# Path Configuration | |
from tools.preprocess import * | |
# Processing context | |
trait = "Chronic_obstructive_pulmonary_disease_(COPD)" | |
cohort = "GSE32030" | |
# Input paths | |
in_trait_dir = "../DATA/GEO/Chronic_obstructive_pulmonary_disease_(COPD)" | |
in_cohort_dir = "../DATA/GEO/Chronic_obstructive_pulmonary_disease_(COPD)/GSE32030" | |
# Output paths | |
out_data_file = "./output/preprocess/1/Chronic_obstructive_pulmonary_disease_(COPD)/GSE32030.csv" | |
out_gene_data_file = "./output/preprocess/1/Chronic_obstructive_pulmonary_disease_(COPD)/gene_data/GSE32030.csv" | |
out_clinical_data_file = "./output/preprocess/1/Chronic_obstructive_pulmonary_disease_(COPD)/clinical_data/GSE32030.csv" | |
json_path = "./output/preprocess/1/Chronic_obstructive_pulmonary_disease_(COPD)/cohort_info.json" | |
# STEP1 | |
from tools.preprocess import * | |
# 1. Identify the paths to the SOFT file and the matrix file | |
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) | |
# 2. Read the matrix file to obtain background information and sample characteristics data | |
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] | |
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] | |
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) | |
# 3. Obtain the sample characteristics dictionary from the clinical dataframe | |
sample_characteristics_dict = get_unique_values_by_row(clinical_data) | |
# 4. Explicitly print out all the background information and the sample characteristics dictionary | |
print("Background Information:") | |
print(background_info) | |
print("Sample Characteristics Dictionary:") | |
print(sample_characteristics_dict) | |
# 1) Gene Expression Data Availability | |
is_gene_available = True # Based on background info indicating microarray gene expression data | |
# 2) Variable Availability | |
# Checking the sample characteristics dictionary, 'copd status' only appears as "yes", no variation. | |
# No explicit age or gender info is provided in the dictionary. Thus, all are considered unavailable. | |
trait_row = None | |
age_row = None | |
gender_row = None | |
# 2.2 Data Type Conversion Functions | |
def convert_trait(value: str) -> int: | |
# For demonstration, but will not be used because trait_row is None | |
# e.g., return 1 if the string (after the colon) indicates COPD, else 0 or None | |
parts = str(value).split(':', 1) | |
val = parts[1].strip().lower() if len(parts) > 1 else '' | |
if val == 'yes': | |
return 1 | |
elif val == 'no': | |
return 0 | |
return None | |
def convert_age(value: str) -> float: | |
# For demonstration, but will not be used because age_row is None | |
parts = str(value).split(':', 1) | |
val = parts[1].strip().lower() if len(parts) > 1 else '' | |
try: | |
return float(val) | |
except ValueError: | |
return None | |
def convert_gender(value: str) -> int: | |
# For demonstration, but will not be used because gender_row is None | |
parts = str(value).split(':', 1) | |
val = parts[1].strip().lower() if len(parts) > 1 else '' | |
if val in ['m', 'male']: | |
return 1 | |
elif val in ['f', 'female']: | |
return 0 | |
return None | |
# 3) Save Metadata with initial filtering | |
is_trait_available = (trait_row is not None) | |
_ = validate_and_save_cohort_info( | |
is_final=False, | |
cohort=cohort, | |
info_path=json_path, | |
is_gene_available=is_gene_available, | |
is_trait_available=is_trait_available | |
) | |
# 4) Clinical Feature Extraction - skip since trait_row is None | |
# STEP3 | |
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. | |
gene_data = get_genetic_data(matrix_file) | |
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. | |
print(gene_data.index[:20]) | |
# These identifiers (e.g., "1007_s_at", "1053_at") are probe set IDs (commonly used by Affymetrix microarray platforms). | |
# Therefore, they are not standard human gene symbols and do require mapping. | |
print("\nrequires_gene_mapping = True") | |
# STEP5 | |
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. | |
gene_annotation = get_gene_annotation(soft_file) | |
# 2. Use the 'preview_df' function from the library to preview the data and print out the results. | |
print("Gene annotation preview:") | |
print(preview_df(gene_annotation)) | |
# STEP: Gene Identifier Mapping | |
# 1. Identify the columns in gene_annotation corresponding to the same identifiers as in gene_data and the gene symbols. | |
# From the preview, "ID" matches the probe IDs in gene_data, and "Gene Symbol" holds the gene symbols. | |
# 2. Get the gene mapping dataframe using the 'get_gene_mapping' function. | |
mapping_df = get_gene_mapping( | |
annotation=gene_annotation, | |
prob_col="ID", # Probe ID column | |
gene_col="Gene Symbol" # Gene symbol column | |
) | |
# 3. Convert probe-level measurements to gene-level expression data by applying the mapping. | |
gene_data = apply_gene_mapping(gene_data, mapping_df) | |
# For verification, let's print the shape of the mapped gene_data and a small slice. | |
print("Mapped gene_data shape:", gene_data.shape) | |
print(gene_data.iloc[:5, :5]) | |
# STEP7 | |
# In a previous step, we determined that trait data is not available, which means | |
# is_trait_available = False. Hence, clinical feature extraction was skipped | |
# and "selected_clinical_df" was never created. | |
# 1) Normalize gene symbols using synonym information from NCBI, then save the result. | |
normalized_gene_data = normalize_gene_symbols_in_index(gene_data) | |
normalized_gene_data.to_csv(out_gene_data_file) | |
# 2) Since the trait is unavailable, we skip linking clinical data (no "selected_clinical_df"). | |
# 3), 4), 5) Provide final validation. The library requires 'is_biased' to be a boolean. | |
# Since the dataset has no trait, we set is_biased=False. | |
is_usable = validate_and_save_cohort_info( | |
is_final=True, | |
cohort=cohort, | |
info_path=json_path, | |
is_gene_available=True, | |
is_trait_available=False, | |
is_biased=False, | |
df=normalized_gene_data, | |
note="Trait data unavailable; only gene expression data was processed." | |
) | |
# 6) Without trait data, we cannot perform further trait-based analysis, so no final linked dataset is saved. |