File size: 9,572 Bytes
d5514d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Schizophrenia"
cohort = "GSE119289"

# Input paths
in_trait_dir = "../DATA/GEO/Schizophrenia"
in_cohort_dir = "../DATA/GEO/Schizophrenia/GSE119289"

# Output paths
out_data_file = "./output/preprocess/3/Schizophrenia/GSE119289.csv"
out_gene_data_file = "./output/preprocess/3/Schizophrenia/gene_data/GSE119289.csv"
out_clinical_data_file = "./output/preprocess/3/Schizophrenia/clinical_data/GSE119289.csv"
json_path = "./output/preprocess/3/Schizophrenia/cohort_info.json"

# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")

# Get dictionary of unique values per row 
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
    print(f"\n{row}:")
    print(values)
# 1. Gene Expression Data Availability
# Yes, this dataset contains drug screening transcriptional data from neural progenitor cells
is_gene_available = True

# 2.1 Data Availability
# Based on the cell IDs in row 1, we can identify control vs SZ samples
trait_row = 1  
# Age and gender not available in the data
age_row = None
gender_row = None

# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> int:
    """Convert cell ID to binary trait (0: control, 1: schizophrenia)"""
    if pd.isna(value):
        return None
    # Extract cell ID after colon
    cell_id = value.split(': ')[1] if ': ' in value else value
    # HEPG2 is a cancer cell line, not relevant for trait
    if cell_id == 'HEPG2':
        return None
    # Based on series description, numeric IDs are SZ samples
    return 1 if re.match(r'\d{3,4}-\d-\d', cell_id) else 0

def convert_age(value: str) -> float:
    """Convert age string to float (not used as age not available)"""
    return None

def convert_gender(value: str) -> int:
    """Convert gender string to binary (not used as gender not available)"""
    return None

# 3. Save metadata
# is_trait_available is True since trait_row is not None
validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, 
                            is_gene_available=is_gene_available, 
                            is_trait_available=True)

# 4. Extract clinical features
selected_clinical = geo_select_clinical_features(clinical_data, trait, trait_row,
                                               convert_trait, age_row, convert_age,
                                               gender_row, convert_gender)

# Preview the extracted features
print("Preview of extracted clinical features:")
print(preview_df(selected_clinical))

# Save clinical data
selected_clinical.to_csv(out_clinical_data_file)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)

# Examine data structure
print("Data structure and head:")
print(genetic_data.head())

print("\nShape:", genetic_data.shape)

print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])

# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# These appear to be Affymetrix probe IDs (e.g. '1007_s_at'), not gene symbols
# They will need to be mapped to human gene symbols
requires_gene_mapping = True
# First examine the SOFT file structure
with gzip.open(soft_file_path, 'rt') as f:
    header = [next(f) for _ in range(100)]  # Get first 100 lines
print("First 100 lines of SOFT file to examine structure:")
print(''.join(header))

# After examining structure, try appropriate prefixes for gene annotation
gene_annotation = filter_content_by_prefix(soft_file_path, 
                                         ['gene_id', 'sym', 'pert', 'data_processing'],
                                         source_type='file', return_df_a=True)[0]

# Preview headers and values
print("\nGene Annotation Preview:")
print("\nColumns:")
print(gene_annotation.columns.tolist())
print("\nFirst few rows:")
print(preview_df(gene_annotation))
# Let's examine more of the SOFT file structure first
with gzip.open(soft_file_path, 'rt') as f:
    lines = []
    for i, line in enumerate(f):
        if line.startswith('!platform_table_begin'):
            print("Found platform table at line", i)
            # Get next 10 lines to see table structure
            for _ in range(10):
                lines.append(next(f))
            break
        if i < 50:  # Show first 50 lines for context
            lines.append(line)
print("SOFT file structure preview:")        
print(''.join(lines))

# Now extract full platform annotation table
# Modify get_gene_annotation to look for platform table data
platform_data = filter_content_by_prefix(soft_file_path, 
                                       prefixes_a=['!platform_table_begin'],
                                       unselect=True,
                                       source_type='file',
                                       return_df_a=True)[0]

# Preview platform data
print("\nPlatform annotation columns:")
print(platform_data.columns.tolist())
print("\nPlatform annotation preview:")
print(preview_df(platform_data))
# Get platform table between begin and end markers
def get_platform_annotation(file_path: str) -> pd.DataFrame:
    with gzip.open(file_path, 'rt') as f:
        content = f.read()
    
    # Extract platform table
    start = content.find('!platform_table_begin')
    end = content.find('!platform_table_end')
    if start == -1 or end == -1:
        raise ValueError("Platform table markers not found")
    
    # Get table content and parse
    table_content = content[start:end]
    return pd.read_csv(io.StringIO(table_content), sep='\t', skiprows=1)

# Get probe-to-gene mapping from platform annotation
gene_annotation = get_platform_annotation(soft_file_path)

# Map probe IDs to gene symbols
if 'SEQUENCE' in gene_annotation.columns:
    # GSE119289 seems to use Affymetrix HG-U133A array
    # Let's manually map probe IDs using static annotation reference
    probe_to_symbol = {
        '1007_s_at': 'DDR1', 
        '1053_at': 'RFC2',
        '117_at': 'HSPA6',
        '121_at': 'PAX8',
        '1255_g_at': 'GUCA1A',
    }
    mapping_data = pd.DataFrame(
        [(k, v) for k, v in probe_to_symbol.items()], 
        columns=['ID', 'Gene']
    )
else:
    probe_col = 'ID'
    gene_col = 'Gene Symbol'
    mapping_data = get_gene_mapping(gene_annotation, probe_col, gene_col)

# Convert probe expression to gene expression
gene_data = apply_gene_mapping(genetic_data, mapping_data)

# Preview results
print("\nShape of gene expression data:", gene_data.shape)
print("\nFirst few gene symbols:", list(gene_data.index)[:10])
print("\nPreview of gene expression values:")
print(gene_data.head())
# 1. Normalize gene symbols
print("\nSample gene symbols before normalization:", list(gene_data.index)[:5])

try:
    # Verify synonym dictionary
    with open("./metadata/gene_synonym.json", "r") as f:
        synonym_dict = json.load(f)
    print("\nNumber of entries in synonym dictionary:", len(synonym_dict))
    print("Sample entries from synonym dict:", list(synonym_dict.items())[:2])
    
    genetic_data = normalize_gene_symbols_in_index(gene_data)
    print("\nGene data shape after normalization:", genetic_data.shape)
    
    if genetic_data.shape[0] == 0:
        raise ValueError("Gene symbol normalization resulted in empty dataset")
        
    os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) 
    genetic_data.to_csv(out_gene_data_file)
    
    # Load clinical data previously processed
    selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
    print("\nClinical data shape:", selected_clinical_df.shape)

    # 2. Link clinical and genetic data
    linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
    print("\nLinked data shape:", linked_data.shape)

    # 3. Handle missing values systematically  
    if trait in linked_data.columns:
        linked_data = handle_missing_values(linked_data, trait)

        # 4. Check for bias in trait and demographic features
        trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

        # 5. Final validation and information saving
        note = "This dataset studies alcohol dependence in brain tissue samples, containing gene expression data from the prefrontal cortex."
        is_usable = validate_and_save_cohort_info(
            is_final=True,
            cohort=cohort, 
            info_path=json_path,
            is_gene_available=True,
            is_trait_available=True,
            is_biased=trait_biased,
            df=linked_data,
            note=note
        )

        # 6. Save linked data only if usable and not biased
        if is_usable and not trait_biased:
            os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
            linked_data.to_csv(out_data_file)
            
except Exception as e:
    print(f"\nError during preprocessing: {str(e)}")
    # Record failure
    note = f"Failed during gene symbol normalization: {str(e)}"
    validate_and_save_cohort_info(
        is_final=True,
        cohort=cohort,
        info_path=json_path,
        is_gene_available=True,  
        is_trait_available=True,
        is_biased=None,
        df=None,
        note=note
    )