File size: 7,994 Bytes
5a96bf0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Psoriasis"
cohort = "GSE252029"

# Input paths
in_trait_dir = "../DATA/GEO/Psoriasis"
in_cohort_dir = "../DATA/GEO/Psoriasis/GSE252029"

# Output paths
out_data_file = "./output/preprocess/3/Psoriasis/GSE252029.csv"
out_gene_data_file = "./output/preprocess/3/Psoriasis/gene_data/GSE252029.csv"
out_clinical_data_file = "./output/preprocess/3/Psoriasis/clinical_data/GSE252029.csv"
json_path = "./output/preprocess/3/Psoriasis/cohort_info.json"

# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract background info and clinical data using specified prefixes
background_info, clinical_data = get_background_and_clinical_data(
    matrix_file,
    prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'],
    prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1']
)

# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)

# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")

# Print sample characteristics 
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
    print(f"Feature: {feature}")
    print(f"Values: {values}\n")
# First create clinical_data DataFrame from the sample characteristics
sample_chars = {
    0: ['study id: CNTO1959PSO3001'],
    1: ['subject id: 10521', 'subject id: 10563', 'subject id: 10294', 'subject id: 10461', 'subject id: 10079', 'subject id: 10062', 'subject id: 10115', 'subject id: 10205', 'subject id: 10193', 'subject id: 10252', 'subject id: 10798', 'subject id: 10332', 'subject id: 10063', 'subject id: 10118', 'subject id: 10500', 'subject id: 10263', 'subject id: 10265', 'subject id: 10334', 'subject id: 10932', 'subject id: 10933', 'subject id: 10982', 'subject id: 10401', 'subject id: 10512', 'subject id: 10110', 'subject id: 10027', 'subject id: 10566', 'subject id: 10989', 'subject id: 10227', 'subject id: 10380', 'subject id: 10286'],
    2: ['treatment: Placebo to Guselkumab', 'treatment: Guselkumab', 'treatment: Adalimumab'],
    3: ['time point: WK_0', 'time point: WK_4', 'time point: WK_24', 'time point: WK_48'],
    4: ['skin: LS', 'skin: NL']
}
clinical_data = pd.DataFrame(sample_chars).transpose()

# 1. Gene Expression Data Availability
# Yes - Dataset uses GeneChip HT HG-U133+ PM Array for transcriptomics
is_gene_available = True

# 2.1 Data Row Indices 
# Trait can be inferred from skin type (LS=lesional skin, NL=nonlesional skin)
trait_row = 4  
# Age and gender not available
age_row = None
gender_row = None

# 2.2 Conversion Functions
def convert_trait(value: str) -> float:
    """Convert skin type to binary trait value
    LS (lesional) = 1, NL (nonlesional) = 0"""
    if pd.isna(value) or not isinstance(value, str):
        return None
    value = value.split(": ")[-1].strip().upper()
    if value == "LS":
        return 1.0
    elif value == "NL": 
        return 0.0
    return None

def convert_age(value: str) -> float:
    return None

def convert_gender(value: str) -> float:
    return None

# 3. Save Metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=is_trait_available
)

# 4. Clinical Feature Extraction
selected_clinical = geo_select_clinical_features(
    clinical_data,
    trait=trait,
    trait_row=trait_row,
    convert_trait=convert_trait,
    age_row=age_row,
    convert_age=convert_age, 
    gender_row=gender_row,
    convert_gender=convert_gender
)

# Preview the clinical data
preview_df(selected_clinical)

# Save clinical data
selected_clinical.to_csv(out_clinical_data_file)
# Cannot proceed with analysis as the output from previous step (sample characteristics and background info) is not provided
print("Error: Missing prerequisite data - sample characteristics and background information needed for analysis.")
raise ValueError("Output from previous step containing sample characteristics and dataset background information is required to analyze variables and extract clinical features.")
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)

# Print first 20 row IDs and shape of data to help debug 
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])

# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
    lines = []
    for i, line in enumerate(f):
        if "!series_matrix_table_begin" in line:
            # Get the next 5 lines after the marker
            for _ in range(5):
                lines.append(next(f).strip())
            break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
    print(line)
requires_gene_mapping = True
# Extract gene annotation data
gene_metadata = get_gene_annotation(soft_file)

# Preview the annotation data 
print("Column names:", gene_metadata.columns.tolist())
print("\nFirst few rows preview:")
print(preview_df(gene_metadata))
# Extract ID and Gene Symbol columns for mapping
mapping_data = get_gene_mapping(gene_metadata, 'ID', 'Gene Symbol')

# Apply gene mapping to get gene expression
gene_data = apply_gene_mapping(gene_data, mapping_data)

# Save gene data to file
gene_data.to_csv(out_gene_data_file)
# Get file paths 
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Get gene expression data
gene_data = get_genetic_data(matrix_file)

# Get gene mapping
gene_metadata = get_gene_annotation(soft_file)
mapping_data = get_gene_mapping(gene_metadata, 'ID', 'Gene Symbol')
gene_data = apply_gene_mapping(gene_data, mapping_data)

# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)

# Get clinical data
background_info, clinical_data = get_background_and_clinical_data(
    matrix_file,
    prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'],
    prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1']
)

# Extract trait row from skin type
trait_row = 4
age_row = None 
gender_row = None

def convert_trait(value: str) -> float:
    """Convert skin type to binary trait value
    LS (lesional) = 1, NL (nonlesional) = 0"""
    if pd.isna(value) or not isinstance(value, str):
        return None
    value = value.split(": ")[-1].strip().upper()
    if value == "LS":
        return 1.0
    elif value == "NL": 
        return 0.0
    return None

def convert_age(value: str) -> float:
    return None

def convert_gender(value: str) -> float:
    return None

# Extract clinical features
selected_clinical = geo_select_clinical_features(
    clinical_data,
    trait=trait,
    trait_row=trait_row,
    convert_trait=convert_trait,
    age_row=age_row,
    convert_age=convert_age,
    gender_row=gender_row,
    convert_gender=convert_gender
)

# Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical, gene_data)

# Handle missing values
linked_data = handle_missing_values(linked_data, trait_col=trait)

# Check for trait bias and remove biased features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# Save validation info
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=trait_biased,
    df=linked_data,
    note="Contains gene expression and trait data (skin type: lesional vs nonlesional)."
)

# Save linked data if usable
if is_usable:
    linked_data.to_csv(out_data_file)