File size: 6,602 Bytes
d5514d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Sarcoma"
cohort = "GSE162789"

# Input paths
in_trait_dir = "../DATA/GEO/Sarcoma"
in_cohort_dir = "../DATA/GEO/Sarcoma/GSE162789"

# Output paths
out_data_file = "./output/preprocess/3/Sarcoma/GSE162789.csv"
out_gene_data_file = "./output/preprocess/3/Sarcoma/gene_data/GSE162789.csv"
out_clinical_data_file = "./output/preprocess/3/Sarcoma/clinical_data/GSE162789.csv"
json_path = "./output/preprocess/3/Sarcoma/cohort_info.json"

# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")

# Get dictionary of unique values per row 
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
    print(f"\n{row}:")
    print(values)
# Gene expression data availability
# Looking at Series title and sample characteristics, this appears to be gene expression data from Ewing sarcoma samples
is_gene_available = True

# Clinical feature availability and conversion functions
# Sample characteristics shows Ewing sarcoma patient data with age and gender info embedded
trait_row = 0  # The trait (sarcoma) info is in the 'soft tissue' entries

# Age can be extracted from the same entries as trait
age_row = 0  

# Gender can also be extracted from the same entries
gender_row = 0

def convert_trait(value: str) -> int:
    # Binary: 1 for Ewing sarcoma, 0 for other/control
    if pd.isna(value):
        return None
    value = value.split(': ')[-1].lower()
    if 'ewing sarcoma' in value:
        return 1
    elif 'cell line' in value:
        return None  # Exclude cell lines
    return 0

def convert_age(value: str) -> float:
    # Continuous: Extract age in years 
    if pd.isna(value):
        return None
    value = value.split(': ')[-1].lower()
    if 'cell line' in value:
        return None
    try:
        # Extract number before "year"
        age = float(re.search(r'(\d+)\s*year', value).group(1))
        return age
    except:
        return None

def convert_gender(value: str) -> int:
    # Binary: 0 for female, 1 for male
    if pd.isna(value):
        return None
    value = value.split(': ')[-1].lower()
    if 'cell line' in value:
        return None
    if 'female' in value:
        return 0
    elif 'male' in value:
        return 1
    return None

# Validate and save cohort info
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=trait_row is not None
)

# Extract clinical features if trait data is available
if trait_row is not None:
    clinical_features = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age, 
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    
    # Preview the extracted features
    print("Preview of extracted clinical features:")
    print(preview_df(clinical_features))
    
    # Save to CSV
    clinical_features.to_csv(out_clinical_data_file)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)

# Examine data structure
print("Data structure and head:")
print(genetic_data.head())

print("\nShape:", genetic_data.shape)

print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])

# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# The gene identifiers are probe IDs from the Affymetrix microarray platform,
# not human gene symbols. They need to be mapped to gene symbols for analysis.
requires_gene_mapping = True
# Extract gene annotation data
gene_annotation = get_gene_annotation(soft_file_path)

# Preview annotation structure
print("Column names and first few values:")
print(preview_df(gene_annotation))
print("\nGene annotation information available in 'gene_assignment' column.")
# Get gene mapping
mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='gene_assignment')

# Apply gene mapping to expression data
gene_data = apply_gene_mapping(genetic_data, mapping_data)

# Save gene expression data 
gene_data.to_csv(out_gene_data_file)

# Preview gene data
print("Preview of gene expression data:")
print(preview_df(gene_data))
# Reload clinical data that was previously processed
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
print("Clinical data shape:", selected_clinical_df.shape)

# 1. Normalize gene symbols 
genetic_data = pd.read_csv(out_gene_data_file, index_col=0)
genetic_data = normalize_gene_symbols_in_index(genetic_data)
genetic_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
print("\nLinked data shape:", linked_data.shape)

# 3. Handle missing values systematically
if trait in linked_data.columns:
    linked_data = handle_missing_values(linked_data, trait)

    # 4. Check for bias in trait and demographic features
    trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

    # 5. Final validation and information saving
    note = "This dataset studies the paired tumor biopsies before and after treatment. The derived trait value 1 represents responders (PR = partial response) and 0 represents non-responders (SD = stable disease, PD = progressive disease)."
    is_usable = validate_and_save_cohort_info(
        is_final=True,
        cohort=cohort, 
        info_path=json_path,
        is_gene_available=True,
        is_trait_available=True,
        is_biased=trait_biased,
        df=linked_data,
        note=note
    )

    # 6. Save linked data only if usable 
    if is_usable:
        os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
        linked_data.to_csv(out_data_file)
else:
    # Handle case where clinical features were not properly extracted
    note = "Failed to extract clinical trait information from sample characteristics."
    validate_and_save_cohort_info(
        is_final=True,
        cohort=cohort,
        info_path=json_path, 
        is_gene_available=True,
        is_trait_available=False,
        is_biased=None,
        df=None,
        note=note
    )