# Path Configuration | |
from tools.preprocess import * | |
# Processing context | |
trait = "Adrenocortical_Cancer" | |
cohort = "GSE49278" | |
# Input paths | |
in_trait_dir = "../DATA/GEO/Adrenocortical_Cancer" | |
in_cohort_dir = "../DATA/GEO/Adrenocortical_Cancer/GSE49278" | |
# Output paths | |
out_data_file = "./output/preprocess/1/Adrenocortical_Cancer/GSE49278.csv" | |
out_gene_data_file = "./output/preprocess/1/Adrenocortical_Cancer/gene_data/GSE49278.csv" | |
out_clinical_data_file = "./output/preprocess/1/Adrenocortical_Cancer/clinical_data/GSE49278.csv" | |
json_path = "./output/preprocess/1/Adrenocortical_Cancer/cohort_info.json" | |
# STEP1 | |
from tools.preprocess import * | |
# 1. Identify the paths to the SOFT file and the matrix file | |
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) | |
# 2. Read the matrix file to obtain background information and sample characteristics data | |
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] | |
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] | |
background_info, clinical_data = get_background_and_clinical_data( | |
matrix_file, | |
background_prefixes, | |
clinical_prefixes | |
) | |
# 3. Obtain the sample characteristics dictionary from the clinical dataframe | |
sample_characteristics_dict = get_unique_values_by_row(clinical_data) | |
# 4. Explicitly print out all the background information and the sample characteristics dictionary | |
print("Background Information:") | |
print(background_info) | |
print("Sample Characteristics Dictionary:") | |
print(sample_characteristics_dict) | |
# 1. Gene Expression Data Availability | |
is_gene_available = True # Based on the background info: "Expression profiling by array ..." | |
# 2. Variable Availability and Data Type Conversion | |
# Observing the sample characteristics, key=2 has only one unique value (Adrenocortical carcinoma), | |
# so that is constant and not useful for association analyses, thus trait_row = None. | |
trait_row = None | |
# key=0 shows multiple age values => available | |
age_row = 0 | |
# key=1 shows two gender values => available | |
gender_row = 1 | |
# Define conversion functions | |
def convert_trait(value: str): | |
# Since trait data is effectively not available (constant), | |
# this function returns None | |
return None | |
def convert_age(value: str): | |
# Typical format: "age (years): 70" | |
# Convert the part after the colon to a numeric type | |
try: | |
val_str = value.split(':', 1)[1].strip() | |
return float(val_str) | |
except: | |
return None | |
def convert_gender(value: str): | |
# Typical format: "gender: F" or "gender: M" | |
# Convert F -> 0, M -> 1 | |
try: | |
val_str = value.split(':', 1)[1].strip().upper() | |
if val_str == 'F': | |
return 0 | |
elif val_str == 'M': | |
return 1 | |
else: | |
return None | |
except: | |
return None | |
# 3. Save Metadata (initial filtering) | |
is_trait_available = (trait_row is not None) | |
_ = validate_and_save_cohort_info( | |
is_final=False, | |
cohort=cohort, | |
info_path=json_path, | |
is_gene_available=is_gene_available, | |
is_trait_available=is_trait_available | |
) | |
# 4. Clinical Feature Extraction | |
# Skip this step because trait_row is None (no trait data available). | |
# STEP3 | |
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. | |
gene_data = get_genetic_data(matrix_file) | |
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. | |
print(gene_data.index[:20]) | |
print("requires_gene_mapping = True") | |
# STEP5 | |
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. | |
gene_annotation = get_gene_annotation(soft_file) | |
# 2. Use the 'preview_df' function from the library to preview the data and print out the results. | |
print("Gene annotation preview:") | |
print(preview_df(gene_annotation)) | |
# STEP6: Gene Identifier Mapping | |
# After reviewing the annotation DataFrame columns: | |
# ['ID', 'RANGE_STRAND', 'RANGE_START', 'RANGE_END', 'total_probes', 'GB_ACC', 'SPOT_ID', 'RANGE_GB'] | |
# we see that 'GB_ACC' usually contains "NR_" transcripts and 'SPOT_ID' has genomic coordinates. Neither appear to provide | |
# valid gene symbols recognizable by extract_human_gene_symbols (which filters out NR_, XR_, LOC, etc.). | |
# Therefore, mapping to standard gene symbols is not possible here. | |
# We'll retain the original probe-level data without attempting gene-level aggregation. | |
print("No suitable gene symbol column found. Proceeding with probe-level data only.") | |
# The 'gene_data' DataFrame remains as probe-level data. | |
# No further action is required for mapping in this dataset. | |
# STEP 7: Data Normalization and Linking | |
# In this dataset, we determined in Step 2 that trait data is not available (trait_row = None). | |
# Therefore, we cannot link clinical and genetic data or perform trait-based processing. | |
# Nonetheless, we can still normalize probe-level data to standard gene symbols and finalize validation. | |
# 1. Normalize gene symbols in the obtained gene expression data | |
normalized_gene_data = normalize_gene_symbols_in_index(gene_data) | |
normalized_gene_data.to_csv(out_gene_data_file, index=True) | |
# 2. Since trait data is missing, skip linking clinical and genetic data, | |
# skip missing-value handling and bias detection for the trait. | |
# 3. Conduct final validation and record info. | |
# Since trait data is unavailable, set is_trait_available=False, | |
# pass a dummy/empty DataFrame and is_biased=False (it won't be used). | |
dummy_df = pd.DataFrame() | |
is_usable = validate_and_save_cohort_info( | |
is_final=True, | |
cohort=cohort, | |
info_path=json_path, | |
is_gene_available=True, | |
is_trait_available=False, | |
is_biased=False, | |
df=dummy_df, | |
note="No trait data found; skipped clinical-linking steps." | |
) | |
# 4. If the dataset were usable, save. In this scenario, it's not usable due to missing trait data. | |
if is_usable: | |
dummy_df.to_csv(out_data_file, index=True) |