File size: 6,602 Bytes
d5514d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Sarcoma"
cohort = "GSE162789"
# Input paths
in_trait_dir = "../DATA/GEO/Sarcoma"
in_cohort_dir = "../DATA/GEO/Sarcoma/GSE162789"
# Output paths
out_data_file = "./output/preprocess/3/Sarcoma/GSE162789.csv"
out_gene_data_file = "./output/preprocess/3/Sarcoma/gene_data/GSE162789.csv"
out_clinical_data_file = "./output/preprocess/3/Sarcoma/clinical_data/GSE162789.csv"
json_path = "./output/preprocess/3/Sarcoma/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
print(f"\n{row}:")
print(values)
# Gene expression data availability
# Looking at Series title and sample characteristics, this appears to be gene expression data from Ewing sarcoma samples
is_gene_available = True
# Clinical feature availability and conversion functions
# Sample characteristics shows Ewing sarcoma patient data with age and gender info embedded
trait_row = 0 # The trait (sarcoma) info is in the 'soft tissue' entries
# Age can be extracted from the same entries as trait
age_row = 0
# Gender can also be extracted from the same entries
gender_row = 0
def convert_trait(value: str) -> int:
# Binary: 1 for Ewing sarcoma, 0 for other/control
if pd.isna(value):
return None
value = value.split(': ')[-1].lower()
if 'ewing sarcoma' in value:
return 1
elif 'cell line' in value:
return None # Exclude cell lines
return 0
def convert_age(value: str) -> float:
# Continuous: Extract age in years
if pd.isna(value):
return None
value = value.split(': ')[-1].lower()
if 'cell line' in value:
return None
try:
# Extract number before "year"
age = float(re.search(r'(\d+)\s*year', value).group(1))
return age
except:
return None
def convert_gender(value: str) -> int:
# Binary: 0 for female, 1 for male
if pd.isna(value):
return None
value = value.split(': ')[-1].lower()
if 'cell line' in value:
return None
if 'female' in value:
return 0
elif 'male' in value:
return 1
return None
# Validate and save cohort info
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=trait_row is not None
)
# Extract clinical features if trait data is available
if trait_row is not None:
clinical_features = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the extracted features
print("Preview of extracted clinical features:")
print(preview_df(clinical_features))
# Save to CSV
clinical_features.to_csv(out_clinical_data_file)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Examine data structure
print("Data structure and head:")
print(genetic_data.head())
print("\nShape:", genetic_data.shape)
print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])
# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# The gene identifiers are probe IDs from the Affymetrix microarray platform,
# not human gene symbols. They need to be mapped to gene symbols for analysis.
requires_gene_mapping = True
# Extract gene annotation data
gene_annotation = get_gene_annotation(soft_file_path)
# Preview annotation structure
print("Column names and first few values:")
print(preview_df(gene_annotation))
print("\nGene annotation information available in 'gene_assignment' column.")
# Get gene mapping
mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='gene_assignment')
# Apply gene mapping to expression data
gene_data = apply_gene_mapping(genetic_data, mapping_data)
# Save gene expression data
gene_data.to_csv(out_gene_data_file)
# Preview gene data
print("Preview of gene expression data:")
print(preview_df(gene_data))
# Reload clinical data that was previously processed
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
print("Clinical data shape:", selected_clinical_df.shape)
# 1. Normalize gene symbols
genetic_data = pd.read_csv(out_gene_data_file, index_col=0)
genetic_data = normalize_gene_symbols_in_index(genetic_data)
genetic_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
print("\nLinked data shape:", linked_data.shape)
# 3. Handle missing values systematically
if trait in linked_data.columns:
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for bias in trait and demographic features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and information saving
note = "This dataset studies the paired tumor biopsies before and after treatment. The derived trait value 1 represents responders (PR = partial response) and 0 represents non-responders (SD = stable disease, PD = progressive disease)."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note=note
)
# 6. Save linked data only if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file)
else:
# Handle case where clinical features were not properly extracted
note = "Failed to extract clinical trait information from sample characteristics."
validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=False,
is_biased=None,
df=None,
note=note
) |