File size: 7,719 Bytes
5a96bf0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Psoriasis"
cohort = "GSE178228"
# Input paths
in_trait_dir = "../DATA/GEO/Psoriasis"
in_cohort_dir = "../DATA/GEO/Psoriasis/GSE178228"
# Output paths
out_data_file = "./output/preprocess/3/Psoriasis/GSE178228.csv"
out_gene_data_file = "./output/preprocess/3/Psoriasis/gene_data/GSE178228.csv"
out_clinical_data_file = "./output/preprocess/3/Psoriasis/clinical_data/GSE178228.csv"
json_path = "./output/preprocess/3/Psoriasis/cohort_info.json"
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data using specified prefixes
background_info, clinical_data = get_background_and_clinical_data(
matrix_file,
prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'],
prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1']
)
# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")
# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
print(f"Feature: {feature}")
print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# From the background info we can see this is a study measuring gene expression in skin samples at different time points
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# For trait, we can use pasi (Psoriasis Area and Severity Index) scores from Feature 2
trait_row = 2
def convert_trait(x):
# Extract numeric PASI value after colon
try:
return float(x.split(': ')[1])
except:
return None
# Age and gender not provided in sample characteristics
age_row = None
gender_row = None
convert_age = None
convert_gender = None
# 3. Save metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available)
# 4. Clinical Feature Extraction
# Since trait_row is not None, we extract clinical features
selected_clinical_df = geo_select_clinical_features(clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender)
# Preview the extracted clinical data
preview_df(selected_clinical_df)
# Save clinical data
selected_clinical_df.to_csv(out_clinical_data_file)
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)
# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])
# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
lines = []
for i, line in enumerate(f):
if "!series_matrix_table_begin" in line:
# Get the next 5 lines after the marker
for _ in range(5):
lines.append(next(f).strip())
break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
print(line)
# Based on the probe IDs like "2824546_st", this appears to be Affymetrix microarray data
# that needs to be mapped to gene symbols
requires_gene_mapping = True
# Extract gene annotation data
gene_metadata = get_gene_annotation(soft_file)
# Preview the annotation data
print("Column names:", gene_metadata.columns.tolist())
print("\nFirst few rows preview:")
print(preview_df(gene_metadata))
# Looking at the gene expression data and annotation data:
# Gene expression data uses IDs like "2824546_st"
# Gene symbols are embedded in the 'gene_assignment' field and need to be extracted using extract_human_gene_symbols
# Get mapping between probe IDs and gene symbols
mapping_data = get_gene_mapping(annotation=gene_metadata, prob_col='ID', gene_col='gene_assignment')
# Apply the mapping to convert probe-level data to gene expression data
gene_data = apply_gene_mapping(gene_data, mapping_data)
gene_data = normalize_gene_symbols_in_index(gene_data)
# Save gene data
gene_data.to_csv(out_gene_data_file)
# Print info about the number of genes
print(f"Number of original probes: {len(gene_metadata)}")
print(f"Number of probe-gene mappings: {len(mapping_data)}")
print(f"Final number of unique genes: {len(gene_data)}")
# 1. Get raw genetic data
gene_data = get_genetic_data(matrix_file)
print(f"Initial probes: {len(gene_data)}")
# 2. Get mapping between probe IDs and gene symbols
mapping_data = get_gene_mapping(annotation=gene_metadata, prob_col='probeset_id', gene_col='gene_assignment')
print(f"Mappings found: {len(mapping_data)}")
# 3. Apply mapping and normalize
gene_data = apply_gene_mapping(gene_data, mapping_data)
print(f"Genes after mapping: {len(gene_data)}")
gene_data = normalize_gene_symbols_in_index(gene_data)
print(f"Genes after normalization: {len(gene_data)}")
gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
# Clinical data is available with PASI scores as trait values
clinical_data = selected_clinical_df
linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for biased features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Validate and save metadata
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note="Gene expression data with PASI scores as trait values from skin biopsies."
)
# 6. Save if usable
if is_usable:
linked_data.to_csv(out_data_file)
# Looking at the gene expression data and gene annotation data:
# Gene expression data has IDs like "2824546_st"
# Gene annotation dictionary has column 'gene_assignment' that contains gene symbols
# Prepare annotation data with correct column names and no duplicates
gene_metadata = gene_metadata.rename(columns={'probeset_id': 'ID'})
gene_metadata = gene_metadata.drop_duplicates(subset=['ID'])
# Get gene mapping from annotation data
# Use 'ID' as identifier column and 'gene_assignment' as gene symbol column
mapping_data = get_gene_mapping(annotation=gene_metadata, prob_col='ID', gene_col='gene_assignment')
# Apply the mapping to convert probe-level data to gene expression data
gene_data = apply_gene_mapping(gene_data, mapping_data)
# Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
# Save gene data
gene_data.to_csv(out_gene_data_file)
# Print info about the number of genes
print(f"Number of original probes: {len(gene_metadata)}")
print(f"Number of probe-gene mappings: {len(mapping_data)}")
print(f"Final number of unique genes: {len(gene_data)}") |