File size: 6,323 Bytes
5a96bf0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Psoriasis"
cohort = "GSE254707"

# Input paths
in_trait_dir = "../DATA/GEO/Psoriasis"
in_cohort_dir = "../DATA/GEO/Psoriasis/GSE254707"

# Output paths
out_data_file = "./output/preprocess/3/Psoriasis/GSE254707.csv"
out_gene_data_file = "./output/preprocess/3/Psoriasis/gene_data/GSE254707.csv"
out_clinical_data_file = "./output/preprocess/3/Psoriasis/clinical_data/GSE254707.csv"
json_path = "./output/preprocess/3/Psoriasis/cohort_info.json"

# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract background info and clinical data using specified prefixes
background_info, clinical_data = get_background_and_clinical_data(
    matrix_file,
    prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'],
    prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1']
)

# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)

# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")

# Print sample characteristics 
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
    print(f"Feature: {feature}")
    print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
is_gene_available = True  # The title and background summary indicate this is transcriptomic data (RNA-seq)

# 2. Variable Availability and Data Type Conversion
# Trait - from Feature 5 (diagnosis)
trait_row = 5

def convert_trait(value):
    if not value or ":" not in value:
        return None
    diagnosis = value.split(":")[1].strip()
    if diagnosis == "Psoriasis":
        return 1
    elif diagnosis == "Healthy":
        return 0
    return None

# Age - not available
age_row = None
convert_age = None

# Gender - not available 
gender_row = None
convert_gender = None

# 3. Save initial metadata
is_usable = validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=(trait_row is not None)
)

# 4. Extract clinical features if available
if trait_row is not None:
    selected_clinical = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age,
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    
    # Preview the data
    preview = preview_df(selected_clinical)
    print("Clinical data preview:", preview)
    
    # Save to file
    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
    selected_clinical.to_csv(out_clinical_data_file)
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# First inspect file structure more thoroughly
print("Scanning file for matrix data marker:")
marker_line_num = None
data_header = None
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
    for i, line in enumerate(f):
        if i < 5:  # Show first few lines
            print(f"Line {i}: {line.strip()}")
        if "!series_matrix_table_begin" in line.lower():
            marker_line_num = i
            print(f"\nFound matrix marker at line {i}")
            # Get the next line which should be the header
            data_header = next(f).strip()
            print(f"Header line: {data_header}")
            # Get a few data lines
            print("\nFirst few data lines:")
            for _ in range(3):
                print(next(f).strip())
            break
    if marker_line_num is None:
        print("\nWarning: Matrix data marker not found!")

# Try reading the gene expression data
if marker_line_num is not None:
    try:
        gene_data = get_genetic_data(matrix_file)
        
        # Print first 20 row IDs and shape of data
        print("\nShape of gene expression data:", gene_data.shape)
        print("\nFirst few rows of data:")
        print(gene_data.head())
        print("\nFirst 20 gene/probe identifiers:")
        print(gene_data.index[:20])
        
    except Exception as e:
        print(f"\nError reading gene data: {str(e)}")
else:
    print("Cannot read gene data - matrix marker not found")
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# First check the data structure
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
    # Skip to matrix line
    for line in f:
        if "!series_matrix_table_begin" in line:
            # Read header and first few lines to inspect format
            header = next(f).strip()
            print("\nPeeking at matrix data structure:")
            for _ in range(3): # Show first 3 data lines
                print(next(f).strip())
            break

# Modify read_csv parameters to handle the data format
def get_genetic_data_modified(file_path: str, marker: str = "!series_matrix_table_begin") -> pd.DataFrame:
    # Determine rows to skip
    with gzip.open(file_path, 'rt') as file:
        for i, line in enumerate(file):
            if marker in line:
                skip_rows = i + 1
                break
        else:
            raise ValueError(f"Marker '{marker}' not found")

    # Read with modified parameters for quoted data
    genetic_data = pd.read_csv(file_path,
                             compression='gzip',
                             skiprows=skip_rows,
                             comment='!',
                             delimiter='\t',
                             quotechar='"',
                             on_bad_lines='skip')
    
    # Process column names to remove quotes
    genetic_data.columns = genetic_data.columns.str.strip('"')
    
    # Rename and set index
    genetic_data = genetic_data.rename(columns={'ID_REF': 'ID'}).astype({'ID': 'str'})
    genetic_data.set_index('ID', inplace=True)
    
    return genetic_data

# Extract gene expression data using modified function
gene_data = get_genetic_data_modified(matrix_file)

# Print diagnostic information
print("\nShape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])