File size: 5,926 Bytes
5a96bf0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Psoriasis"
cohort = "GSE162998"
# Input paths
in_trait_dir = "../DATA/GEO/Psoriasis"
in_cohort_dir = "../DATA/GEO/Psoriasis/GSE162998"
# Output paths
out_data_file = "./output/preprocess/3/Psoriasis/GSE162998.csv"
out_gene_data_file = "./output/preprocess/3/Psoriasis/gene_data/GSE162998.csv"
out_clinical_data_file = "./output/preprocess/3/Psoriasis/clinical_data/GSE162998.csv"
json_path = "./output/preprocess/3/Psoriasis/cohort_info.json"
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data using specified prefixes
background_info, clinical_data = get_background_and_clinical_data(
matrix_file,
prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'],
prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1']
)
# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")
# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
print(f"Feature: {feature}")
print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# Yes - this is a gene expression profiling study using Illumina DASL BeadArray
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# 2.1 Data Availability
# Trait - Available in Feature 3, lesional vs non-lesional skin indicates psoriasis status
trait_row = 3
# Age - Not available
age_row = None
# Gender - Not available
gender_row = None
# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> int:
"""Convert lesional/non-lesional status to binary psoriasis indicator"""
if pd.isna(value):
return None
# Extract value after colon and strip whitespace
value = value.split(':')[1].strip().lower()
if 'lesional' in value:
return 1 if value == 'lesional' else 0
return None
# Age conversion not needed since age data not available
convert_age = None
# Gender conversion not needed since gender data not available
convert_gender = None
# 3. Save Metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available)
# 4. Clinical Feature Extraction
if trait_row is not None:
# Extract clinical features
clinical_features = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the extracted features
preview = preview_df(clinical_features)
print("Preview of clinical features:")
print(preview)
# Save to CSV
clinical_features.to_csv(out_clinical_data_file)
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)
# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])
# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
lines = []
for i, line in enumerate(f):
if "!series_matrix_table_begin" in line:
# Get the next 5 lines after the marker
for _ in range(5):
lines.append(next(f).strip())
break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
print(line)
# Based on the identifiers (e.g. ILMN_1343291), these are Illumina probe IDs
# which need to be mapped to human gene symbols for proper analysis
requires_gene_mapping = True
# Extract gene annotation data
gene_metadata = get_gene_annotation(soft_file)
# Preview the annotation data
print("Column names:", gene_metadata.columns.tolist())
print("\nFirst few rows preview:")
print(preview_df(gene_metadata))
# Extract probe ID and gene symbol columns for mapping
mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='Symbol')
# Convert probe level data to gene expression data
gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_data)
# Preview the gene expression data
print("Shape of gene expression data after mapping:", gene_data.shape)
print("\nFirst few rows of gene-level data:")
print(gene_data.head())
print("\nFirst 20 gene symbols:")
print(gene_data.index[:20])
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)
# 2. Load clinical features and link with genetic data
clinical_features = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for feature bias
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and metadata recording
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note="Gene expression data with lesional/non-lesional tissue trait information."
)
# 6. Save linked data if usable
if is_usable:
linked_data.to_csv(out_data_file) |