File size: 6,230 Bytes
d5514d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Schizophrenia"
cohort = "GSE119288"
# Input paths
in_trait_dir = "../DATA/GEO/Schizophrenia"
in_cohort_dir = "../DATA/GEO/Schizophrenia/GSE119288"
# Output paths
out_data_file = "./output/preprocess/3/Schizophrenia/GSE119288.csv"
out_gene_data_file = "./output/preprocess/3/Schizophrenia/gene_data/GSE119288.csv"
out_clinical_data_file = "./output/preprocess/3/Schizophrenia/clinical_data/GSE119288.csv"
json_path = "./output/preprocess/3/Schizophrenia/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
print(f"\n{row}:")
print(values)
# 1. Gene Expression Data Availability
# Based on the background info, this dataset contains gene expression data from hiPSC-derived NPCs
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# Looking at cell IDs in row 1, we can infer patient/control status
trait_row = 1
age_row = None # No age information available
gender_row = None # No gender information available
def convert_trait(value: str) -> Optional[int]:
"""Convert cell ID to binary trait status"""
if not isinstance(value, str):
return None
# Extract value after colon and strip whitespace
value = value.split(':')[1].strip()
# VCAP appears to be a cancer cell line control
# Numbered IDs are patient-derived cells
if value == 'VCAP':
return 0 # Control
elif value.replace('-', '').replace('.', '').replace('A', '').isdigit():
return 1 # Patient
return None
def convert_age(value: str) -> Optional[float]:
"""Convert age value"""
# No age data available
return None
def convert_gender(value: str) -> Optional[int]:
"""Convert gender value"""
# No gender data available
return None
# 3. Save initial metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=trait_row is not None
)
# 4. Extract clinical features
if trait_row is not None:
selected_clinical_df = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the data
preview = preview_df(selected_clinical_df)
print("Preview of clinical data:")
print(preview)
# Save to CSV
selected_clinical_df.to_csv(out_clinical_data_file)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Examine data structure
print("Data structure and head:")
print(genetic_data.head())
print("\nShape:", genetic_data.shape)
print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])
# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
requires_gene_mapping = True
# Extract gene annotation data with additional prefixes to catch platform annotations
prefixes = ['^', '!', '#', '!platform_table_begin']
gene_annotation = get_gene_annotation(soft_file_path)
# Look for platform annotation section
platform_annotation = None
with gzip.open(soft_file_path, 'rt') as f:
content = f.read()
platform_sections = re.split('!platform_table_begin|!platform_table_end', content)
if len(platform_sections) > 1:
platform_data = platform_sections[1].strip()
platform_annotation = pd.read_csv(io.StringIO(platform_data), sep='\t')
if platform_annotation is not None:
print("Platform annotation DataFrame preview:")
print(preview_df(platform_annotation))
else:
print("Platform annotation not found in SOFT file.")
print("\nBasic gene annotation DataFrame preview:")
print(preview_df(gene_annotation))
# Since proper gene mapping data is not available, preserve probe-level data for now
gene_data = genetic_data
# Save the probe expression data
gene_data.to_csv(out_gene_data_file)
# Preview the output data
print("Preview of gene expression data:")
print(preview_df(gene_data))
# 1. Skip gene symbol normalization since we're working with probe IDs
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
print("\nGene data shape (probe-level):", gene_data.shape)
# Load clinical data previously processed
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
print("\nClinical data shape:", selected_clinical_df.shape)
# 2. Link clinical and genetic data using probe-level data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)
print("\nLinked data shape:", linked_data.shape)
# 3. Handle missing values systematically
if trait in linked_data.columns:
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for bias in trait and demographic features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and information saving
note = "This dataset contains probe-level expression data since platform-specific gene mapping was not available. The data was preprocessed successfully but remains at probe level rather than gene level."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note=note
)
# 6. Save linked data only if usable and not biased
if is_usable and not trait_biased:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file) |