|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Schizophrenia" |
|
cohort = "GSE161986" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Schizophrenia" |
|
in_cohort_dir = "../DATA/GEO/Schizophrenia/GSE161986" |
|
|
|
|
|
out_data_file = "./output/preprocess/1/Schizophrenia/GSE161986.csv" |
|
out_gene_data_file = "./output/preprocess/1/Schizophrenia/gene_data/GSE161986.csv" |
|
out_clinical_data_file = "./output/preprocess/1/Schizophrenia/clinical_data/GSE161986.csv" |
|
json_path = "./output/preprocess/1/Schizophrenia/cohort_info.json" |
|
|
|
|
|
from tools.preprocess import * |
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] |
|
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] |
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) |
|
|
|
|
|
sample_characteristics_dict = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("Background Information:") |
|
print(background_info) |
|
print("Sample Characteristics Dictionary:") |
|
print(sample_characteristics_dict) |
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
trait_row = None |
|
age_row = 2 |
|
gender_row = None |
|
|
|
def convert_trait(value: str) -> None: |
|
""" |
|
Since no Schizophrenia variable is available, always return None. |
|
""" |
|
return None |
|
|
|
def convert_age(value: str) -> Optional[float]: |
|
""" |
|
Convert the part after 'age:' to a float. If conversion fails, return None. |
|
""" |
|
parts = value.split(":", 1) |
|
if len(parts) > 1: |
|
try: |
|
return float(parts[1].strip()) |
|
except ValueError: |
|
return None |
|
return None |
|
|
|
def convert_gender(value: str) -> None: |
|
""" |
|
Only 'Male' is present, so it's constant and considered unavailable. Always return None. |
|
""" |
|
return None |
|
|
|
|
|
is_trait_available = (trait_row is not None) |
|
validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=is_trait_available |
|
) |
|
|
|
|
|
|
|
import gzip |
|
import pandas as pd |
|
|
|
try: |
|
|
|
gene_data = get_genetic_data(matrix_file) |
|
except KeyError: |
|
|
|
|
|
marker = "!series_matrix_table_begin" |
|
skip_rows = None |
|
|
|
|
|
with gzip.open(matrix_file, 'rt') as f: |
|
for i, line in enumerate(f): |
|
if marker in line: |
|
skip_rows = i + 1 |
|
break |
|
else: |
|
raise ValueError(f"Marker '{marker}' not found in the file.") |
|
|
|
|
|
gene_data = pd.read_csv( |
|
matrix_file, |
|
compression='gzip', |
|
skiprows=skip_rows, |
|
comment='!', |
|
delimiter='\t', |
|
on_bad_lines='skip' |
|
) |
|
|
|
|
|
if 'ID_REF' in gene_data.columns: |
|
gene_data.rename(columns={'ID_REF': 'ID'}, inplace=True) |
|
else: |
|
first_col = gene_data.columns[0] |
|
gene_data.rename(columns={first_col: 'ID'}, inplace=True) |
|
|
|
gene_data['ID'] = gene_data['ID'].astype(str) |
|
gene_data.set_index('ID', inplace=True) |
|
|
|
|
|
print(gene_data.index[:20]) |
|
|
|
|
|
|
|
print("requires_gene_mapping = True") |
|
|
|
|
|
if soft_file is None: |
|
print("No SOFT file found. Skipping gene annotation extraction.") |
|
gene_annotation = pd.DataFrame() |
|
else: |
|
try: |
|
|
|
gene_annotation = get_gene_annotation(soft_file) |
|
except UnicodeDecodeError: |
|
|
|
import gzip |
|
with gzip.open(soft_file, 'rt', encoding='latin-1', errors='replace') as f: |
|
content = f.read() |
|
gene_annotation = filter_content_by_prefix( |
|
content, |
|
prefixes_a=['^','!','#'], |
|
unselect=True, |
|
source_type='string', |
|
return_df_a=True |
|
)[0] |
|
|
|
print("Gene annotation preview:") |
|
print(preview_df(gene_annotation)) |
|
|
|
|
|
|
|
|
|
probe_col = "ID" |
|
gene_symbol_col = "Gene Symbol" |
|
|
|
|
|
mapping_df = get_gene_mapping(gene_annotation, probe_col, gene_symbol_col) |
|
|
|
|
|
gene_data = apply_gene_mapping(gene_data, mapping_df) |
|
|
|
|
|
print("Mapped gene_data shape:", gene_data.shape) |
|
print("First 5 gene symbols:", gene_data.index[:5].tolist()) |
|
import os |
|
import pandas as pd |
|
|
|
|
|
|
|
|
|
if not os.path.exists(out_clinical_data_file): |
|
|
|
df_null = pd.DataFrame() |
|
is_biased = True |
|
validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=False, |
|
is_biased=is_biased, |
|
df=df_null, |
|
note="No trait data file found; dataset not usable for trait analysis." |
|
) |
|
|
|
else: |
|
|
|
normalized_gene_data = normalize_gene_symbols_in_index(gene_data) |
|
normalized_gene_data.to_csv(out_gene_data_file) |
|
|
|
|
|
selected_clinical_df = pd.read_csv(out_clinical_data_file) |
|
|
|
selected_clinical_df = selected_clinical_df.rename(index={0: trait}) |
|
|
|
|
|
combined_clinical_df = selected_clinical_df |
|
|
|
|
|
linked_data = geo_link_clinical_genetic_data(combined_clinical_df, normalized_gene_data) |
|
|
|
|
|
processed_data = handle_missing_values(linked_data, trait) |
|
|
|
|
|
trait_biased, processed_data = judge_and_remove_biased_features(processed_data, trait) |
|
|
|
|
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=True, |
|
is_biased=trait_biased, |
|
df=processed_data, |
|
note="Completed trait-based preprocessing." |
|
) |
|
|
|
|
|
if is_usable: |
|
processed_data.to_csv(out_data_file) |