File size: 6,378 Bytes
5a96bf0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Psoriasis"
cohort = "GSE123086"

# Input paths
in_trait_dir = "../DATA/GEO/Psoriasis"
in_cohort_dir = "../DATA/GEO/Psoriasis/GSE123086"

# Output paths
out_data_file = "./output/preprocess/3/Psoriasis/GSE123086.csv"
out_gene_data_file = "./output/preprocess/3/Psoriasis/gene_data/GSE123086.csv"
out_clinical_data_file = "./output/preprocess/3/Psoriasis/clinical_data/GSE123086.csv"
json_path = "./output/preprocess/3/Psoriasis/cohort_info.json"

# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract background info and clinical data using specified prefixes
background_info, clinical_data = get_background_and_clinical_data(
    matrix_file,
    prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'],
    prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1']
)

# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)

# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")

# Print sample characteristics 
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
    print(f"Feature: {feature}")
    print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
is_gene_available = True  # RNA microarray data confirmed in Series_overall_design

# 2. Variable Availability and Data Type Conversion
# 2.1 Row identifiers
trait_row = 1  # 'primary diagnosis' contains trait status
age_row = 3    # Age data starts in row 3 and continues in row 4
gender_row = 2 # Gender data in row 2 (some continue in row 3)

# 2.2 Conversion functions
def convert_trait(value: str) -> int:
    # Convert to binary: 1 for psoriasis, 0 for control
    if not isinstance(value, str):
        return None
    value = value.split(': ')[-1]
    if value == 'PSORIASIS':
        return 1
    elif value == 'HEALTHY_CONTROL':
        return 0
    return None

def convert_age(value: str) -> float:
    # Convert age to continuous numeric value
    if not isinstance(value, str):
        return None
    try:
        return float(value.split(': ')[-1])
    except:
        return None

def convert_gender(value: str) -> int:
    # Convert to binary: 0 for female, 1 for male
    if not isinstance(value, str):
        return None
    value = value.split(': ')[-1]
    if value == 'Female':
        return 0
    elif value == 'Male':
        return 1
    return None

# 3. Save metadata for initial filtering
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=trait_row is not None
)

# 4. Extract clinical features
selected_clinical = geo_select_clinical_features(
    clinical_df=clinical_data,
    trait=trait,
    trait_row=trait_row,
    convert_trait=convert_trait,
    age_row=age_row,
    convert_age=convert_age, 
    gender_row=gender_row,
    convert_gender=convert_gender
)

# Preview the extracted features
print(preview_df(selected_clinical))

# Save clinical data
selected_clinical.to_csv(out_clinical_data_file)
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)

# Print first 20 row IDs and shape of data to help debug 
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])

# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
    lines = []
    for i, line in enumerate(f):
        if "!series_matrix_table_begin" in line:
            # Get the next 5 lines after the marker
            for _ in range(5):
                lines.append(next(f).strip())
            break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
    print(line)
# The identifiers appear to be integers (1,2,3,9,10 etc)
# These are not human gene symbols and require mapping
requires_gene_mapping = True
# Extract gene annotation data, more inclusive prefix filtering
gene_metadata = get_gene_annotation(soft_file, prefixes=['^', '!', '#', 'Platform'])

# Remove rows where all values are NaN or empty
gene_metadata = gene_metadata.dropna(how='all')

# Preview the annotation data 
print("Column names:", gene_metadata.columns.tolist()) 
print("\nFirst few rows preview:")
print(preview_df(gene_metadata, n=10))

# Inspect raw file content to help identify relevant sections
import gzip
print("\nFirst few lines from SOFT file:")
with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
    head = [next(f) for _ in range(10)]
    print('\n'.join(head))
# Map probes to Entrez Gene IDs first
mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='ENTREZ_GENE_ID')
gene_data = apply_gene_mapping(gene_data, mapping_df)

# Then normalize Entrez IDs to gene symbols 
gene_data = normalize_gene_symbols_in_index(gene_data)

# Save gene expression data
gene_data.to_csv(out_gene_data_file)
# Use original probe-level expression data from step 3
gene_data = get_genetic_data(matrix_file)
print("Gene data shape:", gene_data.shape)
print("Gene data head:")
print(gene_data.head())

# Load and verify clinical data 
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0).T
print("\nClinical data shape:", selected_clinical_df.shape)
print("Clinical data head:")
print(selected_clinical_df.head())

# Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)

# Handle missing values
linked_data = handle_missing_values(linked_data, "Psoriasis")

# Evaluate bias in features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, "Psoriasis")

# Record cohort information
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=is_biased,
    df=linked_data,
    note="Contains numerical probe-level expression data (gene mapping not implemented) and clinical data."
)

# Save data if usable
if is_usable:
    linked_data.to_csv(out_data_file)