Liu-Hy's picture
Add files using upload-large-folder tool
dc810d0 verified
raw
history blame
8.61 kB
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Schizophrenia"
cohort = "GSE161986"
# Input paths
in_trait_dir = "../DATA/GEO/Schizophrenia"
in_cohort_dir = "../DATA/GEO/Schizophrenia/GSE161986"
# Output paths
out_data_file = "./output/preprocess/1/Schizophrenia/GSE161986.csv"
out_gene_data_file = "./output/preprocess/1/Schizophrenia/gene_data/GSE161986.csv"
out_clinical_data_file = "./output/preprocess/1/Schizophrenia/clinical_data/GSE161986.csv"
json_path = "./output/preprocess/1/Schizophrenia/cohort_info.json"
# STEP1
from tools.preprocess import *
# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("Sample Characteristics Dictionary:")
print(sample_characteristics_dict)
# Step 1: Check if the dataset contains gene expression data
is_gene_available = True # The dataset includes genome-wide mRNA expression, so it's suitable.
# Step 2: Determine variable availability and define data conversion functions
# Given the background, there's no row indicating "Schizophrenia," so trait data is not available.
trait_row = None
age_row = 2 # Various ages are shown in row 2
gender_row = None # Only 'Sex: Male' is found, so it's constant and considered unavailable
def convert_trait(value: str) -> None:
"""
Since no Schizophrenia variable is available, always return None.
"""
return None
def convert_age(value: str) -> Optional[float]:
"""
Convert the part after 'age:' to a float. If conversion fails, return None.
"""
parts = value.split(":", 1)
if len(parts) > 1:
try:
return float(parts[1].strip())
except ValueError:
return None
return None
def convert_gender(value: str) -> None:
"""
Only 'Male' is present, so it's constant and considered unavailable. Always return None.
"""
return None
# Step 3: Conduct initial filtering based on gene and trait availability and save metadata
is_trait_available = (trait_row is not None)
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# Step 4: Since trait_row is None, we skip clinical feature extraction.
# STEP3
import gzip
import pandas as pd
try:
# 1. Attempt to extract gene expression data using the library function
gene_data = get_genetic_data(matrix_file)
except KeyError:
# Fallback: the expected "ID_REF" column may be absent, so manually parse the file
# and rename the first column to "ID".
marker = "!series_matrix_table_begin"
skip_rows = None
# Determine how many rows to skip before the matrix data begins
with gzip.open(matrix_file, 'rt') as f:
for i, line in enumerate(f):
if marker in line:
skip_rows = i + 1
break
else:
raise ValueError(f"Marker '{marker}' not found in the file.")
# Read the data from the determined position
gene_data = pd.read_csv(
matrix_file,
compression='gzip',
skiprows=skip_rows,
comment='!',
delimiter='\t',
on_bad_lines='skip'
)
# If a different column name is used instead of 'ID_REF', rename appropriately
if 'ID_REF' in gene_data.columns:
gene_data.rename(columns={'ID_REF': 'ID'}, inplace=True)
else:
first_col = gene_data.columns[0]
gene_data.rename(columns={first_col: 'ID'}, inplace=True)
gene_data['ID'] = gene_data['ID'].astype(str)
gene_data.set_index('ID', inplace=True)
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
# These identifiers appear to be Affymetrix probe set IDs (e.g., "1007_s_at"), not human gene symbols.
# Therefore, they require mapping to gene symbols.
print("requires_gene_mapping = True")
# STEP5
# 1 & 2. Only extract and preview gene annotation data if the SOFT file exists, otherwise skip.
if soft_file is None:
print("No SOFT file found. Skipping gene annotation extraction.")
gene_annotation = pd.DataFrame()
else:
try:
# Attempt to extract gene annotation with the default method
gene_annotation = get_gene_annotation(soft_file)
except UnicodeDecodeError:
# Fallback if UTF-8 decoding fails: read with a more lenient encoding and pass the content as a string
import gzip
with gzip.open(soft_file, 'rt', encoding='latin-1', errors='replace') as f:
content = f.read()
gene_annotation = filter_content_by_prefix(
content,
prefixes_a=['^','!','#'],
unselect=True,
source_type='string',
return_df_a=True
)[0]
print("Gene annotation preview:")
print(preview_df(gene_annotation))
# STEP: Gene Identifier Mapping
# 1. From the preview, the "ID" column in gene_annotation corresponds to the probe IDs
# in the gene expression dataframe. The "Gene Symbol" column lists the actual gene symbols.
probe_col = "ID"
gene_symbol_col = "Gene Symbol"
# 2. Get the gene mapping dataframe
mapping_df = get_gene_mapping(gene_annotation, probe_col, gene_symbol_col)
# 3. Convert probe-level measurements to gene expression data
gene_data = apply_gene_mapping(gene_data, mapping_df)
# For a brief check, print the resulting gene_data shape and a small preview of gene symbols
print("Mapped gene_data shape:", gene_data.shape)
print("First 5 gene symbols:", gene_data.index[:5].tolist())
import os
import pandas as pd
# STEP 7: Data Normalization and Linking
# First, check if the clinical CSV file exists. If it does not, we cannot proceed with trait-based linking.
if not os.path.exists(out_clinical_data_file):
# No trait data file => dataset is not usable for trait analysis
df_null = pd.DataFrame()
is_biased = True # Arbitrary boolean to satisfy function requirement
validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=False,
is_biased=is_biased,
df=df_null,
note="No trait data file found; dataset not usable for trait analysis."
)
else:
# 1. Normalize the mapped gene expression data using known gene symbol synonyms, then save.
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file)
# 2. Load the previously extracted clinical CSV.
selected_clinical_df = pd.read_csv(out_clinical_data_file)
# If we had a single-row trait, rename row 0 to the trait name (example usage).
selected_clinical_df = selected_clinical_df.rename(index={0: trait})
# Combine these as our final clinical data; in this dataset, we only have trait info (if any).
combined_clinical_df = selected_clinical_df
# Link the clinical and genetic data by matching sample IDs in columns.
linked_data = geo_link_clinical_genetic_data(combined_clinical_df, normalized_gene_data)
# 3. Handle missing values in the linked data (drop incomplete rows/columns, then impute).
processed_data = handle_missing_values(linked_data, trait)
# 4. Check trait bias and remove any biased demographic features (if any).
trait_biased, processed_data = judge_and_remove_biased_features(processed_data, trait)
# 5. Final validation and metadata saving.
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=processed_data,
note="Completed trait-based preprocessing."
)
# 6. If final dataset is usable, save. Otherwise, skip.
if is_usable:
processed_data.to_csv(out_data_file)