File size: 6,378 Bytes
5a96bf0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Psoriasis"
cohort = "GSE123086"
# Input paths
in_trait_dir = "../DATA/GEO/Psoriasis"
in_cohort_dir = "../DATA/GEO/Psoriasis/GSE123086"
# Output paths
out_data_file = "./output/preprocess/3/Psoriasis/GSE123086.csv"
out_gene_data_file = "./output/preprocess/3/Psoriasis/gene_data/GSE123086.csv"
out_clinical_data_file = "./output/preprocess/3/Psoriasis/clinical_data/GSE123086.csv"
json_path = "./output/preprocess/3/Psoriasis/cohort_info.json"
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data using specified prefixes
background_info, clinical_data = get_background_and_clinical_data(
matrix_file,
prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'],
prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1']
)
# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")
# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
print(f"Feature: {feature}")
print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
is_gene_available = True # RNA microarray data confirmed in Series_overall_design
# 2. Variable Availability and Data Type Conversion
# 2.1 Row identifiers
trait_row = 1 # 'primary diagnosis' contains trait status
age_row = 3 # Age data starts in row 3 and continues in row 4
gender_row = 2 # Gender data in row 2 (some continue in row 3)
# 2.2 Conversion functions
def convert_trait(value: str) -> int:
# Convert to binary: 1 for psoriasis, 0 for control
if not isinstance(value, str):
return None
value = value.split(': ')[-1]
if value == 'PSORIASIS':
return 1
elif value == 'HEALTHY_CONTROL':
return 0
return None
def convert_age(value: str) -> float:
# Convert age to continuous numeric value
if not isinstance(value, str):
return None
try:
return float(value.split(': ')[-1])
except:
return None
def convert_gender(value: str) -> int:
# Convert to binary: 0 for female, 1 for male
if not isinstance(value, str):
return None
value = value.split(': ')[-1]
if value == 'Female':
return 0
elif value == 'Male':
return 1
return None
# 3. Save metadata for initial filtering
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=trait_row is not None
)
# 4. Extract clinical features
selected_clinical = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the extracted features
print(preview_df(selected_clinical))
# Save clinical data
selected_clinical.to_csv(out_clinical_data_file)
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)
# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])
# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
lines = []
for i, line in enumerate(f):
if "!series_matrix_table_begin" in line:
# Get the next 5 lines after the marker
for _ in range(5):
lines.append(next(f).strip())
break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
print(line)
# The identifiers appear to be integers (1,2,3,9,10 etc)
# These are not human gene symbols and require mapping
requires_gene_mapping = True
# Extract gene annotation data, more inclusive prefix filtering
gene_metadata = get_gene_annotation(soft_file, prefixes=['^', '!', '#', 'Platform'])
# Remove rows where all values are NaN or empty
gene_metadata = gene_metadata.dropna(how='all')
# Preview the annotation data
print("Column names:", gene_metadata.columns.tolist())
print("\nFirst few rows preview:")
print(preview_df(gene_metadata, n=10))
# Inspect raw file content to help identify relevant sections
import gzip
print("\nFirst few lines from SOFT file:")
with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
head = [next(f) for _ in range(10)]
print('\n'.join(head))
# Map probes to Entrez Gene IDs first
mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='ENTREZ_GENE_ID')
gene_data = apply_gene_mapping(gene_data, mapping_df)
# Then normalize Entrez IDs to gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
# Save gene expression data
gene_data.to_csv(out_gene_data_file)
# Use original probe-level expression data from step 3
gene_data = get_genetic_data(matrix_file)
print("Gene data shape:", gene_data.shape)
print("Gene data head:")
print(gene_data.head())
# Load and verify clinical data
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0).T
print("\nClinical data shape:", selected_clinical_df.shape)
print("Clinical data head:")
print(selected_clinical_df.head())
# Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)
# Handle missing values
linked_data = handle_missing_values(linked_data, "Psoriasis")
# Evaluate bias in features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, "Psoriasis")
# Record cohort information
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note="Contains numerical probe-level expression data (gene mapping not implemented) and clinical data."
)
# Save data if usable
if is_usable:
linked_data.to_csv(out_data_file) |