File size: 6,532 Bytes
5a96bf0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Psoriasis"
cohort = "GSE182740"

# Input paths
in_trait_dir = "../DATA/GEO/Psoriasis"
in_cohort_dir = "../DATA/GEO/Psoriasis/GSE182740"

# Output paths
out_data_file = "./output/preprocess/3/Psoriasis/GSE182740.csv"
out_gene_data_file = "./output/preprocess/3/Psoriasis/gene_data/GSE182740.csv"
out_clinical_data_file = "./output/preprocess/3/Psoriasis/clinical_data/GSE182740.csv"
json_path = "./output/preprocess/3/Psoriasis/cohort_info.json"

# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract background info and clinical data using specified prefixes
background_info, clinical_data = get_background_and_clinical_data(
    matrix_file,
    prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'],
    prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1']
)

# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)

# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")

# Print sample characteristics 
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
    print(f"Feature: {feature}")
    print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# Based on the background info, this is a microarray study analyzing gene expression profiles
is_gene_available = True

# 2. Variable Availability and Data Type Conversion 
# 2.1 Data Availability
trait_row = 1  # Found in Feature 1: 'disease: ...'
age_row = None  # Age not available in sample characteristics
gender_row = None  # Gender not available in sample characteristics

# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> Optional[int]:
    """Convert disease status to binary (0: control, 1: Psoriasis/Mixed)"""
    if not isinstance(value, str):
        return None
    if ':' in value:
        value = value.split(':')[1].strip()
    # Based on summary, Mixed refers to overlap phenotype with psoriasis features
    if value in ['Psoriasis', 'Mixed']:
        return 1
    elif value in ['Normal_skin']:
        return 0
    elif value == 'Atopic_dermatitis':
        return 0  # AD patients are controls for psoriasis study
    return None

def convert_age(value: str) -> Optional[float]:
    return None  # Not used since age data unavailable

def convert_gender(value: str) -> Optional[int]:
    return None  # Not used since gender data unavailable

# 3. Save Metadata
validate_and_save_cohort_info(is_final=False, 
                            cohort=cohort,
                            info_path=json_path,
                            is_gene_available=is_gene_available,
                            is_trait_available=trait_row is not None)

# 4. Clinical Feature Extraction
if trait_row is not None:
    selected_clinical_df = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait
    )
    
    # Preview the processed data
    print("Preview of processed clinical data:")
    print(preview_df(selected_clinical_df))
    
    # Save to file
    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
    selected_clinical_df.to_csv(out_clinical_data_file)
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)

# Print first 20 row IDs and shape of data to help debug 
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])

# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
    lines = []
    for i, line in enumerate(f):
        if "!series_matrix_table_begin" in line:
            # Get the next 5 lines after the marker
            for _ in range(5):
                lines.append(next(f).strip())
            break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
    print(line)
# Looking at the identifiers like '1007_s_at', '1053_at', these are Affymetrix probe IDs, not gene symbols
# They need to be mapped to human gene symbols for proper analysis
requires_gene_mapping = True
# Extract gene annotation data
gene_metadata = get_gene_annotation(soft_file)

# Preview the annotation data 
print("Column names:", gene_metadata.columns.tolist())
print("\nFirst few rows preview:")
print(preview_df(gene_metadata))
# Get gene mapping using ID and Gene Symbol columns
mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='Gene Symbol')

# Apply gene mapping to convert probe data to gene expression data
gene_data = apply_gene_mapping(gene_data, mapping_data)

# Preview the result
print("Shape of processed gene expression data:", gene_data.shape)
print("\nFirst few rows of processed gene expression data:")
print(gene_data.head())
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)

# 2. Read and validate clinical data
clinical_data = pd.read_csv(out_clinical_data_file, index_col=0)
if clinical_data.empty or clinical_data.isna().all().all():
    validate_and_save_cohort_info(
        is_final=True,
        cohort=cohort,
        info_path=json_path, 
        is_gene_available=True,
        is_trait_available=False,
        is_biased=False,
        df=gene_data,
        note="Clinical data processing failed, resulting in empty or invalid data."
    )
else:
    # 2. Link clinical and genetic data
    linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data)

    # 3. Handle missing values
    linked_data = handle_missing_values(linked_data, trait)

    # 4. Check for bias
    is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

    # 5. Validate and save metadata
    is_usable = validate_and_save_cohort_info(
        is_final=True,
        cohort=cohort,
        info_path=json_path,
        is_gene_available=True,
        is_trait_available=True,
        is_biased=is_biased,
        df=linked_data
    )

    # 6. Save if usable
    if is_usable:
        os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
        linked_data.to_csv(out_data_file)