File size: 7,719 Bytes
5a96bf0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Psoriasis"
cohort = "GSE178228"

# Input paths
in_trait_dir = "../DATA/GEO/Psoriasis"
in_cohort_dir = "../DATA/GEO/Psoriasis/GSE178228"

# Output paths
out_data_file = "./output/preprocess/3/Psoriasis/GSE178228.csv"
out_gene_data_file = "./output/preprocess/3/Psoriasis/gene_data/GSE178228.csv"
out_clinical_data_file = "./output/preprocess/3/Psoriasis/clinical_data/GSE178228.csv"
json_path = "./output/preprocess/3/Psoriasis/cohort_info.json"

# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract background info and clinical data using specified prefixes
background_info, clinical_data = get_background_and_clinical_data(
    matrix_file,
    prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'],
    prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1']
)

# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)

# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")

# Print sample characteristics 
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
    print(f"Feature: {feature}")
    print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# From the background info we can see this is a study measuring gene expression in skin samples at different time points
is_gene_available = True

# 2. Variable Availability and Data Type Conversion
# For trait, we can use pasi (Psoriasis Area and Severity Index) scores from Feature 2
trait_row = 2

def convert_trait(x):
    # Extract numeric PASI value after colon 
    try:
        return float(x.split(': ')[1])
    except:
        return None

# Age and gender not provided in sample characteristics
age_row = None
gender_row = None
convert_age = None  
convert_gender = None

# 3. Save metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False, 
                            cohort=cohort,
                            info_path=json_path,
                            is_gene_available=is_gene_available,
                            is_trait_available=is_trait_available)

# 4. Clinical Feature Extraction
# Since trait_row is not None, we extract clinical features
selected_clinical_df = geo_select_clinical_features(clinical_df=clinical_data,
                                                  trait=trait,
                                                  trait_row=trait_row,
                                                  convert_trait=convert_trait,
                                                  age_row=age_row,
                                                  convert_age=convert_age,
                                                  gender_row=gender_row,
                                                  convert_gender=convert_gender)

# Preview the extracted clinical data
preview_df(selected_clinical_df)

# Save clinical data
selected_clinical_df.to_csv(out_clinical_data_file)
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)

# Print first 20 row IDs and shape of data to help debug 
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])

# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
    lines = []
    for i, line in enumerate(f):
        if "!series_matrix_table_begin" in line:
            # Get the next 5 lines after the marker
            for _ in range(5):
                lines.append(next(f).strip())
            break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
    print(line)
# Based on the probe IDs like "2824546_st", this appears to be Affymetrix microarray data 
# that needs to be mapped to gene symbols
requires_gene_mapping = True
# Extract gene annotation data
gene_metadata = get_gene_annotation(soft_file)

# Preview the annotation data 
print("Column names:", gene_metadata.columns.tolist())
print("\nFirst few rows preview:")
print(preview_df(gene_metadata))
# Looking at the gene expression data and annotation data:
# Gene expression data uses IDs like "2824546_st"
# Gene symbols are embedded in the 'gene_assignment' field and need to be extracted using extract_human_gene_symbols

# Get mapping between probe IDs and gene symbols 
mapping_data = get_gene_mapping(annotation=gene_metadata, prob_col='ID', gene_col='gene_assignment')

# Apply the mapping to convert probe-level data to gene expression data
gene_data = apply_gene_mapping(gene_data, mapping_data)
gene_data = normalize_gene_symbols_in_index(gene_data)

# Save gene data
gene_data.to_csv(out_gene_data_file)

# Print info about the number of genes
print(f"Number of original probes: {len(gene_metadata)}")
print(f"Number of probe-gene mappings: {len(mapping_data)}")
print(f"Final number of unique genes: {len(gene_data)}")
# 1. Get raw genetic data
gene_data = get_genetic_data(matrix_file)
print(f"Initial probes: {len(gene_data)}")

# 2. Get mapping between probe IDs and gene symbols 
mapping_data = get_gene_mapping(annotation=gene_metadata, prob_col='probeset_id', gene_col='gene_assignment')
print(f"Mappings found: {len(mapping_data)}")

# 3. Apply mapping and normalize
gene_data = apply_gene_mapping(gene_data, mapping_data) 
print(f"Genes after mapping: {len(gene_data)}")
gene_data = normalize_gene_symbols_in_index(gene_data)
print(f"Genes after normalization: {len(gene_data)}")
gene_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data
# Clinical data is available with PASI scores as trait values
clinical_data = selected_clinical_df
linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data)

# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# 4. Check for biased features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Validate and save metadata
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort, 
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=is_biased,
    df=linked_data,
    note="Gene expression data with PASI scores as trait values from skin biopsies."
)

# 6. Save if usable
if is_usable:
    linked_data.to_csv(out_data_file)
# Looking at the gene expression data and gene annotation data:
# Gene expression data has IDs like "2824546_st"
# Gene annotation dictionary has column 'gene_assignment' that contains gene symbols

# Prepare annotation data with correct column names and no duplicates
gene_metadata = gene_metadata.rename(columns={'probeset_id': 'ID'})
gene_metadata = gene_metadata.drop_duplicates(subset=['ID'])

# Get gene mapping from annotation data
# Use 'ID' as identifier column and 'gene_assignment' as gene symbol column 
mapping_data = get_gene_mapping(annotation=gene_metadata, prob_col='ID', gene_col='gene_assignment')

# Apply the mapping to convert probe-level data to gene expression data
gene_data = apply_gene_mapping(gene_data, mapping_data)

# Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)

# Save gene data
gene_data.to_csv(out_gene_data_file)

# Print info about the number of genes
print(f"Number of original probes: {len(gene_metadata)}")
print(f"Number of probe-gene mappings: {len(mapping_data)}")
print(f"Final number of unique genes: {len(gene_data)}")