File size: 5,338 Bytes
d5514d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Rheumatoid_Arthritis"
cohort = "GSE236924"

# Input paths
in_trait_dir = "../DATA/GEO/Rheumatoid_Arthritis"
in_cohort_dir = "../DATA/GEO/Rheumatoid_Arthritis/GSE236924"

# Output paths
out_data_file = "./output/preprocess/3/Rheumatoid_Arthritis/GSE236924.csv"
out_gene_data_file = "./output/preprocess/3/Rheumatoid_Arthritis/gene_data/GSE236924.csv"
out_clinical_data_file = "./output/preprocess/3/Rheumatoid_Arthritis/clinical_data/GSE236924.csv"
json_path = "./output/preprocess/3/Rheumatoid_Arthritis/cohort_info.json"

# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract background info and clinical data 
background_info, clinical_data = get_background_and_clinical_data(matrix_file)

# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)

# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")

# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
    print(f"Feature: {feature}")
    print(f"Values: {values}\n")
# 1. Gene Expression Data
# From background, this is a gene array study of joint tissue comparing RA, OA and control
# So gene expression data should be available
is_gene_available = True

# 2.1 Data Availability
# Disease status (trait) is in row 0
trait_row = 0

# No age data available
age_row = None

# No gender data available  
gender_row = None

# 2.2 Data Type Conversion Functions
def convert_trait(value):
    """Convert trait values to binary (RA=1, non-RA=0)"""
    if not isinstance(value, str):
        return None
    val = value.split(': ')[-1].strip().upper()
    if val == 'RA':
        return 1
    elif val in ['OA', 'CONTROL']:
        return 0
    return None

def convert_age(value):
    """Not used since age data not available"""
    return None

def convert_gender(value):
    """Not used since gender data not available"""
    return None

# 3. Save initial metadata
validate_and_save_cohort_info(is_final=False,
                            cohort=cohort,
                            info_path=json_path,
                            is_gene_available=is_gene_available,
                            is_trait_available=trait_row is not None)

# 4. Extract clinical features since trait data is available
clinical_df = geo_select_clinical_features(clinical_data,
                                         trait=trait,
                                         trait_row=trait_row,
                                         convert_trait=convert_trait)

# Preview the extracted features
print(preview_df(clinical_df))

# Save clinical data
clinical_df.to_csv(out_clinical_data_file)
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)

# Print first 20 row IDs and shape of data to help debug 
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])

# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
    lines = []
    for i, line in enumerate(f):
        if "!series_matrix_table_begin" in line:
            # Get the next 5 lines after the marker
            for _ in range(5):
                lines.append(next(f).strip())
            break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
    print(line)
# Gene identifiers in this GEO dataset appear to be Affymetrix probe IDs rather than gene symbols
# This is indicated by the format like "1007_s_at", "1053_at" etc.
requires_gene_mapping = True
# Extract gene annotation data
gene_metadata = get_gene_annotation(soft_file)

# Preview the annotation data 
print("Column names:", gene_metadata.columns.tolist())
print("\nFirst few rows preview:")
print(preview_df(gene_metadata))
# 1. Gene identifiers are in 'ID' column, gene symbols in 'Gene Symbol' column
# Extract mapping info
mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='Gene Symbol')

# 2. Apply the mapping to convert probe-level measurements to gene-level expression
gene_data = apply_gene_mapping(gene_data, mapping_data)

# 3. Save the gene expression data
gene_data.to_csv(out_gene_data_file)
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data 
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)

# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# 4. Check for bias
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Validate and save cohort info
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path, 
    is_gene_available=True,
    is_trait_available=True,
    is_biased=trait_biased,
    df=linked_data,
    note="Study examining transcriptome profiles in rheumatoid arthritis."
)

# 6. Save if usable
if is_usable:
    linked_data.to_csv(out_data_file)