File size: 7,103 Bytes
d5514d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Sarcoma"
cohort = "GSE133228"
# Input paths
in_trait_dir = "../DATA/GEO/Sarcoma"
in_cohort_dir = "../DATA/GEO/Sarcoma/GSE133228"
# Output paths
out_data_file = "./output/preprocess/3/Sarcoma/GSE133228.csv"
out_gene_data_file = "./output/preprocess/3/Sarcoma/gene_data/GSE133228.csv"
out_clinical_data_file = "./output/preprocess/3/Sarcoma/clinical_data/GSE133228.csv"
json_path = "./output/preprocess/3/Sarcoma/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
print(f"\n{row}:")
print(values)
# 1. Gene Expression Data Availability
# Based on the background info, this seems to be a SuperSeries focusing on molecular mechanisms
# and doesn't directly contain gene expression data
is_gene_available = False
# 2. Variable Availability and Data Type Conversion
# 2.1 Data Availability
trait_row = 2 # "tumor type" row
age_row = 1 # "age" row
gender_row = 0 # "gender" row
# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> int:
"""Convert tumor type to binary"""
if not value or ':' not in value:
return None
value = value.split(':')[1].strip().lower()
# All samples are primary tumor, convert to 1
if 'primary tumor' in value:
return 1
return None
def convert_age(value: str) -> float:
"""Convert age to continuous numeric value"""
if not value or ':' not in value:
return None
try:
age = float(value.split(':')[1].strip())
return age
except:
return None
def convert_gender(value: str) -> int:
"""Convert gender to binary (0=female, 1=male)"""
if not value or ':' not in value:
return None
value = value.split(':')[1].strip().lower()
if value == 'female':
return 0
elif value == 'male':
return 1
return None
# 3. Save Metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available)
# 4. Clinical Feature Extraction
if trait_row is not None:
clinical_df = geo_select_clinical_features(clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender)
# Preview the processed data
preview = preview_df(clinical_df)
print("Preview of processed clinical data:")
print(preview)
# Save to CSV
clinical_df.to_csv(out_clinical_data_file)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Examine data structure
print("Data structure and head:")
print(genetic_data.head())
print("\nShape:", genetic_data.shape)
print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])
# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# Review gene identifiers - appear to be custom probe IDs (ending in "_at")
# rather than standard human gene symbols
requires_gene_mapping = True
# Extract gene annotation data
gene_annotation = get_gene_annotation(soft_file_path)
# Preview column names and values from annotation dataframe
print("Gene annotation DataFrame preview:")
print(preview_df(gene_annotation))
# First, let's see all columns in the annotation data to find gene symbols
print("All columns in gene annotation:")
print(gene_annotation.columns)
# Extract mapping between probe IDs and gene symbols
# Use "GB_ACC" or "Gene Symbol" column if available, otherwise need to extract from Description
mapping_df = gene_annotation[['ID', 'Description']].copy()
mapping_df['Gene'] = mapping_df['Description'].str.extract(r'\((.*?)\)', expand=False) # Extract text in parentheses
mapping_df = mapping_df[['ID', 'Gene']].dropna()
# Convert probe measurements to gene expression values
gene_data = apply_gene_mapping(genetic_data, mapping_df)
# Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
# Preview results
print("\nShape of gene expression data:", gene_data.shape)
print("\nFirst few rows of gene expression data:")
print(gene_data.head())
print("\nFirst few gene symbols:")
print(list(gene_data.index)[:10])
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
print("Gene data shape after normalization:", gene_data.shape)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# Load clinical data previously processed
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
print("\nClinical data shape:", selected_clinical_df.shape)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)
print("\nLinked data shape:", linked_data.shape)
# 3. Handle missing values systematically
if trait in linked_data.columns:
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for bias in trait and demographic features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and information saving
note = "This dataset contains gene expression data from myxoid liposarcoma samples, with metastasis status as the trait."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note=note
)
# 6. Save linked data only if usable and not biased
if is_usable and not trait_biased:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file)
else:
# Handle case where clinical features were not properly extracted
note = "Failed to extract clinical trait information from sample characteristics."
validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=False,
is_biased=None,
df=None,
note=note
) |