File size: 9,195 Bytes
5a96bf0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Psoriasis"
cohort = "GSE123088"
# Input paths
in_trait_dir = "../DATA/GEO/Psoriasis"
in_cohort_dir = "../DATA/GEO/Psoriasis/GSE123088"
# Output paths
out_data_file = "./output/preprocess/3/Psoriasis/GSE123088.csv"
out_gene_data_file = "./output/preprocess/3/Psoriasis/gene_data/GSE123088.csv"
out_clinical_data_file = "./output/preprocess/3/Psoriasis/clinical_data/GSE123088.csv"
json_path = "./output/preprocess/3/Psoriasis/cohort_info.json"
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data using specified prefixes
background_info, clinical_data = get_background_and_clinical_data(
matrix_file,
prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'],
prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1']
)
# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")
# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
print(f"Feature: {feature}")
print(f"Values: {values}\n")
# Gene Expression Data Availability
# Yes, dataset seems to have gene expression data. Nothing indicates only miRNA or methylation.
is_gene_available = True
# Trait Row Identification - available in Feature 1, primary diagnosis
trait_row = 1
def convert_trait(value: str) -> Optional[float]:
if not isinstance(value, str):
return None
parts = value.lower().split(': ')
if len(parts) != 2:
return None
# Convert psoriasis/control to 1/0
value = parts[1]
if 'psoriasis' in value:
return 1.0
elif 'control' in value or 'healthy_control' in value:
return 0.0
return None
# Age Row Identification - available in Feature 3 and 4
age_row = 3 # Using Feature 3 since it has more age entries
def convert_age(value: str) -> Optional[float]:
if not isinstance(value, str):
return None
parts = value.split(': ')
if len(parts) != 2:
return None
try:
return float(parts[1])
except:
return None
# Gender Row Identification - available in Features 2 and 3
gender_row = 2 # Using Feature 2 since it appears first
def convert_gender(value: str) -> Optional[float]:
if not isinstance(value, str):
return None
parts = value.lower().split(': ')
if len(parts) != 2:
return None
value = parts[1]
if 'female' in value:
return 0.0
elif 'male' in value:
return 1.0
return None
# Validate and save metadata
is_usable = validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=trait_row is not None
)
# Extract clinical features if trait data is available
if trait_row is not None:
selected_clinical_df = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the data
preview = preview_df(selected_clinical_df)
print("Preview of selected clinical features:")
print(preview)
# Save clinical data
selected_clinical_df.to_csv(out_clinical_data_file)
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)
# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])
# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
lines = []
for i, line in enumerate(f):
if "!series_matrix_table_begin" in line:
# Get the next 5 lines after the marker
for _ in range(5):
lines.append(next(f).strip())
break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
print(line)
# Gene identifiers appear to be numeric indices
# These are likely probe IDs that need to be mapped to gene symbols
requires_gene_mapping = True
# Extract gene annotation data using default prefix filter
gene_metadata = get_gene_annotation(soft_file)
# Get mapping between probe IDs and gene IDs
mapping_df = get_gene_mapping(gene_metadata, "ID", "ENTREZ_GENE_ID")
# Preview the mapping data
print("Column names:", mapping_df.columns.tolist())
print("\nFirst few rows preview:")
print(preview_df(mapping_df))
# Also peek into raw SOFT file to verify annotation content
import gzip
with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
annotation_preview = []
for i, line in enumerate(f):
if line.startswith('!Platform_table_begin'):
# Get next 5 lines to preview annotation format
next(f) # Skip the header line
for _ in range(5):
annotation_preview.append(next(f).strip())
break
print("\nRaw annotation preview:")
for line in annotation_preview:
print(line)
# Extract gene annotation data from SOFT file
gene_metadata = get_gene_annotation(soft_file)
# Print available columns to identify which contain probe IDs and gene symbols
print("Available annotation columns:")
print(gene_metadata.columns.tolist())
print("\nPreview of first few rows:")
for col in gene_metadata.columns:
print(f"\n{col}:")
print(gene_metadata[col].head())
# Create mapping dataframe using ID and Gene Symbol columns
mapping_df = pd.DataFrame()
mapping_df['ID'] = gene_metadata['ID'].astype(str)
mapping_df['Gene'] = gene_metadata['Gene Symbol'].astype(str)
# Apply mapping to convert probe data to gene data
gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_df)
# Save gene data for future use
gene_data.to_csv(out_gene_data_file)
# Print info about the mapping result
print(f"\nOriginal probe data shape: {gene_data.shape}")
print("\nFirst few rows of mapped gene expression data:")
print(gene_data.head())
# First, let's investigate the SOFT file content
import gzip
platform_info_lines = []
with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
in_platform = False
for line in f:
if line.startswith('!Platform_table_begin'):
in_platform = True
# Get header and first few data lines
platform_info_lines = [next(f).strip() for _ in range(5)]
break
# Get the full column information from the header
header = platform_info_lines[0].split('\t')
print("Platform table columns:", header)
# Now extract the gene metadata with proper column information
gene_metadata = get_gene_annotation(soft_file)
# Create mapping dataframe using ID and Gene Symbol from NCBI
mapping_df = pd.DataFrame()
mapping_df['ID'] = gene_metadata['ID'].astype(str)
# Look up gene symbols using Entrez IDs
with open("./metadata/gene_synonym.json", "r") as f:
synonym_dict = json.load(f)
mapping_df['Gene'] = gene_metadata['ENTREZ_GENE_ID'].astype(str).map(synonym_dict)
# Drop rows without gene symbols
mapping_df = mapping_df.dropna(subset=['Gene'])
# Apply mapping to convert probe data to gene data
gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_df)
# Save gene data for future use
gene_data.to_csv(out_gene_data_file)
# Print info about the mapping result
print(f"\nOriginal probe data shape: {gene_data.shape}")
print("\nFirst few rows of mapped gene expression data:")
print(gene_data.head())
# Since there was an error in gene mapping step, we can't proceed with full normalization
# But we can work with the available clinical data from step 2
# Load clinical data from previous steps and gene data
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
# Create placeholder gene data with numeric IDs
gene_data = pd.DataFrame(gene_data, dtype=float) # Preserve the numeric expression values
gene_data.index = gene_data.index.astype(str) # Convert index to strings to match sample IDs
# Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)
# Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# Evaluate bias in features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# Record cohort information
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note="Contains numerical probe-level expression data (gene mapping failed) and clinical data."
)
# Save data if usable
if is_usable:
linked_data.to_csv(out_data_file) |