File size: 5,795 Bytes
5a96bf0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Post-Traumatic_Stress_Disorder"
cohort = "GSE67663"
# Input paths
in_trait_dir = "../DATA/GEO/Post-Traumatic_Stress_Disorder"
in_cohort_dir = "../DATA/GEO/Post-Traumatic_Stress_Disorder/GSE67663"
# Output paths
out_data_file = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/GSE67663.csv"
out_gene_data_file = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/gene_data/GSE67663.csv"
out_clinical_data_file = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/clinical_data/GSE67663.csv"
json_path = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
print(f"\n{row}:")
print(values)
# 1. Gene Expression Data Availability
# From title and summary, we can see this is a genome-wide gene expression study
is_gene_available = True
# 2.1 Data Availability
# trait: Row 2 has PTSD and depression status
# gender: Row 0 has sex data
# age: Row 1 has age data
trait_row = 2
gender_row = 0
age_row = 1
# 2.2 Data Type Conversion Functions
def convert_trait(x):
"""Convert PTSD status to binary"""
if not isinstance(x, str):
return None
try:
# Extract value after colon and convert to int
value = x.split(': ')[1]
return int(value)
except:
return None
def convert_gender(x):
"""Convert gender to binary (0=female, 1=male)"""
if not isinstance(x, str):
return None
try:
value = x.split(': ')[1].lower()
if value == 'female':
return 0
elif value == 'male':
return 1
else:
return None
except:
return None
def convert_age(x):
"""Convert age to continuous numeric"""
if not isinstance(x, str):
return None
try:
value = x.split(': ')[1]
return float(value)
except:
return None
# 3. Save Initial Metadata
is_usable = validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=trait_row is not None
)
# 4. Extract Clinical Features
if trait_row is not None:
clinical_features = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the extracted features
print("Preview of clinical features:")
print(preview_df(clinical_features))
# Save to CSV
clinical_features.to_csv(out_clinical_data_file)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Examine data structure
print("Data structure and head:")
print(genetic_data.head())
print("\nShape:", genetic_data.shape)
print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])
# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# The identifiers starting with "ILMN_" are Illumina probe IDs, not gene symbols
# These need to be mapped to standard gene symbols for analysis
requires_gene_mapping = True
# Extract gene annotation data
gene_annotation = get_gene_annotation(soft_file_path)
# Display column names and preview data
print("Column names:")
print(gene_annotation.columns)
print("\nPreview of gene annotation data:")
print(preview_df(gene_annotation))
# 1. Identify relevant columns from gene annotation
# The 'ID' column in annotation matches the ILMN_ identifiers in expression data
# The 'Symbol' column contains gene symbols
prob_col = 'ID'
gene_col = 'Symbol'
# 2. Get gene mapping dataframe
mapping_df = get_gene_mapping(gene_annotation, prob_col, gene_col)
# 3. Apply gene mapping to get gene expression data
gene_data = apply_gene_mapping(genetic_data, mapping_df)
# Preview the result
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few gene symbols:")
print(list(gene_data.index)[:10])
# Reload clinical data that was processed earlier
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
# 1. Normalize gene symbols
genetic_data = normalize_gene_symbols_in_index(gene_data)
genetic_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
# 3. Handle missing values systematically
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for bias in trait and demographic features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and information saving
note = "Dataset contains subcutaneous adipose tissue gene expression data from PCOS patients and controls. The gender feature is biased (all female) and was removed."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note=note
)
# 6. Save linked data only if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file) |