File size: 15,972 Bytes
d5514d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Rheumatoid_Arthritis"
cohort = "GSE224330"

# Input paths
in_trait_dir = "../DATA/GEO/Rheumatoid_Arthritis"
in_cohort_dir = "../DATA/GEO/Rheumatoid_Arthritis/GSE224330"

# Output paths
out_data_file = "./output/preprocess/3/Rheumatoid_Arthritis/GSE224330.csv"
out_gene_data_file = "./output/preprocess/3/Rheumatoid_Arthritis/gene_data/GSE224330.csv"
out_clinical_data_file = "./output/preprocess/3/Rheumatoid_Arthritis/clinical_data/GSE224330.csv"
json_path = "./output/preprocess/3/Rheumatoid_Arthritis/cohort_info.json"

# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract background info and clinical data 
background_info, clinical_data = get_background_and_clinical_data(matrix_file)

# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)

# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")

# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
    print(f"Feature: {feature}")
    print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# Based on background info mentioning "gene expression profiling", "transcriptomic profile", "whole-genome transcriptomics"
is_gene_available = True

# 2.1 Variable Availability
trait_row = 0  # Can infer RA status from tissue source
age_row = 1  # Age data available in feature 1
gender_row = 2  # Gender data available in feature 2

# 2.2 Data Type Conversion Functions
def convert_trait(x):
    if pd.isna(x):
        return None
    # First 10 samples (GSM7019507-GSM7019516) are from healthy controls based on background info
    # Rest are RA patients on different treatments
    sample_id = x.name
    sample_num = int(sample_id.replace('GSM',''))
    if 7019507 <= sample_num <= 7019516:
        return 0  # Healthy control
    else:
        return 1  # RA patient

def convert_age(x):
    if pd.isna(x):
        return None
    # Extract numeric value before 'y'
    try:
        age = int(x.split(':')[1].strip().replace('y',''))
        return age
    except:
        return None

def convert_gender(x):
    if pd.isna(x):
        return None
    value = x.split(':')[1].strip().lower()
    if 'female' in value:
        return 0
    elif 'male' in value:
        return 1
    return None

# 3. Save Metadata
is_trait_available = trait_row is not None
_ = validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=is_trait_available
)

# 4. Clinical Feature Extraction
selected_clinical_df = geo_select_clinical_features(
    clinical_df=clinical_data,
    trait=trait,
    trait_row=trait_row,
    convert_trait=convert_trait,
    age_row=age_row,
    convert_age=convert_age,
    gender_row=gender_row,
    convert_gender=convert_gender
)

# Preview the extracted features
preview = preview_df(selected_clinical_df)
print("Preview of extracted clinical features:")
print(preview)

# Save to CSV
selected_clinical_df.to_csv(out_clinical_data_file)
# The previous step output was not provided. Without it, we cannot properly:
# 1. Determine gene expression data availability
# 2. Identify row numbers for clinical features
# 3. Design appropriate conversion logic based on actual data values

# Therefore, this step cannot be completed until we receive:
# - Background information about the dataset
# - Sample characteristics dictionary showing available clinical data

raise ValueError("Previous step output with dataset information is required to analyze data availability and implement conversion logic")
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)

# Print first 20 row IDs and shape of data to help debug 
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])

# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
    lines = []
    for i, line in enumerate(f):
        if "!series_matrix_table_begin" in line:
            # Get the next 5 lines after the marker
            for _ in range(5):
                lines.append(next(f).strip())
            break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
    print(line)
# The identifiers starting with "A_19_P" appear to be Agilent microarray probe IDs
# These are not standard human gene symbols and need to be mapped to gene symbols
requires_gene_mapping = True
# Extract gene annotation data
gene_metadata = get_gene_annotation(soft_file)

# Preview the annotation data 
print("Column names:", gene_metadata.columns.tolist())
print("\nFirst few rows preview:")
print(preview_df(gene_metadata))
# 1. Extract gene annotation data
gene_metadata = get_gene_annotation(soft_file)

# 2. Extract gene mapping from annotation data
mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='GENE_SYMBOL')

# 3. Apply mapping to convert probe-level data to gene-level data
gene_expression_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_data)

# Save processed gene data 
gene_expression_data.to_csv(out_gene_data_file)
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)

# Print first 20 row IDs and shape of data to help debug 
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])

# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
    lines = []
    for i, line in enumerate(f):
        if "!series_matrix_table_begin" in line:
            # Get the next 5 lines after the marker
            for _ in range(5):
                lines.append(next(f).strip())
            break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
    print(line)
# 1. Extract gene annotation data and observe identifiers 
# From previous outputs, we can see:
# - Gene expression data uses identifiers like 'A_19_P00315452'
# - Gene annotation data has matching IDs in the 'ID' column and gene symbols in 'GENE_SYMBOL'
gene_metadata = get_gene_annotation(soft_file)

# 2. Extract gene mapping from annotation data
mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='GENE_SYMBOL')

# 3. Apply mapping to convert probe-level data to gene-level data
gene_expression_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_data)

# Save processed gene data
gene_expression_data.to_csv(out_gene_data_file)

# Print shape before and after mapping to verify the transformation
print("Shape before mapping (probes):", gene_data.shape)
print("Shape after mapping (genes):", gene_expression_data.shape)
print("\nFirst few gene symbols and their expression values:")
print(gene_expression_data.head())
# First get clinical features
selected_clinical_df = geo_select_clinical_features(
    clinical_df=clinical_data, 
    trait=trait,
    trait_row=0,  # From trait identification in previous step
    convert_trait=lambda x: 1 if not pd.isna(x) else None,  # Initially mark all as patients
    age_row=1,    # From age identification in previous step
    convert_age=convert_age,
    gender_row=2, # From gender identification in previous step
    convert_gender=convert_gender
)

# Set first 10 samples as controls based on background info
sample_cols = selected_clinical_df.columns[:10]  # First 10 samples
selected_clinical_df.loc[trait, sample_cols] = 0

# 1. Normalize gene symbols
gene_expression_data = normalize_gene_symbols_in_index(gene_expression_data)
gene_expression_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data 
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_expression_data)

# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# 4. Check for bias  
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Validate and save cohort info
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path, 
    is_gene_available=True,
    is_trait_available=True,
    is_biased=trait_biased,
    df=linked_data,
    note="Study examining transcriptome profiles in rheumatoid arthritis."
)

# 6. Save if usable
if is_usable:
    linked_data.to_csv(out_data_file)
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)

# Print first 20 row IDs and shape of data to help debug 
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])

# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
    lines = []
    for i, line in enumerate(f):
        if "!series_matrix_table_begin" in line:
            # Get the next 5 lines after the marker
            for _ in range(5):
                lines.append(next(f).strip())
            break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
    print(line)
# 1. Extract gene annotation data and observe identifiers 
# From previous outputs, we can see:
# - Gene expression data uses identifiers like 'A_19_P00315452'
# - Gene annotation data has matching IDs in the 'ID' column and gene symbols in 'GENE_SYMBOL'
gene_metadata = get_gene_annotation(soft_file)

# 2. Extract gene mapping from annotation data
mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='GENE_SYMBOL')

# 3. Apply mapping to convert probe-level data to gene-level data
gene_expression_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_data)

# Save processed gene data
gene_expression_data.to_csv(out_gene_data_file)

# Print shape before and after mapping to verify the transformation
print("Shape before mapping (probes):", gene_data.shape)
print("Shape after mapping (genes):", gene_expression_data.shape)
print("\nFirst few gene symbols and their expression values:")
print(gene_expression_data.head())
# First extract clinical features with proper conversion functions
def convert_trait(x):
    if pd.isna(x):
        return None
    # All samples with tissue:monocytes are trait positive (RA patients) except first 10 which are controls
    return 1

def convert_age(x):
    if pd.isna(x):
        return None
    # Extract numeric value after 'age:'
    match = re.search(r'age:\s*(\d+)y', str(x))
    if match:
        return int(match.group(1))
    return None

def convert_gender(x):
    if pd.isna(x):
        return None
    # Convert after 'gender:'
    if 'female' in str(x).lower():
        return 0
    elif 'male' in str(x).lower():
        return 1
    return None

# Extract clinical features
selected_clinical_df = geo_select_clinical_features(
    clinical_df=clinical_data,
    trait=trait,
    trait_row=0,  # Using tissue row
    convert_trait=convert_trait,
    age_row=1,    # Age information is in row 1
    convert_age=convert_age,
    gender_row=2, # Gender information is in row 2
    convert_gender=convert_gender
)

# Set first 10 samples as controls based on background info
sample_cols = selected_clinical_df.columns[:10]  # First 10 samples
selected_clinical_df.loc[trait, sample_cols] = 0

# 1. Normalize gene symbols from previous gene mapping result
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)

# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# 4. Check for bias
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Validate and save cohort info
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=trait_biased,
    df=linked_data,
    note="Study examining transcriptome profiles in rheumatoid arthritis, with 10 controls and 21 RA patients."
)

# 6. Save if usable
if is_usable:
    linked_data.to_csv(out_data_file)
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract background info and clinical data 
background_info, clinical_data = get_background_and_clinical_data(matrix_file)

# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)

# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")

# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
    print(f"Feature: {feature}")
    print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# The series title and summary indicate gene expression data of monocytes
is_gene_available = True

# 2.1 Data Availability 
# For trait: While we know there are healthy controls and RA patients from the series design,
# the treatment information is not shown in the available sample characteristics preview
# So we cannot reliably extract trait information
trait_row = None

# Age is in Feature 1
age_row = 1

# Gender is in Feature 2
gender_row = 2

# 2.2 Data Type Conversion Functions
def convert_trait(x):
    # Not needed since trait_row is None
    return None

def convert_age(x):
    if pd.isna(x):
        return None
    # Extract number before 'y'
    try:
        age = int(x.split(': ')[1].replace('y',''))
        return age
    except:
        return None

def convert_gender(x):
    if pd.isna(x):
        return None
    val = x.split(': ')[1].lower()
    if 'female' in val:
        return 0
    elif 'male' in val:
        return 1
    return None

# 3. Save Metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=is_trait_available
)

# 4. Clinical Feature Extraction
# Skip since trait_row is None
# Request to see sample characteristics data first
print("Please provide previous output containing:")
print("1. The sample characteristics dictionary")
print("2. Background information about the dataset")
print("3. Any other relevant metadata")
# Set availability flag for gene expression data based on series type
is_gene_available = False  # Only miRNA data based on previous output shown

# Define row indices and conversion functions for clinical features
trait_row = None  # No disease status/RA information found in sample characteristics
age_row = None  # Age information not provided
gender_row = None # Gender information not provided

def convert_trait(x: str) -> int:
    return None  # Not used since trait_row is None

def convert_age(x: str) -> float:
    return None  # Not used since age_row is None
    
def convert_gender(x: str) -> int: 
    return None  # Not used since gender_row is None

# Save initial filtering results
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=(trait_row is not None)
)

# Skip clinical feature extraction since trait_row is None