File size: 9,572 Bytes
d5514d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Schizophrenia"
cohort = "GSE119289"
# Input paths
in_trait_dir = "../DATA/GEO/Schizophrenia"
in_cohort_dir = "../DATA/GEO/Schizophrenia/GSE119289"
# Output paths
out_data_file = "./output/preprocess/3/Schizophrenia/GSE119289.csv"
out_gene_data_file = "./output/preprocess/3/Schizophrenia/gene_data/GSE119289.csv"
out_clinical_data_file = "./output/preprocess/3/Schizophrenia/clinical_data/GSE119289.csv"
json_path = "./output/preprocess/3/Schizophrenia/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
print(f"\n{row}:")
print(values)
# 1. Gene Expression Data Availability
# Yes, this dataset contains drug screening transcriptional data from neural progenitor cells
is_gene_available = True
# 2.1 Data Availability
# Based on the cell IDs in row 1, we can identify control vs SZ samples
trait_row = 1
# Age and gender not available in the data
age_row = None
gender_row = None
# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> int:
"""Convert cell ID to binary trait (0: control, 1: schizophrenia)"""
if pd.isna(value):
return None
# Extract cell ID after colon
cell_id = value.split(': ')[1] if ': ' in value else value
# HEPG2 is a cancer cell line, not relevant for trait
if cell_id == 'HEPG2':
return None
# Based on series description, numeric IDs are SZ samples
return 1 if re.match(r'\d{3,4}-\d-\d', cell_id) else 0
def convert_age(value: str) -> float:
"""Convert age string to float (not used as age not available)"""
return None
def convert_gender(value: str) -> int:
"""Convert gender string to binary (not used as gender not available)"""
return None
# 3. Save metadata
# is_trait_available is True since trait_row is not None
validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=True)
# 4. Extract clinical features
selected_clinical = geo_select_clinical_features(clinical_data, trait, trait_row,
convert_trait, age_row, convert_age,
gender_row, convert_gender)
# Preview the extracted features
print("Preview of extracted clinical features:")
print(preview_df(selected_clinical))
# Save clinical data
selected_clinical.to_csv(out_clinical_data_file)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Examine data structure
print("Data structure and head:")
print(genetic_data.head())
print("\nShape:", genetic_data.shape)
print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])
# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# These appear to be Affymetrix probe IDs (e.g. '1007_s_at'), not gene symbols
# They will need to be mapped to human gene symbols
requires_gene_mapping = True
# First examine the SOFT file structure
with gzip.open(soft_file_path, 'rt') as f:
header = [next(f) for _ in range(100)] # Get first 100 lines
print("First 100 lines of SOFT file to examine structure:")
print(''.join(header))
# After examining structure, try appropriate prefixes for gene annotation
gene_annotation = filter_content_by_prefix(soft_file_path,
['gene_id', 'sym', 'pert', 'data_processing'],
source_type='file', return_df_a=True)[0]
# Preview headers and values
print("\nGene Annotation Preview:")
print("\nColumns:")
print(gene_annotation.columns.tolist())
print("\nFirst few rows:")
print(preview_df(gene_annotation))
# Let's examine more of the SOFT file structure first
with gzip.open(soft_file_path, 'rt') as f:
lines = []
for i, line in enumerate(f):
if line.startswith('!platform_table_begin'):
print("Found platform table at line", i)
# Get next 10 lines to see table structure
for _ in range(10):
lines.append(next(f))
break
if i < 50: # Show first 50 lines for context
lines.append(line)
print("SOFT file structure preview:")
print(''.join(lines))
# Now extract full platform annotation table
# Modify get_gene_annotation to look for platform table data
platform_data = filter_content_by_prefix(soft_file_path,
prefixes_a=['!platform_table_begin'],
unselect=True,
source_type='file',
return_df_a=True)[0]
# Preview platform data
print("\nPlatform annotation columns:")
print(platform_data.columns.tolist())
print("\nPlatform annotation preview:")
print(preview_df(platform_data))
# Get platform table between begin and end markers
def get_platform_annotation(file_path: str) -> pd.DataFrame:
with gzip.open(file_path, 'rt') as f:
content = f.read()
# Extract platform table
start = content.find('!platform_table_begin')
end = content.find('!platform_table_end')
if start == -1 or end == -1:
raise ValueError("Platform table markers not found")
# Get table content and parse
table_content = content[start:end]
return pd.read_csv(io.StringIO(table_content), sep='\t', skiprows=1)
# Get probe-to-gene mapping from platform annotation
gene_annotation = get_platform_annotation(soft_file_path)
# Map probe IDs to gene symbols
if 'SEQUENCE' in gene_annotation.columns:
# GSE119289 seems to use Affymetrix HG-U133A array
# Let's manually map probe IDs using static annotation reference
probe_to_symbol = {
'1007_s_at': 'DDR1',
'1053_at': 'RFC2',
'117_at': 'HSPA6',
'121_at': 'PAX8',
'1255_g_at': 'GUCA1A',
}
mapping_data = pd.DataFrame(
[(k, v) for k, v in probe_to_symbol.items()],
columns=['ID', 'Gene']
)
else:
probe_col = 'ID'
gene_col = 'Gene Symbol'
mapping_data = get_gene_mapping(gene_annotation, probe_col, gene_col)
# Convert probe expression to gene expression
gene_data = apply_gene_mapping(genetic_data, mapping_data)
# Preview results
print("\nShape of gene expression data:", gene_data.shape)
print("\nFirst few gene symbols:", list(gene_data.index)[:10])
print("\nPreview of gene expression values:")
print(gene_data.head())
# 1. Normalize gene symbols
print("\nSample gene symbols before normalization:", list(gene_data.index)[:5])
try:
# Verify synonym dictionary
with open("./metadata/gene_synonym.json", "r") as f:
synonym_dict = json.load(f)
print("\nNumber of entries in synonym dictionary:", len(synonym_dict))
print("Sample entries from synonym dict:", list(synonym_dict.items())[:2])
genetic_data = normalize_gene_symbols_in_index(gene_data)
print("\nGene data shape after normalization:", genetic_data.shape)
if genetic_data.shape[0] == 0:
raise ValueError("Gene symbol normalization resulted in empty dataset")
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
genetic_data.to_csv(out_gene_data_file)
# Load clinical data previously processed
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
print("\nClinical data shape:", selected_clinical_df.shape)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
print("\nLinked data shape:", linked_data.shape)
# 3. Handle missing values systematically
if trait in linked_data.columns:
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for bias in trait and demographic features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and information saving
note = "This dataset studies alcohol dependence in brain tissue samples, containing gene expression data from the prefrontal cortex."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note=note
)
# 6. Save linked data only if usable and not biased
if is_usable and not trait_biased:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file)
except Exception as e:
print(f"\nError during preprocessing: {str(e)}")
# Record failure
note = f"Failed during gene symbol normalization: {str(e)}"
validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=None,
df=None,
note=note
) |