File size: 6,905 Bytes
d5514d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Schizophrenia"
cohort = "GSE145554"
# Input paths
in_trait_dir = "../DATA/GEO/Schizophrenia"
in_cohort_dir = "../DATA/GEO/Schizophrenia/GSE145554"
# Output paths
out_data_file = "./output/preprocess/3/Schizophrenia/GSE145554.csv"
out_gene_data_file = "./output/preprocess/3/Schizophrenia/gene_data/GSE145554.csv"
out_clinical_data_file = "./output/preprocess/3/Schizophrenia/clinical_data/GSE145554.csv"
json_path = "./output/preprocess/3/Schizophrenia/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
print(f"\n{row}:")
print(values)
# 1. Gene Expression Data Availability
# Based on the background info, this is a microarray study of mRNA, so gene expression data should be available
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# 2.1 Data Availability
trait_row = 0 # Disease state is in row 0
gender_row = 1 # Sex is in row 1
age_row = 3 # Age is in row 3
# 2.2 Data Type Conversion Functions
def convert_trait(x):
if not isinstance(x, str):
return None
value = x.split(': ')[-1].lower()
if 'schizophrenia' in value:
return 1
elif 'control' in value:
return 0
return None
def convert_gender(x):
if not isinstance(x, str):
return None
value = x.split(': ')[-1].lower()
if 'female' in value:
return 0
elif 'male' in value:
return 1
return None
def convert_age(x):
if not isinstance(x, str):
return None
try:
age = int(x.split(': ')[-1])
return age
except:
return None
# 3. Save metadata about data availability
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=trait_row is not None
)
# 4. Clinical Feature Extraction
if trait_row is not None:
clinical_features = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the extracted features
print("Preview of clinical features:")
print(preview_df(clinical_features))
# Save clinical features to CSV
clinical_features.to_csv(out_clinical_data_file)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Examine data structure
print("Data structure and head:")
print(genetic_data.head())
print("\nShape:", genetic_data.shape)
print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])
# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# The gene identifiers (7892501, 7892502, etc.) appear to be probe IDs from a microarray platform
# rather than standard human gene symbols. They need to be mapped to gene symbols
requires_gene_mapping = True
# Extract gene annotation data
gene_annotation = get_gene_annotation(soft_file_path)
# Preview column names and values from annotation dataframe
print("Gene annotation DataFrame preview:")
print(preview_df(gene_annotation))
# Extract probe-gene mapping
# 'ID' contains the same type of identifiers as in gene expression data
# 'gene_assignment' contains gene symbols and various annotations
mapping_data = get_gene_mapping(gene_annotation, 'ID', 'gene_assignment')
# Apply the mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(genetic_data, mapping_data)
# Normalize gene symbols to standard format, using NCBI gene synonym information
gene_data = normalize_gene_symbols_in_index(gene_data)
# Save gene expression data
gene_data.to_csv(out_gene_data_file)
# 1. Normalize gene symbols
print("\nSample gene symbols before normalization:", list(gene_data.index)[:5])
try:
# Verify synonym dictionary
with open("./metadata/gene_synonym.json", "r") as f:
synonym_dict = json.load(f)
print("\nNumber of entries in synonym dictionary:", len(synonym_dict))
print("Sample entries from synonym dict:", list(synonym_dict.items())[:2])
genetic_data = normalize_gene_symbols_in_index(gene_data)
print("\nGene data shape after normalization:", genetic_data.shape)
if genetic_data.shape[0] == 0:
raise ValueError("Gene symbol normalization resulted in empty dataset")
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
genetic_data.to_csv(out_gene_data_file)
# Load clinical data previously processed
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
print("\nClinical data shape:", selected_clinical_df.shape)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
print("\nLinked data shape:", linked_data.shape)
# 3. Handle missing values systematically
if trait in linked_data.columns:
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for bias in trait and demographic features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and information saving
note = "This dataset studies alcohol dependence in brain tissue samples, containing gene expression data from the prefrontal cortex."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note=note
)
# 6. Save linked data only if usable and not biased
if is_usable and not trait_biased:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file)
except Exception as e:
print(f"\nError during preprocessing: {str(e)}")
# Record failure
note = f"Failed during gene symbol normalization: {str(e)}"
validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=None,
df=None,
note=note
) |