File size: 6,532 Bytes
5a96bf0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Psoriasis"
cohort = "GSE182740"
# Input paths
in_trait_dir = "../DATA/GEO/Psoriasis"
in_cohort_dir = "../DATA/GEO/Psoriasis/GSE182740"
# Output paths
out_data_file = "./output/preprocess/3/Psoriasis/GSE182740.csv"
out_gene_data_file = "./output/preprocess/3/Psoriasis/gene_data/GSE182740.csv"
out_clinical_data_file = "./output/preprocess/3/Psoriasis/clinical_data/GSE182740.csv"
json_path = "./output/preprocess/3/Psoriasis/cohort_info.json"
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data using specified prefixes
background_info, clinical_data = get_background_and_clinical_data(
matrix_file,
prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'],
prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1']
)
# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")
# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
print(f"Feature: {feature}")
print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# Based on the background info, this is a microarray study analyzing gene expression profiles
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# 2.1 Data Availability
trait_row = 1 # Found in Feature 1: 'disease: ...'
age_row = None # Age not available in sample characteristics
gender_row = None # Gender not available in sample characteristics
# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> Optional[int]:
"""Convert disease status to binary (0: control, 1: Psoriasis/Mixed)"""
if not isinstance(value, str):
return None
if ':' in value:
value = value.split(':')[1].strip()
# Based on summary, Mixed refers to overlap phenotype with psoriasis features
if value in ['Psoriasis', 'Mixed']:
return 1
elif value in ['Normal_skin']:
return 0
elif value == 'Atopic_dermatitis':
return 0 # AD patients are controls for psoriasis study
return None
def convert_age(value: str) -> Optional[float]:
return None # Not used since age data unavailable
def convert_gender(value: str) -> Optional[int]:
return None # Not used since gender data unavailable
# 3. Save Metadata
validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=trait_row is not None)
# 4. Clinical Feature Extraction
if trait_row is not None:
selected_clinical_df = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait
)
# Preview the processed data
print("Preview of processed clinical data:")
print(preview_df(selected_clinical_df))
# Save to file
os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
selected_clinical_df.to_csv(out_clinical_data_file)
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)
# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])
# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
lines = []
for i, line in enumerate(f):
if "!series_matrix_table_begin" in line:
# Get the next 5 lines after the marker
for _ in range(5):
lines.append(next(f).strip())
break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
print(line)
# Looking at the identifiers like '1007_s_at', '1053_at', these are Affymetrix probe IDs, not gene symbols
# They need to be mapped to human gene symbols for proper analysis
requires_gene_mapping = True
# Extract gene annotation data
gene_metadata = get_gene_annotation(soft_file)
# Preview the annotation data
print("Column names:", gene_metadata.columns.tolist())
print("\nFirst few rows preview:")
print(preview_df(gene_metadata))
# Get gene mapping using ID and Gene Symbol columns
mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='Gene Symbol')
# Apply gene mapping to convert probe data to gene expression data
gene_data = apply_gene_mapping(gene_data, mapping_data)
# Preview the result
print("Shape of processed gene expression data:", gene_data.shape)
print("\nFirst few rows of processed gene expression data:")
print(gene_data.head())
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# 2. Read and validate clinical data
clinical_data = pd.read_csv(out_clinical_data_file, index_col=0)
if clinical_data.empty or clinical_data.isna().all().all():
validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=False,
is_biased=False,
df=gene_data,
note="Clinical data processing failed, resulting in empty or invalid data."
)
else:
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for bias
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Validate and save metadata
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data
)
# 6. Save if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file) |