File size: 6,230 Bytes
d5514d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Schizophrenia"
cohort = "GSE119288"

# Input paths
in_trait_dir = "../DATA/GEO/Schizophrenia"
in_cohort_dir = "../DATA/GEO/Schizophrenia/GSE119288"

# Output paths
out_data_file = "./output/preprocess/3/Schizophrenia/GSE119288.csv"
out_gene_data_file = "./output/preprocess/3/Schizophrenia/gene_data/GSE119288.csv"
out_clinical_data_file = "./output/preprocess/3/Schizophrenia/clinical_data/GSE119288.csv"
json_path = "./output/preprocess/3/Schizophrenia/cohort_info.json"

# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")

# Get dictionary of unique values per row 
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
    print(f"\n{row}:")
    print(values)
# 1. Gene Expression Data Availability
# Based on the background info, this dataset contains gene expression data from hiPSC-derived NPCs
is_gene_available = True

# 2. Variable Availability and Data Type Conversion
# Looking at cell IDs in row 1, we can infer patient/control status
trait_row = 1
age_row = None  # No age information available
gender_row = None  # No gender information available

def convert_trait(value: str) -> Optional[int]:
    """Convert cell ID to binary trait status"""
    if not isinstance(value, str):
        return None
    # Extract value after colon and strip whitespace
    value = value.split(':')[1].strip()
    # VCAP appears to be a cancer cell line control
    # Numbered IDs are patient-derived cells
    if value == 'VCAP':
        return 0  # Control
    elif value.replace('-', '').replace('.', '').replace('A', '').isdigit():
        return 1  # Patient
    return None

def convert_age(value: str) -> Optional[float]:
    """Convert age value"""
    # No age data available
    return None

def convert_gender(value: str) -> Optional[int]:
    """Convert gender value"""
    # No gender data available
    return None

# 3. Save initial metadata
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=trait_row is not None
)

# 4. Extract clinical features
if trait_row is not None:
    selected_clinical_df = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age,
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    
    # Preview the data
    preview = preview_df(selected_clinical_df)
    print("Preview of clinical data:")
    print(preview)
    
    # Save to CSV
    selected_clinical_df.to_csv(out_clinical_data_file)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)

# Examine data structure
print("Data structure and head:")
print(genetic_data.head())

print("\nShape:", genetic_data.shape)

print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])

# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
requires_gene_mapping = True
# Extract gene annotation data with additional prefixes to catch platform annotations
prefixes = ['^', '!', '#', '!platform_table_begin']
gene_annotation = get_gene_annotation(soft_file_path)

# Look for platform annotation section
platform_annotation = None
with gzip.open(soft_file_path, 'rt') as f:
    content = f.read()
    platform_sections = re.split('!platform_table_begin|!platform_table_end', content)
    if len(platform_sections) > 1:
        platform_data = platform_sections[1].strip()
        platform_annotation = pd.read_csv(io.StringIO(platform_data), sep='\t')

if platform_annotation is not None:
    print("Platform annotation DataFrame preview:")
    print(preview_df(platform_annotation))
else:
    print("Platform annotation not found in SOFT file.")
    print("\nBasic gene annotation DataFrame preview:")
    print(preview_df(gene_annotation))
# Since proper gene mapping data is not available, preserve probe-level data for now
gene_data = genetic_data

# Save the probe expression data
gene_data.to_csv(out_gene_data_file)

# Preview the output data
print("Preview of gene expression data:")
print(preview_df(gene_data))
# 1. Skip gene symbol normalization since we're working with probe IDs
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
print("\nGene data shape (probe-level):", gene_data.shape)

# Load clinical data previously processed
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
print("\nClinical data shape:", selected_clinical_df.shape)

# 2. Link clinical and genetic data using probe-level data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)
print("\nLinked data shape:", linked_data.shape)

# 3. Handle missing values systematically  
if trait in linked_data.columns:
    linked_data = handle_missing_values(linked_data, trait)

    # 4. Check for bias in trait and demographic features
    trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

    # 5. Final validation and information saving
    note = "This dataset contains probe-level expression data since platform-specific gene mapping was not available. The data was preprocessed successfully but remains at probe level rather than gene level."
    is_usable = validate_and_save_cohort_info(
        is_final=True,
        cohort=cohort, 
        info_path=json_path,
        is_gene_available=True,
        is_trait_available=True,
        is_biased=trait_biased,
        df=linked_data,
        note=note
    )

    # 6. Save linked data only if usable and not biased
    if is_usable and not trait_biased:
        os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
        linked_data.to_csv(out_data_file)