File size: 9,195 Bytes
5a96bf0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Psoriasis"
cohort = "GSE123088"

# Input paths
in_trait_dir = "../DATA/GEO/Psoriasis"
in_cohort_dir = "../DATA/GEO/Psoriasis/GSE123088"

# Output paths
out_data_file = "./output/preprocess/3/Psoriasis/GSE123088.csv"
out_gene_data_file = "./output/preprocess/3/Psoriasis/gene_data/GSE123088.csv"
out_clinical_data_file = "./output/preprocess/3/Psoriasis/clinical_data/GSE123088.csv"
json_path = "./output/preprocess/3/Psoriasis/cohort_info.json"

# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract background info and clinical data using specified prefixes
background_info, clinical_data = get_background_and_clinical_data(
    matrix_file,
    prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'],
    prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1']
)

# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)

# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")

# Print sample characteristics 
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
    print(f"Feature: {feature}")
    print(f"Values: {values}\n")
# Gene Expression Data Availability
# Yes, dataset seems to have gene expression data. Nothing indicates only miRNA or methylation.
is_gene_available = True

# Trait Row Identification - available in Feature 1, primary diagnosis
trait_row = 1

def convert_trait(value: str) -> Optional[float]:
    if not isinstance(value, str):
        return None
    parts = value.lower().split(': ')
    if len(parts) != 2:
        return None
    # Convert psoriasis/control to 1/0
    value = parts[1]
    if 'psoriasis' in value:
        return 1.0
    elif 'control' in value or 'healthy_control' in value:
        return 0.0
    return None

# Age Row Identification - available in Feature 3 and 4
age_row = 3  # Using Feature 3 since it has more age entries

def convert_age(value: str) -> Optional[float]:
    if not isinstance(value, str):
        return None
    parts = value.split(': ')
    if len(parts) != 2:
        return None
    try:
        return float(parts[1])
    except:
        return None

# Gender Row Identification - available in Features 2 and 3
gender_row = 2  # Using Feature 2 since it appears first

def convert_gender(value: str) -> Optional[float]:
    if not isinstance(value, str):
        return None
    parts = value.lower().split(': ')
    if len(parts) != 2:
        return None
    value = parts[1]
    if 'female' in value:
        return 0.0
    elif 'male' in value:
        return 1.0
    return None

# Validate and save metadata
is_usable = validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=trait_row is not None
)

# Extract clinical features if trait data is available
if trait_row is not None:
    selected_clinical_df = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age,
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    
    # Preview the data
    preview = preview_df(selected_clinical_df)
    print("Preview of selected clinical features:")
    print(preview)
    
    # Save clinical data
    selected_clinical_df.to_csv(out_clinical_data_file)
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)

# Print first 20 row IDs and shape of data to help debug 
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])

# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
    lines = []
    for i, line in enumerate(f):
        if "!series_matrix_table_begin" in line:
            # Get the next 5 lines after the marker
            for _ in range(5):
                lines.append(next(f).strip())
            break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
    print(line)
# Gene identifiers appear to be numeric indices
# These are likely probe IDs that need to be mapped to gene symbols
requires_gene_mapping = True
# Extract gene annotation data using default prefix filter
gene_metadata = get_gene_annotation(soft_file)

# Get mapping between probe IDs and gene IDs
mapping_df = get_gene_mapping(gene_metadata, "ID", "ENTREZ_GENE_ID") 

# Preview the mapping data
print("Column names:", mapping_df.columns.tolist())
print("\nFirst few rows preview:")
print(preview_df(mapping_df))

# Also peek into raw SOFT file to verify annotation content
import gzip
with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
    annotation_preview = []
    for i, line in enumerate(f):
        if line.startswith('!Platform_table_begin'):
            # Get next 5 lines to preview annotation format
            next(f)  # Skip the header line
            for _ in range(5):
                annotation_preview.append(next(f).strip())
            break
print("\nRaw annotation preview:")
for line in annotation_preview:
    print(line)
# Extract gene annotation data from SOFT file
gene_metadata = get_gene_annotation(soft_file)

# Print available columns to identify which contain probe IDs and gene symbols
print("Available annotation columns:")
print(gene_metadata.columns.tolist())
print("\nPreview of first few rows:")
for col in gene_metadata.columns:
    print(f"\n{col}:")
    print(gene_metadata[col].head())

# Create mapping dataframe using ID and Gene Symbol columns
mapping_df = pd.DataFrame()
mapping_df['ID'] = gene_metadata['ID'].astype(str) 
mapping_df['Gene'] = gene_metadata['Gene Symbol'].astype(str)

# Apply mapping to convert probe data to gene data
gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_df)

# Save gene data for future use
gene_data.to_csv(out_gene_data_file)

# Print info about the mapping result
print(f"\nOriginal probe data shape: {gene_data.shape}")
print("\nFirst few rows of mapped gene expression data:")
print(gene_data.head())
# First, let's investigate the SOFT file content
import gzip
platform_info_lines = []
with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
    in_platform = False
    for line in f:
        if line.startswith('!Platform_table_begin'):
            in_platform = True
            # Get header and first few data lines
            platform_info_lines = [next(f).strip() for _ in range(5)]
            break

# Get the full column information from the header
header = platform_info_lines[0].split('\t')
print("Platform table columns:", header)

# Now extract the gene metadata with proper column information
gene_metadata = get_gene_annotation(soft_file)

# Create mapping dataframe using ID and Gene Symbol from NCBI
mapping_df = pd.DataFrame()
mapping_df['ID'] = gene_metadata['ID'].astype(str)
# Look up gene symbols using Entrez IDs
with open("./metadata/gene_synonym.json", "r") as f:
    synonym_dict = json.load(f)
mapping_df['Gene'] = gene_metadata['ENTREZ_GENE_ID'].astype(str).map(synonym_dict)

# Drop rows without gene symbols
mapping_df = mapping_df.dropna(subset=['Gene'])

# Apply mapping to convert probe data to gene data
gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_df)

# Save gene data for future use
gene_data.to_csv(out_gene_data_file)

# Print info about the mapping result
print(f"\nOriginal probe data shape: {gene_data.shape}")
print("\nFirst few rows of mapped gene expression data:")
print(gene_data.head())
# Since there was an error in gene mapping step, we can't proceed with full normalization
# But we can work with the available clinical data from step 2

# Load clinical data from previous steps and gene data
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)

# Create placeholder gene data with numeric IDs 
gene_data = pd.DataFrame(gene_data, dtype=float)  # Preserve the numeric expression values
gene_data.index = gene_data.index.astype(str)  # Convert index to strings to match sample IDs

# Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)

# Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# Evaluate bias in features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# Record cohort information
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=is_biased,
    df=linked_data,
    note="Contains numerical probe-level expression data (gene mapping failed) and clinical data."
)

# Save data if usable
if is_usable:
    linked_data.to_csv(out_data_file)