File size: 6,379 Bytes
d5514d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Sarcoma"
cohort = "GSE162785"

# Input paths
in_trait_dir = "../DATA/GEO/Sarcoma"
in_cohort_dir = "../DATA/GEO/Sarcoma/GSE162785"

# Output paths
out_data_file = "./output/preprocess/3/Sarcoma/GSE162785.csv"
out_gene_data_file = "./output/preprocess/3/Sarcoma/gene_data/GSE162785.csv"
out_clinical_data_file = "./output/preprocess/3/Sarcoma/clinical_data/GSE162785.csv"
json_path = "./output/preprocess/3/Sarcoma/cohort_info.json"

# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")

# Get dictionary of unique values per row 
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
    print(f"\n{row}:")
    print(values)
# 1. Gene expression data is likely available since this is a microarray analysis
is_gene_available = True

# 2. Variable availability and data type conversion
trait_row = 0 # cell line field contains information about Ewing Sarcoma cell lines
age_row = None # Age data not available 
gender_row = None # Gender data not available

def convert_trait(x):
    # Ewing Sarcoma (ES) cell lines indicate positive trait status
    # Extract cell line name after colon
    if not x or ':' not in x:
        return None
    cell_line = x.split(': ')[1].strip().upper()
    if cell_line in ['A673', 'CHLA-10', 'EW7', 'SK-N-MC']: 
        return 1 # ES cell line
    return 0 # Not ES cell line

def convert_age(x):
    return None # Not used since age data unavailable

def convert_gender(x):
    return None # Not used since gender data unavailable

# 3. Save metadata
_ = validate_and_save_cohort_info(is_final=False, 
                                 cohort=cohort,
                                 info_path=json_path,
                                 is_gene_available=is_gene_available,
                                 is_trait_available=trait_row is not None)

# 4. Extract clinical features since trait_row is not None
clinical_features = geo_select_clinical_features(clinical_df=clinical_data,
                                               trait=trait,
                                               trait_row=trait_row,
                                               convert_trait=convert_trait)

# Preview the extracted features
print(preview_df(clinical_features))

# Save clinical data
clinical_features.to_csv(out_clinical_data_file)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)

# Examine data structure
print("Data structure and head:")
print(genetic_data.head())

print("\nShape:", genetic_data.shape)

print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])

# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# The row IDs (7892501, 7892502, etc) appear to be probe IDs from a microarray platform
# rather than human gene symbols like BRCA1, TP53, etc.
# These numeric IDs need to be mapped to their corresponding gene symbols
requires_gene_mapping = True
# Extract gene annotation data
gene_annotation = get_gene_annotation(soft_file_path)

# Preview annotation data
print("Column names and first few values:")
print(preview_df(gene_annotation))

# Based on the presence of "Homo sapiens" in the annotations, this is human data
# The gene_assignment column appears to contain probe-to-gene mappings we need
print("\nVerified human gene expression data with probe-to-gene mappings available.")
# The 'ID' column in gene annotations contains probe IDs matching the gene expression data indices
# The 'gene_assignment' column contains gene symbol information
# Extract mapping relationship between probe IDs and gene symbols, extracting gene symbols from the complex annotations
mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='gene_assignment')

# Apply the mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(genetic_data, mapping_data)

# Normalize/standardize gene symbols 
gene_data = normalize_gene_symbols_in_index(gene_data)

# Print shape to verify the conversion
print("\nGene expression data shape after mapping:", gene_data.shape)
print("\nFirst few gene symbols:", list(gene_data.index)[:10])
# 1. Save normalized gene data (already normalized in previous step)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
print("Gene data shape:", gene_data.shape)

# Load clinical data previously processed
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
print("\nClinical data shape:", selected_clinical_df.shape)

# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)
print("\nLinked data shape:", linked_data.shape)

# 3. Handle missing values systematically
if trait in linked_data.columns:
    linked_data = handle_missing_values(linked_data, trait)

    # 4. Check for bias in trait and demographic features
    trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

    # 5. Final validation and information saving
    note = "This cohort consists entirely of Ewing sarcoma cell lines according to the background information."
    is_usable = validate_and_save_cohort_info(
        is_final=True,
        cohort=cohort, 
        info_path=json_path,
        is_gene_available=True,
        is_trait_available=True,
        is_biased=trait_biased,
        df=linked_data,
        note=note
    )

    # 6. Save linked data only if usable 
    if is_usable:
        os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
        linked_data.to_csv(out_data_file)
else:
    # Handle case where clinical features were not properly extracted
    note = "Failed to extract clinical trait information from sample characteristics."
    validate_and_save_cohort_info(
        is_final=True,
        cohort=cohort,
        info_path=json_path, 
        is_gene_available=True,
        is_trait_available=False,
        is_biased=None,
        df=None,
        note=note
    )