File size: 6,819 Bytes
d5514d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Schizophrenia"
cohort = "GSE161986"
# Input paths
in_trait_dir = "../DATA/GEO/Schizophrenia"
in_cohort_dir = "../DATA/GEO/Schizophrenia/GSE161986"
# Output paths
out_data_file = "./output/preprocess/3/Schizophrenia/GSE161986.csv"
out_gene_data_file = "./output/preprocess/3/Schizophrenia/gene_data/GSE161986.csv"
out_clinical_data_file = "./output/preprocess/3/Schizophrenia/clinical_data/GSE161986.csv"
json_path = "./output/preprocess/3/Schizophrenia/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
print(f"\n{row}:")
print(values)
# 1. Gene Expression Data Availability
# Based on background info mentioning "genome-wide mRNA" data and "[mRNA]" in title
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# 2.1 Key Identification
trait_row = 1 # 'diagnosis' field contains control vs alcohol info
age_row = 2 # 'age' field available
gender_row = None # All male samples per background info, so gender is constant
# 2.2 Data Type Conversion Functions
def convert_trait(x):
if not isinstance(x, str):
return None
value = x.split(': ')[1].strip().lower()
if value == 'alcohol':
return 1
elif value == 'control':
return 0
return None
def convert_age(x):
if not isinstance(x, str):
return None
try:
return float(x.split(': ')[1].strip())
except:
return None
def convert_gender(x):
# Not needed since gender is constant (all male)
return None
# 3. Save Metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None)
)
# 4. Clinical Feature Extraction
if trait_row is not None:
selected_clinical = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the data
print("Preview of selected clinical features:")
print(preview_df(selected_clinical))
# Save to CSV
os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
selected_clinical.to_csv(out_clinical_data_file)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Examine data structure
print("Data structure and head:")
print(genetic_data.head())
print("\nShape:", genetic_data.shape)
print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])
# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# Looking at identifiers like '1007_s_at', '1053_at', '117_at', these are clearly Affymetrix probe IDs, not human gene symbols
# They need to be mapped to gene symbols for biological interpretation
requires_gene_mapping = True
# Extract gene annotation data
gene_annotation = get_gene_annotation(soft_file_path)
# Preview column names and values from annotation dataframe
print("Gene annotation DataFrame preview:")
print(preview_df(gene_annotation))
# Looking at the annotation preview, 'ID' contains probe IDs matching genetic_data's indices,
# and 'Gene Symbol' contains the human gene symbols we want
mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')
# Apply the gene mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(genetic_data, mapping_data)
# Preview results
print("First few rows of mapped gene data:")
print(gene_data.head())
print("\nShape of mapped gene data:", gene_data.shape)
# 1. Normalize gene symbols
print("\nSample gene symbols before normalization:", list(gene_data.index)[:5])
try:
# Verify synonym dictionary
with open("./metadata/gene_synonym.json", "r") as f:
synonym_dict = json.load(f)
print("\nNumber of entries in synonym dictionary:", len(synonym_dict))
print("Sample entries from synonym dict:", list(synonym_dict.items())[:2])
genetic_data = normalize_gene_symbols_in_index(gene_data)
print("\nGene data shape after normalization:", genetic_data.shape)
if genetic_data.shape[0] == 0:
raise ValueError("Gene symbol normalization resulted in empty dataset")
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
genetic_data.to_csv(out_gene_data_file)
# Load clinical data previously processed
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
print("\nClinical data shape:", selected_clinical_df.shape)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
print("\nLinked data shape:", linked_data.shape)
# 3. Handle missing values systematically
if trait in linked_data.columns:
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for bias in trait and demographic features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and information saving
note = "This dataset studies alcohol dependence in brain tissue samples, containing gene expression data from the prefrontal cortex."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note=note
)
# 6. Save linked data only if usable and not biased
if is_usable and not trait_biased:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file)
except Exception as e:
print(f"\nError during preprocessing: {str(e)}")
# Record failure
note = f"Failed during gene symbol normalization: {str(e)}"
validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=None,
df=None,
note=note
) |