File size: 5,707 Bytes
5a96bf0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Prostate_Cancer"
cohort = "GSE192817"
# Input paths
in_trait_dir = "../DATA/GEO/Prostate_Cancer"
in_cohort_dir = "../DATA/GEO/Prostate_Cancer/GSE192817"
# Output paths
out_data_file = "./output/preprocess/3/Prostate_Cancer/GSE192817.csv"
out_gene_data_file = "./output/preprocess/3/Prostate_Cancer/gene_data/GSE192817.csv"
out_clinical_data_file = "./output/preprocess/3/Prostate_Cancer/clinical_data/GSE192817.csv"
json_path = "./output/preprocess/3/Prostate_Cancer/cohort_info.json"
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data using specified prefixes
background_info, clinical_data = get_background_and_clinical_data(
matrix_file,
prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'],
prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1']
)
# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")
# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
print(f"Feature: {feature}")
print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
is_gene_available = True # Based on title and summary, this is gene expression data studying cellular mechanisms
# 2.1 Data Availability
trait_row = None # No prostate cancer status - all samples are cancer cell lines
age_row = None # No age data available
gender_row = None # No gender data - these are cell lines
# 2.2 Data Type Conversion Functions
def convert_trait(x):
return None # Not used since trait_row is None
def convert_age(x):
return None # Not used since age_row is None
def convert_gender(x):
return None # Not used since gender_row is None
# 3. Save Metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=False # No trait data available since these are cell lines
)
# 4. Clinical Feature Extraction
# Skip this step since trait_row is None
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)
# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])
# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
lines = []
for i, line in enumerate(f):
if "!series_matrix_table_begin" in line:
# Get the next 5 lines after the marker
for _ in range(5):
lines.append(next(f).strip())
break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
print(line)
# The gene identifiers appear to be simple numerical indices (1, 2, 3, etc.)
# rather than standard human gene symbols or probe IDs
# This indicates we need to map these indices to actual gene symbols
requires_gene_mapping = True
# Extract gene annotation data
gene_metadata = get_gene_annotation(soft_file)
# Try searching for ID patterns in all columns
print("All column names:", gene_metadata.columns.tolist())
print("\nPreview first few rows of each column to locate numeric IDs:")
for col in gene_metadata.columns:
sample_values = gene_metadata[col].dropna().head().tolist()
print(f"\n{col}:")
print(sample_values)
# Inspect raw file to see unfiltered annotation format
import gzip
print("\nRaw SOFT file preview:")
with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
header = []
for i, line in enumerate(f):
header.append(line.strip())
if i >= 10: # Preview first 10 lines
break
print('\n'.join(header))
# 1. Identify mapping keys:
# 'ID' in gene_metadata matches the numeric indices in gene_data
# 'GENE_SYMBOL' contains the target gene symbols
# 2. Get gene mapping dataframe
mapping_data = get_gene_mapping(gene_metadata, 'ID', 'GENE_SYMBOL')
# 3. Apply mapping to convert probe measurements to gene expression values
gene_data = apply_gene_mapping(gene_data, mapping_data)
# Preview the resulting gene expression data
print("\nShape of mapped gene expression data:", gene_data.shape)
print("\nFirst few rows of mapped data:")
print(gene_data.head())
print("\nFirst few gene symbols:")
print(gene_data.index[:20])
# 1. Normalize gene symbols
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
normalized_gene_data.to_csv(out_gene_data_file)
# Since we determined in step 2 that no clinical features are available
# (all samples are cell lines with no trait data), we cannot construct a valid linked dataset.
# Set is_biased=True since the dataset cannot be used for trait association analysis.
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=False,
is_biased=True, # Dataset is biased since it lacks trait data
df=normalized_gene_data,
note="Contains normalized gene expression data from cell lines but lacks clinical trait data required for association analysis."
)
# Do not save linked data since trait information is not available and dataset is not usable |