File size: 5,376 Bytes
d5514d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Rheumatoid_Arthritis"
cohort = "GSE140161"

# Input paths
in_trait_dir = "../DATA/GEO/Rheumatoid_Arthritis"
in_cohort_dir = "../DATA/GEO/Rheumatoid_Arthritis/GSE140161"

# Output paths
out_data_file = "./output/preprocess/3/Rheumatoid_Arthritis/GSE140161.csv"
out_gene_data_file = "./output/preprocess/3/Rheumatoid_Arthritis/gene_data/GSE140161.csv"
out_clinical_data_file = "./output/preprocess/3/Rheumatoid_Arthritis/clinical_data/GSE140161.csv"
json_path = "./output/preprocess/3/Rheumatoid_Arthritis/cohort_info.json"

# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract background info and clinical data 
background_info, clinical_data = get_background_and_clinical_data(matrix_file)

# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)

# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")

# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
    print(f"Feature: {feature}")
    print(f"Values: {values}\n")
# 1. Gene Expression Availability
# Yes - Series_overall_design indicates Affymetrix chip was used for whole blood transcriptome
is_gene_available = True 

# 2.1 Data Availability
# Disease state is constant "Sjögren's syndrome", not usable
trait_row = None  

# Gender is available in row 1
gender_row = 1

# Age is not available
age_row = None

# 2.2 Data Type Conversion
def convert_trait(x):
    # Not used since trait_row is None
    return None

def convert_gender(x):
    if not isinstance(x, str):
        return None
    value = x.split(': ')[1].lower() if ': ' in x else x.lower()
    if value == 'female':
        return 0 
    elif value == 'male':
        return 1
    return None

def convert_age(x):
    # Not used since age_row is None
    return None

# 3. Save Metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=is_trait_available
)

# 4. Clinical Feature Extraction skipped since trait_row is None
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)

# Print first 20 row IDs and shape of data to help debug 
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])

# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
    lines = []
    for i, line in enumerate(f):
        if "!series_matrix_table_begin" in line:
            # Get the next 5 lines after the marker
            for _ in range(5):
                lines.append(next(f).strip())
            break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
    print(line)
requires_gene_mapping = True
# Extract gene annotation data
gene_metadata = get_gene_annotation(soft_file)

# Preview the annotation data 
print("Column names:", gene_metadata.columns.tolist())
print("\nFirst few rows preview:")
print(preview_df(gene_metadata))
# Extract gene IDs and gene symbols from annotation data 
def get_gene_name(text):
    """Extract gene symbol from RefSeq annotation text"""
    if not isinstance(text, str):
        return None
    # Look for gene symbols after RefSeq
    match = re.search(r'RefSeq // Homo sapiens .+?\(([A-Z0-9]+)\)', text)
    if match:
        return match.group(1)
    # Also try looking for gene symbols after HGNC Symbol tag    
    match = re.search(r'\[Source:HGNC Symbol;Acc:HGNC:\d+\] // ([A-Z0-9]+)', text)
    if match:
        return match.group(1)
    return None

# Create mapping dataframe
mapping_data = pd.DataFrame({
    'ID': gene_metadata['ID'],
    'Gene': gene_metadata['SPOT_ID.1'].apply(get_gene_name)
})

# Map probes to genes and combine expression values
gene_data = apply_gene_mapping(gene_data, mapping_data)

# Preview result
print("Shape of mapped gene expression data:", gene_data.shape)
print("\nFirst few rows of mapped data:")
print(gene_data.head())
# Save normalized gene data for future use
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)

# Create minimal clinical features with constant trait
clinical_features = pd.DataFrame({'Sjogrens': 1}, index=gene_data.columns) 

# Link data and check bias
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)
linked_data = handle_missing_values(linked_data, 'Sjogrens')
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, 'Sjogrens')

# Validate and save info
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True, 
    is_biased=trait_biased,
    df=linked_data,
    note="Dataset contains gene expression data but all samples are Sjögren's syndrome cases."
)

# Save if usable (won't be in this case due to constant trait)
if is_usable:
    linked_data.to_csv(out_data_file)