File size: 6,302 Bytes
d5514d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Sarcoma"
cohort = "GSE159848"

# Input paths
in_trait_dir = "../DATA/GEO/Sarcoma"
in_cohort_dir = "../DATA/GEO/Sarcoma/GSE159848"

# Output paths
out_data_file = "./output/preprocess/3/Sarcoma/GSE159848.csv"
out_gene_data_file = "./output/preprocess/3/Sarcoma/gene_data/GSE159848.csv"
out_clinical_data_file = "./output/preprocess/3/Sarcoma/clinical_data/GSE159848.csv"
json_path = "./output/preprocess/3/Sarcoma/cohort_info.json"

# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")

# Get dictionary of unique values per row 
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
    print(f"\n{row}:")
    print(values)
# 1. Gene Expression Data Availability
# The dataset uses "Agilent-014850 Whole Human Genome Microarray", so it contains gene expression data
is_gene_available = True

# 2. Variable Availability and Row Identification
trait_row = 3  # metastasis data is available in row 3
age_row = 1    # age data is available in row 1 
gender_row = 0  # gender data is available in row 0

# Define conversion functions
def convert_trait(value: str) -> Optional[float]:
    """Convert metastasis status to binary: 0 = no metastasis, 1 = has metastasis"""
    if not value or 'metastasis:' not in value:
        return None
    try:
        return float(value.split(': ')[1])
    except:
        return None

def convert_age(value: str) -> Optional[float]:
    """Convert age to continuous values"""
    if not value or 'age:' not in value:
        return None
    try:
        return float(value.split(': ')[1])
    except:
        return None

def convert_gender(value: str) -> Optional[float]:
    """Convert gender to binary: 0 = female, 1 = male"""
    if not value or 'Sex:' not in value:
        return None
    gender = value.split(': ')[1].strip().upper()
    if gender == 'F':
        return 0.0
    elif gender == 'M':
        return 1.0
    return None

# 3. Save metadata
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=trait_row is not None
)

# 4. Extract clinical features 
selected_clinical_df = geo_select_clinical_features(
    clinical_df=clinical_data,
    trait=trait,
    trait_row=trait_row,
    convert_trait=convert_trait,
    age_row=age_row,
    convert_age=convert_age,
    gender_row=gender_row,
    convert_gender=convert_gender
)

# Preview the data
print(preview_df(selected_clinical_df))

# Save clinical data
selected_clinical_df.to_csv(out_clinical_data_file)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)

# Examine data structure
print("Data structure and head:")
print(genetic_data.head())

print("\nShape:", genetic_data.shape)

print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])

# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# The identifiers start with 'A_23_P', which appear to be Agilent probe IDs rather than standard human gene symbols
# These need to be mapped to their corresponding gene symbols for analysis
requires_gene_mapping = True
# Extract gene annotation data
gene_annotation = get_gene_annotation(soft_file_path)

# Preview column names and values from annotation dataframe
print("Gene annotation DataFrame preview:")
print(preview_df(gene_annotation))
# 1. From the preview, we can see that 'ID' contains probe identifiers matching gene expression data,
# and 'GENE_SYMBOL' contains the gene symbols
probe_col = 'ID'
gene_col = 'GENE_SYMBOL'

# 2. Get mapping between probe IDs and gene symbols
gene_mapping = get_gene_mapping(gene_annotation, probe_col, gene_col)

# 3. Convert probe-level expression to gene-level expression
gene_data = apply_gene_mapping(genetic_data, gene_mapping)

# Save gene expression data to file
gene_data.to_csv(out_gene_data_file)

# Preview result
print("\nGene expression data preview:")
print(preview_df(gene_data))
print("\nShape:", gene_data.shape)
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
print("Gene data shape after normalization:", gene_data.shape)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) 
gene_data.to_csv(out_gene_data_file)

# Load clinical data previously processed
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
print("\nClinical data shape:", selected_clinical_df.shape)

# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)
print("\nLinked data shape:", linked_data.shape)

# 3. Handle missing values systematically  
if trait in linked_data.columns:
    linked_data = handle_missing_values(linked_data, trait)

    # 4. Check for bias in trait and demographic features
    trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

    # 5. Final validation and information saving
    note = "This dataset contains gene expression data from myxoid liposarcoma samples, with metastasis status as the trait."
    is_usable = validate_and_save_cohort_info(
        is_final=True,
        cohort=cohort, 
        info_path=json_path,
        is_gene_available=True,
        is_trait_available=True,
        is_biased=trait_biased,
        df=linked_data,
        note=note
    )

    # 6. Save linked data only if usable 
    if is_usable:
        os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
        linked_data.to_csv(out_data_file)
else:
    # Handle case where clinical features were not properly extracted
    note = "Failed to extract clinical trait information from sample characteristics."
    validate_and_save_cohort_info(
        is_final=True,
        cohort=cohort,
        info_path=json_path, 
        is_gene_available=True,
        is_trait_available=False,
        is_biased=None,
        df=None,
        note=note
    )