# Path Configuration | |
from tools.preprocess import * | |
# Processing context | |
trait = "Adrenocortical_Cancer" | |
cohort = "GSE76019" | |
# Input paths | |
in_trait_dir = "../DATA/GEO/Adrenocortical_Cancer" | |
in_cohort_dir = "../DATA/GEO/Adrenocortical_Cancer/GSE76019" | |
# Output paths | |
out_data_file = "./output/preprocess/1/Adrenocortical_Cancer/GSE76019.csv" | |
out_gene_data_file = "./output/preprocess/1/Adrenocortical_Cancer/gene_data/GSE76019.csv" | |
out_clinical_data_file = "./output/preprocess/1/Adrenocortical_Cancer/clinical_data/GSE76019.csv" | |
json_path = "./output/preprocess/1/Adrenocortical_Cancer/cohort_info.json" | |
# STEP1 | |
from tools.preprocess import * | |
# 1. Identify the paths to the SOFT file and the matrix file | |
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) | |
# 2. Read the matrix file to obtain background information and sample characteristics data | |
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] | |
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] | |
background_info, clinical_data = get_background_and_clinical_data( | |
matrix_file, | |
background_prefixes, | |
clinical_prefixes | |
) | |
# 3. Obtain the sample characteristics dictionary from the clinical dataframe | |
sample_characteristics_dict = get_unique_values_by_row(clinical_data) | |
# 4. Explicitly print out all the background information and the sample characteristics dictionary | |
print("Background Information:") | |
print(background_info) | |
print("Sample Characteristics Dictionary:") | |
print(sample_characteristics_dict) | |
# 1. Gene expression data availability | |
is_gene_available = True # Based on "gene expression profiling" statement | |
# 2. Variable availability | |
# The trait is constant ("ACC") across all samples --> not useful for association study | |
trait_row = None | |
age_row = None | |
gender_row = None | |
# 2.2 Define data conversion functions (they won't be used because rows are None, but we must still define them) | |
def convert_trait(value: str): | |
# No actual functionality here because trait_row is None | |
return None | |
def convert_age(value: str): | |
# No actual functionality here because age_row is None | |
return None | |
def convert_gender(value: str): | |
# No actual functionality here because gender_row is None | |
return None | |
# 3. Initial Filtering (Save metadata) | |
is_trait_available = (trait_row is not None) | |
is_usable = validate_and_save_cohort_info( | |
is_final=False, | |
cohort=cohort, | |
info_path=json_path, | |
is_gene_available=is_gene_available, | |
is_trait_available=is_trait_available | |
) | |
# 4. Clinical Feature Extraction is skipped since trait_row is None | |
# STEP3 | |
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. | |
gene_data = get_genetic_data(matrix_file) | |
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. | |
print(gene_data.index[:20]) | |
# The gene expression data uses probe-based identifiers (e.g., Affymetrix probe IDs) rather than standard human gene symbols. | |
# Therefore, a mapping step is needed. | |
print("requires_gene_mapping = True") | |
# STEP5 | |
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. | |
gene_annotation = get_gene_annotation(soft_file) | |
# 2. Use the 'preview_df' function from the library to preview the data and print out the results. | |
print("Gene annotation preview:") | |
print(preview_df(gene_annotation)) | |
# STEP: Gene Identifier Mapping | |
# 1) The key in 'gene_annotation' that matches the probe identifiers in 'gene_data' is "ID". | |
# The key that stores the gene symbols is "Gene Symbol". | |
# 2) Extract a gene mapping dataframe from 'gene_annotation' with these columns. | |
mapping_df = get_gene_mapping( | |
annotation=gene_annotation, | |
prob_col="ID", | |
gene_col="Gene Symbol" | |
) | |
# 3) Convert probe-level measurements to gene-level expression data. | |
gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_df) | |
# STEP 7: Data Normalization and Linking | |
import pandas as pd | |
# 1. Normalize gene symbols and save the normalized gene data | |
normalized_gene_data = normalize_gene_symbols_in_index(gene_data) | |
normalized_gene_data.to_csv(out_gene_data_file, index=True) | |
# Since the trait was determined unavailable (trait_row is None), there is no clinical data to link. | |
# We therefore skip linking, missing value handling, and bias checks. | |
# 5. Final quality validation (the dataset is not suitable for trait-based association studies). | |
# We must provide a DataFrame and a boolean for is_biased to avoid errors, even though trait data is missing. | |
is_usable = validate_and_save_cohort_info( | |
is_final=True, | |
cohort=cohort, | |
info_path=json_path, | |
is_gene_available=True, | |
is_trait_available=False, | |
is_biased=False, # Arbitrary value, as the dataset is already not usable due to missing trait | |
df=pd.DataFrame(), # Empty DataFrame to satisfy validation requirements | |
note="No trait data, so dataset is not suitable for association studies." | |
) | |
# 6. Since the dataset is not usable for trait-based analyses, we do NOT save a final linked data file. |