File size: 9,901 Bytes
5a96bf0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Psoriasis"
cohort = "GSE183134"

# Input paths
in_trait_dir = "../DATA/GEO/Psoriasis"
in_cohort_dir = "../DATA/GEO/Psoriasis/GSE183134"

# Output paths
out_data_file = "./output/preprocess/3/Psoriasis/GSE183134.csv"
out_gene_data_file = "./output/preprocess/3/Psoriasis/gene_data/GSE183134.csv"
out_clinical_data_file = "./output/preprocess/3/Psoriasis/clinical_data/GSE183134.csv"
json_path = "./output/preprocess/3/Psoriasis/cohort_info.json"

# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract background info and clinical data using specified prefixes
background_info, clinical_data = get_background_and_clinical_data(
    matrix_file,
    prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'],
    prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1']
)

# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)

# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")

# Print sample characteristics 
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
    print(f"Feature: {feature}")
    print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# Yes, based on background info mentioning "gene expressions" and "microarray profiling"
is_gene_available = True

# 2. Data Availability and Type Conversion
# 2.1 Row identifiers:
trait_row = 1  # Disease state is in row 1
age_row = None  # Age not available
gender_row = None  # Gender not available

# 2.2 Conversion functions
def convert_trait(value: str) -> int:
    """Convert trait value to binary (0: not trait, 1: has trait)"""
    if not isinstance(value, str):
        return None
    value = value.split(': ')[-1].strip()
    if value == 'Psoriasis':
        return 1
    elif value == 'Pityriasis_Rubra_Pilaris':
        return 0
    return None

def convert_age(value: str) -> float:
    """Convert age value to float (Not used since age not available)"""
    return None

def convert_gender(value: str) -> int:
    """Convert gender value to binary (Not used since gender not available)"""
    return None

# 3. Save metadata
validate_and_save_cohort_info(is_final=False,
                            cohort=cohort,
                            info_path=json_path,
                            is_gene_available=is_gene_available,
                            is_trait_available=trait_row is not None)

# 4. Clinical Feature Extraction 
# Since trait_row is not None, we extract clinical features
selected_clinical = geo_select_clinical_features(clinical_df=clinical_data,
                                               trait=trait,
                                               trait_row=trait_row,
                                               convert_trait=convert_trait)

# Preview extracted features
print("Preview of extracted clinical features:")
print(preview_df(selected_clinical))

# Save clinical data
os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
selected_clinical.to_csv(out_clinical_data_file)
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)

# Print first 20 row IDs and shape of data to help debug 
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])

# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
    lines = []
    for i, line in enumerate(f):
        if "!series_matrix_table_begin" in line:
            # Get the next 5 lines after the marker
            for _ in range(5):
                lines.append(next(f).strip())
            break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
    print(line)
# The gene identifiers appear to be in a format like "1-Dec", "1-Sep", "10-Mar"
# These are not standard human gene symbols and will need to be mapped
# This format suggests they are likely probe IDs from a microarray platform
requires_gene_mapping = True
# First inspect the SOFT file content to identify platform data section
import gzip
print("Preview of platform data section:")
with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
    in_platform_section = False
    for line in f:
        if '!platform_table_begin' in line:
            in_platform_section = True
            # Skip the header line
            next(f)
            # Print next 10 lines
            for _ in range(10):
                print(next(f).strip())
            break
            
# Extract gene annotation data
def extract_platform_data(file_path):
    data_lines = []
    with gzip.open(file_path, 'rt') as f:
        in_platform_section = False
        for line in f:
            if '!platform_table_begin' in line:
                in_platform_section = True
                # Skip header
                next(f)
                continue
            if '!platform_table_end' in line:
                break
            if in_platform_section:
                data_lines.append(line.strip())
    
    # Convert to DataFrame
    import io
    df = pd.read_csv(io.StringIO('\n'.join(data_lines)), delimiter='\t')
    return df

gene_metadata = extract_platform_data(soft_file)

# Preview the annotation data
print("\nColumn names:", gene_metadata.columns.tolist())
print("\nFirst few rows preview:")
print(preview_df(gene_metadata))
# Let's properly examine the SOFT file to find the probe ID to gene symbol mapping
print("Examining SOFT file content for probe mapping:")
with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
    in_platform_section = False
    header_found = False
    platform_data = []
    for line in f:
        if line.startswith('^PLATFORM'):
            in_platform_section = True
            continue
        if in_platform_section and not header_found:
            if line.startswith('#') and 'ID' in line:
                # Look for the data column descriptions
                print(line.strip())
                header_found = True
        if in_platform_section and line.startswith('!platform_table_begin'):
            header = next(f).strip().split('\t')
            # Read data lines until table end
            for data_line in f:
                if data_line.startswith('!platform_table_end'):
                    break
                platform_data.append(data_line.strip().split('\t'))
            break

# Convert platform data to DataFrame
gene_metadata = pd.DataFrame(platform_data, columns=header)

print("\nColumn names of platform annotation:", gene_metadata.columns.tolist())
print("\nFirst few rows of platform annotation:")
print(preview_df(gene_metadata))

# Look at the first few rows of actual expression data IDs to match format
print("\nExpression data IDs (first 5):", gene_data.index[:5].tolist())

# If we still can't find appropriate mapping columns, we'll need to use the expression 
# data IDs directly as gene symbols (not ideal but prevents failure)
if 'Gene Symbol' in gene_metadata.columns:
    mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='Gene Symbol')
else:
    print("\nWARNING: Could not find gene symbol mapping in platform annotation.")
    print("Using expression data IDs directly as gene symbols.")
    # Create mapping dataframe using expression data IDs
    mapping_df = pd.DataFrame({
        'ID': gene_data.index,
        'Gene': gene_data.index
    })

# Apply mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(gene_data, mapping_df)

# Preview the mapped gene expression data
print("\nShape of gene expression data after mapping:", gene_data.shape)
print("\nFirst few genes and their expression values:")
print(gene_data.head())

# Normalize gene symbols using the library function
gene_data = normalize_gene_symbols_in_index(gene_data)

print("\nShape of gene expression data after normalization:", gene_data.shape)
print("\nFirst few normalized genes and their expression values:")
print(gene_data.head())

# Save the gene expression data
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# 1. Load clinical data
clinical_data = pd.read_csv(out_clinical_data_file, index_col=0)

# 2. Load original gene data directly from matrix file before normalization attempt failed
_, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
gene_data = get_genetic_data(matrix_file)

# Create simple mapping since platform annotation was incomplete
mapping_df = pd.DataFrame({
    'ID': gene_data.index,
    'Gene': gene_data.index # Use probe IDs as temporary gene names
})

# Convert to gene-level data 
gene_data = apply_gene_mapping(gene_data, mapping_df)

# 3. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data)

# 4. Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# 5. Check for biases in features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 6. Validate and save cohort info
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=trait_biased,
    df=linked_data,
    note="Contains both gene expression data and clinical information. Gene symbols could not be normalized due to incomplete platform annotation - probe IDs are used as gene identifiers."
)

# 7. Save linked data if usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)