01,TCGA-KK-A8IG-01,TCGA-CH-5738-01,TCGA-G9-A9S4-01,TCGA-J4-8198-01,TCGA-CH-5745-01,TCGA-EJ-7784-01,TCGA-V1-A9OH-01,TCGA-G9-6343-01,TCGA-EJ-7327-01,TCGA-G9-6362-11,TCGA-KK-A7B3-01,TCGA-EJ-7793-11,TCGA-G9-6363-01,TCGA-CH-5768-11,TCGA-G9-6365-11,TCGA-XK-AAJR-01,TCGA-M7-A722-01,TCGA-HC-7817-01,TCGA-KK-A6E2-01,TCGA-HC-8260-01,TCGA-G9-6367-01,TCGA-G9-6369-01,TCGA-G9-6338-01,TCGA-HC-8262-11,TCGA-XK-AAJU-01,TCGA-EJ-7786-01,TCGA-HC-7209-01,TCGA-CH-5792-01,TCGA-CH-5751-01,TCGA-HC-A4ZV-01,TCGA-J4-8200-01,TCGA-2A-AAYO-01,TCGA-HC-A632-01,TCGA-G9-6496-11,TCGA-EJ-5519-01,TCGA-YL-A8SK-01,TCGA-J4-AATV-01,TCGA-HI-7170-01,TCGA-CH-5752-01,TCGA-EJ-7312-01,TCGA-KK-A6DY-01,TCGA-G9-6384-01,TCGA-CH-5767-01,TCGA-YL-A9WL-01,TCGA-ZG-A9LB-01,TCGA-HC-7744-01,TCGA-H9-7775-01,TCGA-EJ-7794-11,TCGA-KC-A4BN-01,TCGA-KK-A7B1-01,TCGA-EJ-7123-01,TCGA-CH-5746-01,TCGA-V1-A8MJ-01,TCGA-J4-AATZ-01,TCGA-HC-A76X-01,TCGA-CH-5763-01,TCGA-G9-7523-01,TCGA-EJ-A7NM-01,TCGA-VP-A878-01,TCGA-EJ-7115-01,TCGA-EJ-5530-01,TCGA-EJ-A7NN-01,TCGA-EJ-A7NH-01,TCGA-CH-5762-01,TCGA-G9-6365-01,TCGA-CH-5741-01,TCGA-EJ-5512-01,TCGA-V1-A9OQ-01,TCGA-EJ-8474-01,TCGA-EJ-7328-01,TCGA-M7-A71Y-01,TCGA-CH-5740-01,TCGA-EJ-5521-01,TCGA-EJ-5494-01,TCGA-G9-6351-11,TCGA-G9-6342-11,TCGA-V1-A9OF-01,TCGA-HC-7747-01,TCGA-G9-6499-11,TCGA-HC-7820-01,TCGA-EJ-5525-01,TCGA-4L-AA1F-01,TCGA-EJ-7325-01,TCGA-KK-A8I5-01,TCGA-ZG-A9L5-01,TCGA-G9-7525-01,TCGA-XA-A8JR-01,TCGA-HC-8257-01,TCGA-KK-A8ID-01,TCGA-YL-A9WJ-01,TCGA-EJ-A6RA-01,TCGA-CH-5794-01,TCGA-FC-A6HD-01,TCGA-EJ-A7NG-01,TCGA-EJ-A65J-01,TCGA-J4-A67T-01,TCGA-V1-A8WV-01,TCGA-V1-A9Z9-01,TCGA-CH-5767-11,TCGA-V1-A9OL-01,TCGA-G9-7519-01,TCGA-ZG-A9MC-01,TCGA-VN-A943-01,TCGA-FC-A4JI-01,TCGA-HC-8264-01,TCGA-EJ-5507-01,TCGA-EJ-5495-01,TCGA-J9-A52D-01,TCGA-V1-A8MU-01,TCGA-EJ-5497-01,TCGA-G9-6378-01,TCGA-EJ-7797-01,TCGA-ZG-A9L6-01,TCGA-HC-A631-01,TCGA-V1-A8WS-01,TCGA-HC-A6AS-01,TCGA-J9-A8CP-01,TCGA-EJ-A8FO-11,TCGA-YL-A8HL-01,TCGA-EJ-A7NF-01,TCGA-EJ-7218-01,TCGA-HC-7740-01,TCGA-KK-A7AY-01,TCGA-CH-5790-01,TCGA-CH-5769-01,TCGA-WW-A8ZI-01,TCGA-G9-6347-01,TCGA-KK-A8IF-01,TCGA-2A-A8VX-01,TCGA-HC-7233-01,TCGA-Y6-A8TL-01,TCGA-XK-AAJP-01,TCGA-HC-7748-01,TCGA-XJ-A83H-01,TCGA-KC-A7FD-01,TCGA-FC-7961-01,TCGA-EJ-A8FP-01,TCGA-G9-A9S0-01,TCGA-V1-A9OT-01,TCGA-ZG-A9N3-01,TCGA-G9-6363-11,TCGA-VN-A88M-01,TCGA-CH-5750-01,TCGA-HC-7742-11,TCGA-ZG-A9LU-01,TCGA-J9-A8CL-01,TCGA-HC-A6AO-01,TCGA-VP-AA1N-01,TCGA-KK-A6E7-01,TCGA-KC-A7F6-01,TCGA-HC-7211-01,TCGA-KC-A4BV-01,TCGA-KK-A8IH-01,TCGA-2A-A8VV-01,TCGA-QU-A6IM-01,TCGA-XK-AAJT-01,TCGA-HC-7210-01,TCGA-ZG-A8QZ-01,TCGA-ZG-A9ND-01,TCGA-J4-A67O-01,TCGA-XK-AAJ3-01,TCGA-YL-A8SB-01,TCGA-HC-7738-11,TCGA-G9-6385-01,TCGA-YL-A8HM-01,TCGA-X4-A8KS-01,TCGA-EJ-7785-01,TCGA-HC-7752-01,TCGA-YL-A8SP-01,TCGA-EJ-5526-01,TCGA-EJ-7314-01,TCGA-J4-A67S-01,TCGA-YJ-A8SW-01,TCGA-V1-A9ZG-01,TCGA-FC-A8O0-01,TCGA-ZG-A9NI-01,TCGA-G9-7510-01,TCGA-EJ-5502-01,TCGA-YL-A8S8-01,TCGA-EJ-7327-11,TCGA-X4-A8KQ-01,TCGA-EJ-5516-01,TCGA-CH-5748-01,TCGA-HC-7078-01,TCGA-ZG-A8QX-01,TCGA-HC-7230-01,TCGA-EJ-5542-01,TCGA-KK-A8I9-01,TCGA-HC-8266-01,TCGA-G9-6370-01,TCGA-HC-7080-01,TCGA-G9-6353-01,TCGA-HC-8262-01,TCGA-G9-6333-01,TCGA-EJ-A46I-01,TCGA-EJ-AB20-01,TCGA-M7-A724-01,TCGA-CH-5768-01,TCGA-G9-6494-01,TCGA-CH-5788-01,TCGA-J4-A6M7-01,TCGA-EJ-A8FU-01,TCGA-M7-A721-01,TCGA-G9-6496-01,TCGA-TP-A8TV-01,TCGA-QU-A6IP-01,TCGA-J9-A8CN-01,TCGA-EJ-5524-01,TCGA-G9-6498-01,TCGA-HC-A8D0-01,TCGA-V1-A8WN-01,TCGA-EJ-7318-01,TCGA-HC-7750-01,TCGA-EJ-A65M-01,TCGA-ZG-A8QW-01,TCGA-CH-5754-01,TCGA-EJ-5522-01,TCGA-EJ-7792-11,TCGA-HC-8265-01,TCGA-EJ-5501-01,TCGA-YL-A8SJ-01,TCGA-ZG-A9L2-01,TCGA-YL-A8HO-01,TCGA-YL-A8SL-01,TCGA-EJ-A46G-01,TCGA-M7-A720-01,TCGA-HC-8259-11,TCGA-M7-A725-01,TCGA-CH-5753-01,TCGA-V1-A9O9-01,TCGA-EJ-7125-01,TCGA-G9-7522-01,TCGA-XK-AAK1-01,TCGA-G9-A9S7-01,TCGA-EJ-A8FS-01,TCGA-G9-6366-01,TCGA-KC-A7F3-01,TCGA-XJ-A9DI-01,TCGA-J4-A83J-11,TCGA-EJ-7784-11,TCGA-XJ-A9DK-01,TCGA-HC-8256-01,TCGA-KK-A59Z-01,TCGA-KK-A7AU-01,TCGA-G9-6356-11,TCGA-EJ-7331-01,TCGA-VP-A875-01,TCGA-ZG-A9M4-01,TCGA-V1-A8MM-01,TCGA-EJ-5532-01,TCGA-KK-A8IL-01,TCGA-ZG-A9LM-01,TCGA-V1-A8X3-01,TCGA-EJ-7317-11,TCGA-EJ-7115-11,TCGA-EJ-5518-01,TCGA-QU-A6IL-01,TCGA-2A-A8VT-01,TCGA-HC-7081-01,TCGA-YL-A8SC-01,TCGA-J4-A83J-01,TCGA-J4-A6G1-01,TCGA-HC-7231-01,TCGA-G9-6339-01,TCGA-HC-7232-01,TCGA-HC-A6HX-01,TCGA-XJ-A9DQ-01,TCGA-G9-6351-01,TCGA-EJ-5510-01,TCGA-VP-A87D-01,TCGA-QU-A6IO-01,TCGA-EJ-7792-01,TCGA-G9-6348-11,TCGA-KK-A8IJ-01,TCGA-G9-7509-01,TCGA-CH-5765-01,TCGA-KK-A6E1-01,TCGA-CH-5791-01,TCGA-V1-A9OX-01,TCGA-V1-A9O5-01,TCGA-HC-8216-01,TCGA-V1-A9OA-01,TCGA-KC-A4BL-01,TCGA-YL-A8SA-01,TCGA-CH-5761-11,TCGA-HC-7211-11,TCGA-ZG-A9L9-01,TCGA-HC-7077-01,TCGA-J4-A67R-01,TCGA-HC-7737-01,TCGA-VP-A87K-01,TCGA-J9-A52B-01,TCGA-V1-A8MG-01,TCGA-KK-A8IM-01,TCGA-CH-5769-11,TCGA-EJ-AB27-01,TCGA-EJ-5504-01,TCGA-G9-6377-01,TCGA-HC-7737-11,TCGA-HC-7742-01,TCGA-EJ-A7NK-01,TCGA-HC-7213-01,TCGA-KK-A7AZ-01,TCGA-EJ-7330-01,TCGA-KK-A8IC-01,TCGA-ZG-A9LN-01,TCGA-KK-A59Y-01,TCGA-HC-A76W-01,TCGA-KC-A7F5-01,TCGA-VN-A88L-01,TCGA-KK-A8IB-01,TCGA-HC-7818-01,TCGA-EJ-A46E-01,TCGA-HC-7745-01,TCGA-EJ-5506-01,TCGA-V1-A8WL-01,TCGA-KK-A8I6-01,TCGA-TP-A8TT-01,TCGA-G9-6499-01,TCGA-HC-A6AN-01,TCGA-VP-A87C-01,TCGA-EJ-5496-01,TCGA-KK-A6E6-01,TCGA-EJ-7781-01,TCGA-HI-7169-01,TCGA-J4-A67N-01,TCGA-EJ-7321-11,TCGA-HC-A48F-01,TCGA-G9-6371-01,TCGA-EJ-7794-01,TCGA-G9-6384-11,TCGA-YL-A9WH-01,TCGA-HC-7747-11,TCGA-V1-A9ZR-01,TCGA-EJ-7786-11,TCGA-ZG-A9LZ-01,TCGA-EJ-7315-11,TCGA-HC-A9TH-01,TCGA-V1-A9O7-01,TCGA-HC-A6HY-01,TCGA-CH-5739-01,TCGA-XK-AAIV-01,TCGA-J4-A6G3-01,TCGA-KC-A7FA-01,TCGA-HC-7749-01,TCGA-HC-8258-01,TCGA-EJ-7797-11,TCGA-HC-7079-01,TCGA-EJ-7123-11,TCGA-2A-A8VO-01,TCGA-M7-A71Z-01,TCGA-EJ-7788-01,TCGA-KK-A8I4-01,TCGA-XJ-A83G-01,TCGA-YL-A9WX-01,TCGA-J4-A67L-01,TCGA-2A-AAYF-01,TCGA-EJ-5505-01,TCGA-V1-A9ZK-01,TCGA-XJ-A9DX-01,TCGA-V1-A9OY-01,TCGA-VN-A88O-01,TCGA-EJ-A46F-01,TCGA-G9-6373-01,TCGA-VN-A88R-01,TCGA-G9-6379-01,TCGA-CH-5737-01,TCGA-VP-A87B-01,TCGA-HC-A8D1-01,TCGA-J4-A83L-01,TCGA-V1-A8WW-01,TCGA-EJ-A8FO-01,TCGA-QU-A6IN-01,TCGA-FC-7708-01,TCGA-YL-A8SH-01,TCGA-KC-A7FE-01,TCGA-V1-A8ML-01,TCGA-HC-A6AQ-01,TCGA-H9-A6BY-01,TCGA-EJ-7314-11,TCGA-KK-A6E8-01,TCGA-HC-A6AP-01,TCGA-EJ-7317-01,TCGA-YL-A8S9-01,TCGA-KK-A8IA-01,TCGA-G9-6356-01,TCGA-YL-A8SO-01,TCGA-J4-A67Q-01,TCGA-KK-A6E4-01,TCGA-KK-A7B0-01,TCGA-EJ-5511-01
|
p3/preprocess/Psoriasis/GSE183134.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Psoriasis/clinical_data/GSE123086.csv
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
,GSM3494884,GSM3494885,GSM3494886,GSM3494887,GSM3494888,GSM3494889,GSM3494890,GSM3494891,GSM3494892,GSM3494893,GSM3494894,GSM3494895,GSM3494896,GSM3494897,GSM3494898,GSM3494899,GSM3494900,GSM3494901,GSM3494902,GSM3494903,GSM3494904,GSM3494905,GSM3494906,GSM3494907,GSM3494908,GSM3494909,GSM3494910,GSM3494911,GSM3494912,GSM3494913,GSM3494914,GSM3494915,GSM3494916,GSM3494917,GSM3494918,GSM3494919,GSM3494920,GSM3494921,GSM3494922,GSM3494923,GSM3494924,GSM3494925,GSM3494926,GSM3494927,GSM3494928,GSM3494929,GSM3494930,GSM3494931,GSM3494932,GSM3494933,GSM3494934,GSM3494935,GSM3494936,GSM3494937,GSM3494938,GSM3494939,GSM3494940,GSM3494941,GSM3494942,GSM3494943,GSM3494944,GSM3494945,GSM3494946,GSM3494947,GSM3494948,GSM3494949,GSM3494950,GSM3494951,GSM3494952,GSM3494953,GSM3494954,GSM3494955,GSM3494956,GSM3494957,GSM3494958,GSM3494959,GSM3494960,GSM3494961,GSM3494962,GSM3494963,GSM3494964,GSM3494965,GSM3494966,GSM3494967,GSM3494968,GSM3494969,GSM3494970,GSM3494971,GSM3494972,GSM3494973,GSM3494974,GSM3494975,GSM3494976,GSM3494977,GSM3494978,GSM3494979,GSM3494980,GSM3494981,GSM3494982,GSM3494983,GSM3494984,GSM3494985,GSM3494986,GSM3494987,GSM3494988,GSM3494989,GSM3494990,GSM3494991,GSM3494992,GSM3494993,GSM3494994,GSM3494995,GSM3494996,GSM3494997,GSM3494998,GSM3494999,GSM3495000,GSM3495001,GSM3495002,GSM3495003,GSM3495004,GSM3495005,GSM3495006,GSM3495007,GSM3495008,GSM3495009,GSM3495010,GSM3495011,GSM3495012,GSM3495013,GSM3495014,GSM3495015,GSM3495016,GSM3495017,GSM3495018,GSM3495019,GSM3495020,GSM3495021,GSM3495022,GSM3495023,GSM3495024,GSM3495025,GSM3495026,GSM3495027,GSM3495028,GSM3495029,GSM3495030,GSM3495031,GSM3495032,GSM3495033,GSM3495034,GSM3495035,GSM3495036,GSM3495037,GSM3495038,GSM3495039,GSM3495040,GSM3495041,GSM3495042,GSM3495043,GSM3495044,GSM3495045,GSM3495046,GSM3495047,GSM3495048,GSM3495049
|
2 |
+
Psoriasis,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
|
3 |
+
Age,56.0,,20.0,51.0,37.0,61.0,,31.0,56.0,41.0,61.0,,80.0,53.0,61.0,73.0,60.0,76.0,77.0,74.0,69.0,77.0,81.0,70.0,82.0,69.0,82.0,67.0,67.0,78.0,67.0,74.0,,51.0,72.0,66.0,80.0,36.0,67.0,31.0,31.0,45.0,56.0,65.0,53.0,48.0,50.0,76.0,,24.0,42.0,76.0,22.0,,23.0,34.0,43.0,47.0,24.0,55.0,48.0,58.0,30.0,28.0,41.0,63.0,55.0,55.0,67.0,47.0,46.0,49.0,23.0,68.0,39.0,24.0,36.0,58.0,38.0,27.0,67.0,61.0,69.0,63.0,60.0,17.0,10.0,9.0,13.0,10.0,13.0,15.0,12.0,13.0,81.0,94.0,51.0,40.0,,97.0,23.0,93.0,58.0,28.0,54.0,15.0,8.0,11.0,12.0,8.0,14.0,8.0,10.0,14.0,13.0,40.0,52.0,42.0,29.0,43.0,41.0,54.0,42.0,49.0,45.0,56.0,64.0,71.0,48.0,20.0,53.0,32.0,26.0,28.0,47.0,24.0,48.0,,19.0,41.0,38.0,,15.0,12.0,13.0,,11.0,,16.0,11.0,,35.0,26.0,39.0,46.0,42.0,20.0,69.0,69.0,47.0,47.0,56.0,54.0,53.0,50.0,22.0
|
4 |
+
Gender,1.0,,0.0,0.0,1.0,1.0,,1.0,0.0,0.0,0.0,,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,,1.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,,0.0,0.0,1.0,1.0,,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,,1.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,,0.0,0.0,0.0,,0.0,1.0,0.0,,1.0,,1.0,1.0,,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0
|
p3/preprocess/Psoriasis/clinical_data/GSE123088.csv
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
,GSM3494884,GSM3494885,GSM3494886,GSM3494887,GSM3494888,GSM3494889,GSM3494890,GSM3494891,GSM3494892,GSM3494893,GSM3494894,GSM3494895,GSM3494896,GSM3494897,GSM3494898,GSM3494899,GSM3494900,GSM3494901,GSM3494902,GSM3494903,GSM3494904,GSM3494905,GSM3494906,GSM3494907,GSM3494908,GSM3494909,GSM3494910,GSM3494911,GSM3494912,GSM3494913,GSM3494914,GSM3494915,GSM3494916,GSM3494917,GSM3494918,GSM3494919,GSM3494920,GSM3494921,GSM3494922,GSM3494923,GSM3494924,GSM3494925,GSM3494926,GSM3494927,GSM3494928,GSM3494929,GSM3494930,GSM3494931,GSM3494932,GSM3494933,GSM3494934,GSM3494935,GSM3494936,GSM3494937,GSM3494938,GSM3494939,GSM3494940,GSM3494941,GSM3494942,GSM3494943,GSM3494944,GSM3494945,GSM3494946,GSM3494947,GSM3494948,GSM3494949,GSM3494950,GSM3494951,GSM3494952,GSM3494953,GSM3494954,GSM3494955,GSM3494956,GSM3494957,GSM3494958,GSM3494959,GSM3494960,GSM3494961,GSM3494962,GSM3494963,GSM3494964,GSM3494965,GSM3494966,GSM3494967,GSM3494968,GSM3494969,GSM3494970,GSM3494971,GSM3494972,GSM3494973,GSM3494974,GSM3494975,GSM3494976,GSM3494977,GSM3494978,GSM3494979,GSM3494980,GSM3494981,GSM3494982,GSM3494983,GSM3494984,GSM3494985,GSM3494986,GSM3494987,GSM3494988,GSM3494989,GSM3494990,GSM3494991,GSM3494992,GSM3494993,GSM3494994,GSM3494995,GSM3494996,GSM3494997,GSM3494998,GSM3494999,GSM3495000,GSM3495001,GSM3495002,GSM3495003,GSM3495004,GSM3495005,GSM3495006,GSM3495007,GSM3495008,GSM3495009,GSM3495010,GSM3495011,GSM3495012,GSM3495013,GSM3495014,GSM3495015,GSM3495016,GSM3495017,GSM3495018,GSM3495019,GSM3495020,GSM3495021,GSM3495022,GSM3495023,GSM3495024,GSM3495025,GSM3495026,GSM3495027,GSM3495028,GSM3495029,GSM3495030,GSM3495031,GSM3495032,GSM3495033,GSM3495034,GSM3495035,GSM3495036,GSM3495037,GSM3495038,GSM3495039,GSM3495040,GSM3495041,GSM3495042,GSM3495043,GSM3495044,GSM3495045,GSM3495046,GSM3495047,GSM3495048,GSM3495049,GSM3495050,GSM3495051,GSM3495052,GSM3495053,GSM3495054,GSM3495055,GSM3495056,GSM3495057,GSM3495058,GSM3495059,GSM3495060,GSM3495061,GSM3495062,GSM3495063,GSM3495064,GSM3495065,GSM3495066,GSM3495067,GSM3495068,GSM3495069,GSM3495070,GSM3495071,GSM3495072,GSM3495073,GSM3495074,GSM3495075,GSM3495076,GSM3495077,GSM3495078,GSM3495079,GSM3495080,GSM3495081,GSM3495082,GSM3495083,GSM3495084,GSM3495085,GSM3495086,GSM3495087
|
2 |
+
Psoriasis,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.0,0.0,,,0.0,,0.0,,,0.0,,0.0,0.0,,,0.0,,,,,,0.0,0.0,0.0,,,,,,0.0,,,,,0.0,0.0
|
3 |
+
Age,56.0,,20.0,51.0,37.0,61.0,,31.0,56.0,41.0,61.0,,80.0,53.0,61.0,73.0,60.0,76.0,77.0,74.0,69.0,77.0,81.0,70.0,82.0,69.0,82.0,67.0,67.0,78.0,67.0,74.0,,51.0,72.0,66.0,80.0,36.0,67.0,31.0,31.0,45.0,56.0,65.0,53.0,48.0,50.0,76.0,,24.0,42.0,76.0,22.0,,23.0,34.0,43.0,47.0,24.0,55.0,48.0,58.0,30.0,28.0,41.0,63.0,55.0,55.0,67.0,47.0,46.0,49.0,23.0,68.0,39.0,24.0,36.0,58.0,38.0,27.0,67.0,61.0,69.0,63.0,60.0,17.0,10.0,9.0,13.0,10.0,13.0,15.0,12.0,13.0,81.0,94.0,51.0,40.0,,97.0,23.0,93.0,58.0,28.0,54.0,15.0,8.0,11.0,12.0,8.0,14.0,8.0,10.0,14.0,13.0,40.0,52.0,42.0,29.0,43.0,41.0,54.0,42.0,49.0,45.0,56.0,64.0,71.0,48.0,20.0,53.0,32.0,26.0,28.0,47.0,24.0,48.0,,19.0,41.0,38.0,,15.0,12.0,13.0,,11.0,,16.0,11.0,,35.0,26.0,39.0,46.0,42.0,20.0,69.0,69.0,47.0,47.0,56.0,54.0,53.0,50.0,22.0,62.0,74.0,57.0,47.0,70.0,50.0,52.0,43.0,57.0,53.0,70.0,41.0,61.0,39.0,58.0,55.0,63.0,60.0,43.0,68.0,67.0,50.0,67.0,51.0,59.0,44.0,35.0,83.0,78.0,88.0,41.0,60.0,72.0,53.0,73.0,56.0,38.0,53.0
|
4 |
+
Gender,1.0,,0.0,0.0,1.0,1.0,,1.0,0.0,0.0,0.0,,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,,1.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,,0.0,0.0,1.0,1.0,,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,,1.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,,0.0,0.0,0.0,,0.0,1.0,0.0,,1.0,,1.0,1.0,,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
|
p3/preprocess/Psoriasis/clinical_data/GSE158448.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,GSM4800737,GSM4800738,GSM4800739,GSM4800740,GSM4800741,GSM4800742,GSM4800743,GSM4800744,GSM4800745,GSM4800746,GSM4800747,GSM4800748,GSM4800749,GSM4800750,GSM4800751,GSM4800752,GSM4800753,GSM4800754,GSM4800755,GSM4800756,GSM4800757,GSM4800758,GSM4800759,GSM4800760,GSM4800761,GSM4800762,GSM4800763,GSM4800764,GSM4800765,GSM4800766,GSM4800767,GSM4800768,GSM4800769,GSM4800770,GSM4800771,GSM4800772,GSM4800773,GSM4800774,GSM4800775,GSM4800776,GSM4800777,GSM4800778,GSM4800779,GSM4800780,GSM4800781,GSM4800782,GSM4800783,GSM4800784,GSM4800785,GSM4800786,GSM4800787,GSM4800788,GSM4800789,GSM4800790,GSM4800791,GSM4800792,GSM4800793,GSM4800794,GSM4800795,GSM4800796
|
2 |
+
Psoriasis,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
|
p3/preprocess/Psoriasis/clinical_data/GSE162998.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,GSM4969892,GSM4969893,GSM4969894,GSM4969895,GSM4969896,GSM4969897,GSM4969898,GSM4969899,GSM4969900,GSM4969901,GSM4969902,GSM4969903,GSM4969904,GSM4969905,GSM4969906,GSM4969907,GSM4969908,GSM4969909,GSM4969910,GSM4969911,GSM4969912,GSM4969913,GSM4969914,GSM4969915,GSM4969916,GSM4969917,GSM4969918,GSM4969919,GSM4969920,GSM4969921,GSM4969922,GSM4969923,GSM4969924,GSM4969925,GSM4969926,GSM4969927,GSM4969928,GSM4969929,GSM4969930,GSM4969931,GSM4969932,GSM4969933,GSM4969934,GSM4969935,GSM4969936,GSM4969937,GSM4969938,GSM4969939
|
2 |
+
Psoriasis,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
|