File size: 6,379 Bytes
d5514d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Sarcoma"
cohort = "GSE162785"
# Input paths
in_trait_dir = "../DATA/GEO/Sarcoma"
in_cohort_dir = "../DATA/GEO/Sarcoma/GSE162785"
# Output paths
out_data_file = "./output/preprocess/3/Sarcoma/GSE162785.csv"
out_gene_data_file = "./output/preprocess/3/Sarcoma/gene_data/GSE162785.csv"
out_clinical_data_file = "./output/preprocess/3/Sarcoma/clinical_data/GSE162785.csv"
json_path = "./output/preprocess/3/Sarcoma/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
print(f"\n{row}:")
print(values)
# 1. Gene expression data is likely available since this is a microarray analysis
is_gene_available = True
# 2. Variable availability and data type conversion
trait_row = 0 # cell line field contains information about Ewing Sarcoma cell lines
age_row = None # Age data not available
gender_row = None # Gender data not available
def convert_trait(x):
# Ewing Sarcoma (ES) cell lines indicate positive trait status
# Extract cell line name after colon
if not x or ':' not in x:
return None
cell_line = x.split(': ')[1].strip().upper()
if cell_line in ['A673', 'CHLA-10', 'EW7', 'SK-N-MC']:
return 1 # ES cell line
return 0 # Not ES cell line
def convert_age(x):
return None # Not used since age data unavailable
def convert_gender(x):
return None # Not used since gender data unavailable
# 3. Save metadata
_ = validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=trait_row is not None)
# 4. Extract clinical features since trait_row is not None
clinical_features = geo_select_clinical_features(clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait)
# Preview the extracted features
print(preview_df(clinical_features))
# Save clinical data
clinical_features.to_csv(out_clinical_data_file)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Examine data structure
print("Data structure and head:")
print(genetic_data.head())
print("\nShape:", genetic_data.shape)
print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])
# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# The row IDs (7892501, 7892502, etc) appear to be probe IDs from a microarray platform
# rather than human gene symbols like BRCA1, TP53, etc.
# These numeric IDs need to be mapped to their corresponding gene symbols
requires_gene_mapping = True
# Extract gene annotation data
gene_annotation = get_gene_annotation(soft_file_path)
# Preview annotation data
print("Column names and first few values:")
print(preview_df(gene_annotation))
# Based on the presence of "Homo sapiens" in the annotations, this is human data
# The gene_assignment column appears to contain probe-to-gene mappings we need
print("\nVerified human gene expression data with probe-to-gene mappings available.")
# The 'ID' column in gene annotations contains probe IDs matching the gene expression data indices
# The 'gene_assignment' column contains gene symbol information
# Extract mapping relationship between probe IDs and gene symbols, extracting gene symbols from the complex annotations
mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='gene_assignment')
# Apply the mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(genetic_data, mapping_data)
# Normalize/standardize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
# Print shape to verify the conversion
print("\nGene expression data shape after mapping:", gene_data.shape)
print("\nFirst few gene symbols:", list(gene_data.index)[:10])
# 1. Save normalized gene data (already normalized in previous step)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
print("Gene data shape:", gene_data.shape)
# Load clinical data previously processed
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
print("\nClinical data shape:", selected_clinical_df.shape)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)
print("\nLinked data shape:", linked_data.shape)
# 3. Handle missing values systematically
if trait in linked_data.columns:
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for bias in trait and demographic features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and information saving
note = "This cohort consists entirely of Ewing sarcoma cell lines according to the background information."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note=note
)
# 6. Save linked data only if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file)
else:
# Handle case where clinical features were not properly extracted
note = "Failed to extract clinical trait information from sample characteristics."
validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=False,
is_biased=None,
df=None,
note=note
) |