File size: 15,972 Bytes
d5514d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Rheumatoid_Arthritis"
cohort = "GSE224330"
# Input paths
in_trait_dir = "../DATA/GEO/Rheumatoid_Arthritis"
in_cohort_dir = "../DATA/GEO/Rheumatoid_Arthritis/GSE224330"
# Output paths
out_data_file = "./output/preprocess/3/Rheumatoid_Arthritis/GSE224330.csv"
out_gene_data_file = "./output/preprocess/3/Rheumatoid_Arthritis/gene_data/GSE224330.csv"
out_clinical_data_file = "./output/preprocess/3/Rheumatoid_Arthritis/clinical_data/GSE224330.csv"
json_path = "./output/preprocess/3/Rheumatoid_Arthritis/cohort_info.json"
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")
# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
print(f"Feature: {feature}")
print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# Based on background info mentioning "gene expression profiling", "transcriptomic profile", "whole-genome transcriptomics"
is_gene_available = True
# 2.1 Variable Availability
trait_row = 0 # Can infer RA status from tissue source
age_row = 1 # Age data available in feature 1
gender_row = 2 # Gender data available in feature 2
# 2.2 Data Type Conversion Functions
def convert_trait(x):
if pd.isna(x):
return None
# First 10 samples (GSM7019507-GSM7019516) are from healthy controls based on background info
# Rest are RA patients on different treatments
sample_id = x.name
sample_num = int(sample_id.replace('GSM',''))
if 7019507 <= sample_num <= 7019516:
return 0 # Healthy control
else:
return 1 # RA patient
def convert_age(x):
if pd.isna(x):
return None
# Extract numeric value before 'y'
try:
age = int(x.split(':')[1].strip().replace('y',''))
return age
except:
return None
def convert_gender(x):
if pd.isna(x):
return None
value = x.split(':')[1].strip().lower()
if 'female' in value:
return 0
elif 'male' in value:
return 1
return None
# 3. Save Metadata
is_trait_available = trait_row is not None
_ = validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# 4. Clinical Feature Extraction
selected_clinical_df = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the extracted features
preview = preview_df(selected_clinical_df)
print("Preview of extracted clinical features:")
print(preview)
# Save to CSV
selected_clinical_df.to_csv(out_clinical_data_file)
# The previous step output was not provided. Without it, we cannot properly:
# 1. Determine gene expression data availability
# 2. Identify row numbers for clinical features
# 3. Design appropriate conversion logic based on actual data values
# Therefore, this step cannot be completed until we receive:
# - Background information about the dataset
# - Sample characteristics dictionary showing available clinical data
raise ValueError("Previous step output with dataset information is required to analyze data availability and implement conversion logic")
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)
# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])
# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
lines = []
for i, line in enumerate(f):
if "!series_matrix_table_begin" in line:
# Get the next 5 lines after the marker
for _ in range(5):
lines.append(next(f).strip())
break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
print(line)
# The identifiers starting with "A_19_P" appear to be Agilent microarray probe IDs
# These are not standard human gene symbols and need to be mapped to gene symbols
requires_gene_mapping = True
# Extract gene annotation data
gene_metadata = get_gene_annotation(soft_file)
# Preview the annotation data
print("Column names:", gene_metadata.columns.tolist())
print("\nFirst few rows preview:")
print(preview_df(gene_metadata))
# 1. Extract gene annotation data
gene_metadata = get_gene_annotation(soft_file)
# 2. Extract gene mapping from annotation data
mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='GENE_SYMBOL')
# 3. Apply mapping to convert probe-level data to gene-level data
gene_expression_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_data)
# Save processed gene data
gene_expression_data.to_csv(out_gene_data_file)
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)
# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])
# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
lines = []
for i, line in enumerate(f):
if "!series_matrix_table_begin" in line:
# Get the next 5 lines after the marker
for _ in range(5):
lines.append(next(f).strip())
break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
print(line)
# 1. Extract gene annotation data and observe identifiers
# From previous outputs, we can see:
# - Gene expression data uses identifiers like 'A_19_P00315452'
# - Gene annotation data has matching IDs in the 'ID' column and gene symbols in 'GENE_SYMBOL'
gene_metadata = get_gene_annotation(soft_file)
# 2. Extract gene mapping from annotation data
mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='GENE_SYMBOL')
# 3. Apply mapping to convert probe-level data to gene-level data
gene_expression_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_data)
# Save processed gene data
gene_expression_data.to_csv(out_gene_data_file)
# Print shape before and after mapping to verify the transformation
print("Shape before mapping (probes):", gene_data.shape)
print("Shape after mapping (genes):", gene_expression_data.shape)
print("\nFirst few gene symbols and their expression values:")
print(gene_expression_data.head())
# First get clinical features
selected_clinical_df = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=0, # From trait identification in previous step
convert_trait=lambda x: 1 if not pd.isna(x) else None, # Initially mark all as patients
age_row=1, # From age identification in previous step
convert_age=convert_age,
gender_row=2, # From gender identification in previous step
convert_gender=convert_gender
)
# Set first 10 samples as controls based on background info
sample_cols = selected_clinical_df.columns[:10] # First 10 samples
selected_clinical_df.loc[trait, sample_cols] = 0
# 1. Normalize gene symbols
gene_expression_data = normalize_gene_symbols_in_index(gene_expression_data)
gene_expression_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_expression_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for bias
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Validate and save cohort info
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note="Study examining transcriptome profiles in rheumatoid arthritis."
)
# 6. Save if usable
if is_usable:
linked_data.to_csv(out_data_file)
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)
# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])
# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
lines = []
for i, line in enumerate(f):
if "!series_matrix_table_begin" in line:
# Get the next 5 lines after the marker
for _ in range(5):
lines.append(next(f).strip())
break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
print(line)
# 1. Extract gene annotation data and observe identifiers
# From previous outputs, we can see:
# - Gene expression data uses identifiers like 'A_19_P00315452'
# - Gene annotation data has matching IDs in the 'ID' column and gene symbols in 'GENE_SYMBOL'
gene_metadata = get_gene_annotation(soft_file)
# 2. Extract gene mapping from annotation data
mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='GENE_SYMBOL')
# 3. Apply mapping to convert probe-level data to gene-level data
gene_expression_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_data)
# Save processed gene data
gene_expression_data.to_csv(out_gene_data_file)
# Print shape before and after mapping to verify the transformation
print("Shape before mapping (probes):", gene_data.shape)
print("Shape after mapping (genes):", gene_expression_data.shape)
print("\nFirst few gene symbols and their expression values:")
print(gene_expression_data.head())
# First extract clinical features with proper conversion functions
def convert_trait(x):
if pd.isna(x):
return None
# All samples with tissue:monocytes are trait positive (RA patients) except first 10 which are controls
return 1
def convert_age(x):
if pd.isna(x):
return None
# Extract numeric value after 'age:'
match = re.search(r'age:\s*(\d+)y', str(x))
if match:
return int(match.group(1))
return None
def convert_gender(x):
if pd.isna(x):
return None
# Convert after 'gender:'
if 'female' in str(x).lower():
return 0
elif 'male' in str(x).lower():
return 1
return None
# Extract clinical features
selected_clinical_df = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=0, # Using tissue row
convert_trait=convert_trait,
age_row=1, # Age information is in row 1
convert_age=convert_age,
gender_row=2, # Gender information is in row 2
convert_gender=convert_gender
)
# Set first 10 samples as controls based on background info
sample_cols = selected_clinical_df.columns[:10] # First 10 samples
selected_clinical_df.loc[trait, sample_cols] = 0
# 1. Normalize gene symbols from previous gene mapping result
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for bias
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Validate and save cohort info
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note="Study examining transcriptome profiles in rheumatoid arthritis, with 10 controls and 21 RA patients."
)
# 6. Save if usable
if is_usable:
linked_data.to_csv(out_data_file)
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")
# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
print(f"Feature: {feature}")
print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# The series title and summary indicate gene expression data of monocytes
is_gene_available = True
# 2.1 Data Availability
# For trait: While we know there are healthy controls and RA patients from the series design,
# the treatment information is not shown in the available sample characteristics preview
# So we cannot reliably extract trait information
trait_row = None
# Age is in Feature 1
age_row = 1
# Gender is in Feature 2
gender_row = 2
# 2.2 Data Type Conversion Functions
def convert_trait(x):
# Not needed since trait_row is None
return None
def convert_age(x):
if pd.isna(x):
return None
# Extract number before 'y'
try:
age = int(x.split(': ')[1].replace('y',''))
return age
except:
return None
def convert_gender(x):
if pd.isna(x):
return None
val = x.split(': ')[1].lower()
if 'female' in val:
return 0
elif 'male' in val:
return 1
return None
# 3. Save Metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# 4. Clinical Feature Extraction
# Skip since trait_row is None
# Request to see sample characteristics data first
print("Please provide previous output containing:")
print("1. The sample characteristics dictionary")
print("2. Background information about the dataset")
print("3. Any other relevant metadata")
# Set availability flag for gene expression data based on series type
is_gene_available = False # Only miRNA data based on previous output shown
# Define row indices and conversion functions for clinical features
trait_row = None # No disease status/RA information found in sample characteristics
age_row = None # Age information not provided
gender_row = None # Gender information not provided
def convert_trait(x: str) -> int:
return None # Not used since trait_row is None
def convert_age(x: str) -> float:
return None # Not used since age_row is None
def convert_gender(x: str) -> int:
return None # Not used since gender_row is None
# Save initial filtering results
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None)
)
# Skip clinical feature extraction since trait_row is None |