Liu-Hy's picture
Add files using upload-large-folder tool
a3c6344 verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Allergies"
cohort = "GSE184382"
# Input paths
in_trait_dir = "../DATA/GEO/Allergies"
in_cohort_dir = "../DATA/GEO/Allergies/GSE184382"
# Output paths
out_data_file = "./output/preprocess/1/Allergies/GSE184382.csv"
out_gene_data_file = "./output/preprocess/1/Allergies/gene_data/GSE184382.csv"
out_clinical_data_file = "./output/preprocess/1/Allergies/clinical_data/GSE184382.csv"
json_path = "./output/preprocess/1/Allergies/cohort_info.json"
# STEP 1
from tools.preprocess import *
# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(
matrix_file,
background_prefixes,
clinical_prefixes
)
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("\nSample Characteristics Dictionary:")
print(sample_characteristics_dict)
# 1. Gene Expression Data Availability
# Based on the background info mentioning both miR microarray and transcriptome microarray,
# we conclude that gene expression data is available.
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# From the sample characteristics dictionary, we do not have any rows indicating the 'Allergies' trait,
# age, or gender. Hence, none of these variables are available.
trait_row = None
age_row = None
gender_row = None
# Define conversion functions. Although the variables are not available, we still provide the requested functions.
def convert_trait(value: str):
# No actual data to convert; return None
return None
def convert_age(value: str):
# No actual data to convert; return None
return None
def convert_gender(value: str):
# No actual data to convert; return None
return None
# 3. Save Metadata (Initial Filtering)
# Trait data availability is determined by whether trait_row is None.
is_trait_available = (trait_row is not None)
# We perform the initial validation (is_final=False).
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# 4. Clinical Feature Extraction
# Since trait_row is None, we skip clinical feature extraction as instructed.
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
# Based on the identifiers like "A_19_P00315452", these appear to be microarray probe IDs (not standard human gene symbols).
# Therefore, they need to be mapped to human gene symbols.
print("requires_gene_mapping = True")
# STEP5
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
gene_annotation = get_gene_annotation(soft_file)
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
print("Gene annotation preview:")
print(preview_df(gene_annotation))
# STEP: Gene Identifier Mapping
# 1. Decide which annotation columns match our expression data IDs and gene symbols:
# - The "ID" column in the annotation file corresponds to probe identifiers (e.g., "A_21_P0014386", "A_19_P00315452").
# - The "GENE_SYMBOL" column stores the gene symbol.
# 2. Get the gene mapping dataframe using the relevant columns from the annotation.
gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GENE_SYMBOL')
# 3. Convert probe-level measurements to gene expression data by applying the gene mapping.
gene_data = apply_gene_mapping(gene_data, gene_mapping)
import pandas as pd
# STEP 5: Data Normalization and Linking
# 1. Normalize gene symbols in the obtained gene expression data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file, index=True)
print(f"Saved normalized gene data to {out_gene_data_file}")
# Since in earlier steps trait_row was None, we have no clinical data to link.
# Hence, there's no trait column to process. We'll skip linking and further steps
# that require the trait. However, we must still perform a final validation.
# Prepare a dummy DataFrame for the final validation
dummy_df = pd.DataFrame()
# We must provide is_biased and df to the final validation.
# Because trait data is not available, this dataset won't be usable.
is_biased = False # Arbitrarily set; since trait is unavailable, "is_usable" will be False anyway.
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True, # Gene data is available
is_trait_available=False, # Trait data is not available
is_biased=is_biased,
df=dummy_df,
note="No trait data available; skipping linking."
)
# 6. If data were usable, we would save it; otherwise we do nothing
if is_usable:
print("Data is unexpectedly marked usable, but trait is unavailable. Skipping save.")