File size: 3,890 Bytes
d5514d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Rheumatoid_Arthritis"
cohort = "GSE97475"
# Input paths
in_trait_dir = "../DATA/GEO/Rheumatoid_Arthritis"
in_cohort_dir = "../DATA/GEO/Rheumatoid_Arthritis/GSE97475"
# Output paths
out_data_file = "./output/preprocess/3/Rheumatoid_Arthritis/GSE97475.csv"
out_gene_data_file = "./output/preprocess/3/Rheumatoid_Arthritis/gene_data/GSE97475.csv"
out_clinical_data_file = "./output/preprocess/3/Rheumatoid_Arthritis/clinical_data/GSE97475.csv"
json_path = "./output/preprocess/3/Rheumatoid_Arthritis/cohort_info.json"
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")
# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
print(f"Feature: {feature}")
print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# Based on the series title and description, this is a gene expression study that includes PBMCs RNA data
is_gene_available = True
# 2.1 Data Availability
# Trait: Not available since this is healthy control data
trait_row = None
# Age: Available in demographics
age_row = 81
# Gender: Available in demographics
gender_row = 118
# 2.2 Data Type Conversion Functions
def convert_trait(x):
return None
def convert_age(x):
if pd.isna(x):
return None
value = x.split(': ')[1]
try:
return float(value)
except:
return None
def convert_gender(x):
if pd.isna(x):
return None
value = x.split(': ')[1].lower()
if 'female' in value:
return 0
elif 'male' in value:
return 1
return None
# 3. Save Metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available)
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)
# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])
# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
lines = []
for i, line in enumerate(f):
if "!series_matrix_table_begin" in line:
# Get the next 5 lines after the marker
for _ in range(5):
lines.append(next(f).strip())
break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
print(line)
requires_gene_mapping = False
# 1. Normalize gene symbols and save
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)
# Since trait_row is None (no trait data available), skip clinical data processing
# and data linking. Instead, just validate and save the cohort info.
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=False, # We know trait is not available
is_biased=None, # No trait to check for bias
df=None,
note="Dataset contains gene expression profiles from healthy hepatitis B vaccine recipients, but lacks disease trait for comparison."
) |