|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Allergies" |
|
cohort = "GSE205151" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Allergies" |
|
in_cohort_dir = "../DATA/GEO/Allergies/GSE205151" |
|
|
|
|
|
out_data_file = "./output/preprocess/1/Allergies/GSE205151.csv" |
|
out_gene_data_file = "./output/preprocess/1/Allergies/gene_data/GSE205151.csv" |
|
out_clinical_data_file = "./output/preprocess/1/Allergies/clinical_data/GSE205151.csv" |
|
json_path = "./output/preprocess/1/Allergies/cohort_info.json" |
|
|
|
|
|
|
|
from tools.preprocess import * |
|
|
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] |
|
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] |
|
background_info, clinical_data = get_background_and_clinical_data( |
|
matrix_file, |
|
background_prefixes, |
|
clinical_prefixes |
|
) |
|
|
|
|
|
sample_characteristics_dict = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("Background Information:") |
|
print(background_info) |
|
print("\nSample Characteristics Dictionary:") |
|
print(sample_characteristics_dict) |
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
|
|
|
|
|
|
trait_row = None |
|
age_row = None |
|
gender_row = None |
|
|
|
|
|
def convert_trait(x: str): |
|
""" |
|
Convert a raw string to a binary indicator (0 or 1) or None. |
|
This is a placeholder function: no actual conversion logic is used |
|
here since 'trait_row' is None for this dataset. |
|
""" |
|
return None |
|
|
|
def convert_age(x: str): |
|
""" |
|
Convert a raw string to a float age or None. |
|
This is a placeholder function: no actual conversion logic is used |
|
here since 'age_row' is None for this dataset. |
|
""" |
|
return None |
|
|
|
def convert_gender(x: str): |
|
""" |
|
Convert a raw string to 0 (female), 1 (male), or None. |
|
This is a placeholder function: no actual conversion logic is used |
|
here since 'gender_row' is None for this dataset. |
|
""" |
|
return None |
|
|
|
|
|
is_trait_available = (trait_row is not None) |
|
_ = validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=is_trait_available |
|
) |
|
|
|
|
|
|
|
|
|
|
|
gene_data = get_genetic_data(matrix_file) |
|
|
|
|
|
print(gene_data.index[:20]) |
|
|
|
requires_gene_mapping = False |
|
import pandas as pd |
|
|
|
|
|
|
|
|
|
normalized_gene_data = normalize_gene_symbols_in_index(gene_data) |
|
normalized_gene_data.to_csv(out_gene_data_file, index=True) |
|
print(f"Saved normalized gene data to {out_gene_data_file}") |
|
|
|
|
|
|
|
|
|
|
|
|
|
dummy_df = pd.DataFrame() |
|
|
|
|
|
|
|
is_biased = False |
|
|
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=False, |
|
is_biased=is_biased, |
|
df=dummy_df, |
|
note="No trait data available; skipping linking." |
|
) |
|
|
|
|
|
if is_usable: |
|
print("Data is unexpectedly marked usable, but trait is unavailable. Skipping save.") |