File size: 7,994 Bytes
5a96bf0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Psoriasis"
cohort = "GSE252029"
# Input paths
in_trait_dir = "../DATA/GEO/Psoriasis"
in_cohort_dir = "../DATA/GEO/Psoriasis/GSE252029"
# Output paths
out_data_file = "./output/preprocess/3/Psoriasis/GSE252029.csv"
out_gene_data_file = "./output/preprocess/3/Psoriasis/gene_data/GSE252029.csv"
out_clinical_data_file = "./output/preprocess/3/Psoriasis/clinical_data/GSE252029.csv"
json_path = "./output/preprocess/3/Psoriasis/cohort_info.json"
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data using specified prefixes
background_info, clinical_data = get_background_and_clinical_data(
matrix_file,
prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'],
prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1']
)
# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")
# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
print(f"Feature: {feature}")
print(f"Values: {values}\n")
# First create clinical_data DataFrame from the sample characteristics
sample_chars = {
0: ['study id: CNTO1959PSO3001'],
1: ['subject id: 10521', 'subject id: 10563', 'subject id: 10294', 'subject id: 10461', 'subject id: 10079', 'subject id: 10062', 'subject id: 10115', 'subject id: 10205', 'subject id: 10193', 'subject id: 10252', 'subject id: 10798', 'subject id: 10332', 'subject id: 10063', 'subject id: 10118', 'subject id: 10500', 'subject id: 10263', 'subject id: 10265', 'subject id: 10334', 'subject id: 10932', 'subject id: 10933', 'subject id: 10982', 'subject id: 10401', 'subject id: 10512', 'subject id: 10110', 'subject id: 10027', 'subject id: 10566', 'subject id: 10989', 'subject id: 10227', 'subject id: 10380', 'subject id: 10286'],
2: ['treatment: Placebo to Guselkumab', 'treatment: Guselkumab', 'treatment: Adalimumab'],
3: ['time point: WK_0', 'time point: WK_4', 'time point: WK_24', 'time point: WK_48'],
4: ['skin: LS', 'skin: NL']
}
clinical_data = pd.DataFrame(sample_chars).transpose()
# 1. Gene Expression Data Availability
# Yes - Dataset uses GeneChip HT HG-U133+ PM Array for transcriptomics
is_gene_available = True
# 2.1 Data Row Indices
# Trait can be inferred from skin type (LS=lesional skin, NL=nonlesional skin)
trait_row = 4
# Age and gender not available
age_row = None
gender_row = None
# 2.2 Conversion Functions
def convert_trait(value: str) -> float:
"""Convert skin type to binary trait value
LS (lesional) = 1, NL (nonlesional) = 0"""
if pd.isna(value) or not isinstance(value, str):
return None
value = value.split(": ")[-1].strip().upper()
if value == "LS":
return 1.0
elif value == "NL":
return 0.0
return None
def convert_age(value: str) -> float:
return None
def convert_gender(value: str) -> float:
return None
# 3. Save Metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# 4. Clinical Feature Extraction
selected_clinical = geo_select_clinical_features(
clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the clinical data
preview_df(selected_clinical)
# Save clinical data
selected_clinical.to_csv(out_clinical_data_file)
# Cannot proceed with analysis as the output from previous step (sample characteristics and background info) is not provided
print("Error: Missing prerequisite data - sample characteristics and background information needed for analysis.")
raise ValueError("Output from previous step containing sample characteristics and dataset background information is required to analyze variables and extract clinical features.")
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)
# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])
# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
lines = []
for i, line in enumerate(f):
if "!series_matrix_table_begin" in line:
# Get the next 5 lines after the marker
for _ in range(5):
lines.append(next(f).strip())
break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
print(line)
requires_gene_mapping = True
# Extract gene annotation data
gene_metadata = get_gene_annotation(soft_file)
# Preview the annotation data
print("Column names:", gene_metadata.columns.tolist())
print("\nFirst few rows preview:")
print(preview_df(gene_metadata))
# Extract ID and Gene Symbol columns for mapping
mapping_data = get_gene_mapping(gene_metadata, 'ID', 'Gene Symbol')
# Apply gene mapping to get gene expression
gene_data = apply_gene_mapping(gene_data, mapping_data)
# Save gene data to file
gene_data.to_csv(out_gene_data_file)
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Get gene expression data
gene_data = get_genetic_data(matrix_file)
# Get gene mapping
gene_metadata = get_gene_annotation(soft_file)
mapping_data = get_gene_mapping(gene_metadata, 'ID', 'Gene Symbol')
gene_data = apply_gene_mapping(gene_data, mapping_data)
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)
# Get clinical data
background_info, clinical_data = get_background_and_clinical_data(
matrix_file,
prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'],
prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1']
)
# Extract trait row from skin type
trait_row = 4
age_row = None
gender_row = None
def convert_trait(value: str) -> float:
"""Convert skin type to binary trait value
LS (lesional) = 1, NL (nonlesional) = 0"""
if pd.isna(value) or not isinstance(value, str):
return None
value = value.split(": ")[-1].strip().upper()
if value == "LS":
return 1.0
elif value == "NL":
return 0.0
return None
def convert_age(value: str) -> float:
return None
def convert_gender(value: str) -> float:
return None
# Extract clinical features
selected_clinical = geo_select_clinical_features(
clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical, gene_data)
# Handle missing values
linked_data = handle_missing_values(linked_data, trait_col=trait)
# Check for trait bias and remove biased features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# Save validation info
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note="Contains gene expression and trait data (skin type: lesional vs nonlesional)."
)
# Save linked data if usable
if is_usable:
linked_data.to_csv(out_data_file) |