File size: 5,926 Bytes
5a96bf0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Psoriasis"
cohort = "GSE162998"

# Input paths
in_trait_dir = "../DATA/GEO/Psoriasis"
in_cohort_dir = "../DATA/GEO/Psoriasis/GSE162998"

# Output paths
out_data_file = "./output/preprocess/3/Psoriasis/GSE162998.csv"
out_gene_data_file = "./output/preprocess/3/Psoriasis/gene_data/GSE162998.csv"
out_clinical_data_file = "./output/preprocess/3/Psoriasis/clinical_data/GSE162998.csv"
json_path = "./output/preprocess/3/Psoriasis/cohort_info.json"

# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract background info and clinical data using specified prefixes
background_info, clinical_data = get_background_and_clinical_data(
    matrix_file,
    prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'],
    prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1']
)

# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)

# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")

# Print sample characteristics 
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
    print(f"Feature: {feature}")
    print(f"Values: {values}\n")
# 1. Gene Expression Data Availability 
# Yes - this is a gene expression profiling study using Illumina DASL BeadArray
is_gene_available = True

# 2. Variable Availability and Data Type Conversion
# 2.1 Data Availability
# Trait - Available in Feature 3, lesional vs non-lesional skin indicates psoriasis status
trait_row = 3
# Age - Not available 
age_row = None
# Gender - Not available
gender_row = None

# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> int:
    """Convert lesional/non-lesional status to binary psoriasis indicator"""
    if pd.isna(value):
        return None
    # Extract value after colon and strip whitespace
    value = value.split(':')[1].strip().lower()
    if 'lesional' in value:
        return 1 if value == 'lesional' else 0
    return None

# Age conversion not needed since age data not available
convert_age = None

# Gender conversion not needed since gender data not available  
convert_gender = None

# 3. Save Metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path,
                            is_gene_available=is_gene_available,
                            is_trait_available=is_trait_available)

# 4. Clinical Feature Extraction 
if trait_row is not None:
    # Extract clinical features
    clinical_features = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age,
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    
    # Preview the extracted features
    preview = preview_df(clinical_features)
    print("Preview of clinical features:")
    print(preview)
    
    # Save to CSV
    clinical_features.to_csv(out_clinical_data_file)
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)

# Print first 20 row IDs and shape of data to help debug 
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])

# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
    lines = []
    for i, line in enumerate(f):
        if "!series_matrix_table_begin" in line:
            # Get the next 5 lines after the marker
            for _ in range(5):
                lines.append(next(f).strip())
            break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
    print(line)
# Based on the identifiers (e.g. ILMN_1343291), these are Illumina probe IDs
# which need to be mapped to human gene symbols for proper analysis
requires_gene_mapping = True
# Extract gene annotation data
gene_metadata = get_gene_annotation(soft_file)

# Preview the annotation data 
print("Column names:", gene_metadata.columns.tolist())
print("\nFirst few rows preview:")
print(preview_df(gene_metadata))
# Extract probe ID and gene symbol columns for mapping
mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='Symbol')

# Convert probe level data to gene expression data
gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_data)

# Preview the gene expression data
print("Shape of gene expression data after mapping:", gene_data.shape) 
print("\nFirst few rows of gene-level data:")
print(gene_data.head())
print("\nFirst 20 gene symbols:")
print(gene_data.index[:20])
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)

# 2. Load clinical features and link with genetic data
clinical_features = pd.read_csv(out_clinical_data_file, index_col=0) 
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)

# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# 4. Check for feature bias
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Final validation and metadata recording
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True, 
    is_trait_available=True,
    is_biased=trait_biased,
    df=linked_data,
    note="Gene expression data with lesional/non-lesional tissue trait information."
)

# 6. Save linked data if usable
if is_usable:
    linked_data.to_csv(out_data_file)