|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Angelman_Syndrome" |
|
cohort = "GSE43900" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Angelman_Syndrome" |
|
in_cohort_dir = "../DATA/GEO/Angelman_Syndrome/GSE43900" |
|
|
|
|
|
out_data_file = "./output/preprocess/1/Angelman_Syndrome/GSE43900.csv" |
|
out_gene_data_file = "./output/preprocess/1/Angelman_Syndrome/gene_data/GSE43900.csv" |
|
out_clinical_data_file = "./output/preprocess/1/Angelman_Syndrome/clinical_data/GSE43900.csv" |
|
json_path = "./output/preprocess/1/Angelman_Syndrome/cohort_info.json" |
|
|
|
|
|
|
|
from tools.preprocess import * |
|
|
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] |
|
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] |
|
background_info, clinical_data = get_background_and_clinical_data( |
|
matrix_file, |
|
background_prefixes, |
|
clinical_prefixes |
|
) |
|
|
|
|
|
sample_characteristics_dict = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("Background Information:") |
|
print(background_info) |
|
print("\nSample Characteristics Dictionary:") |
|
print(sample_characteristics_dict) |
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
trait_row = None |
|
age_row = None |
|
gender_row = None |
|
|
|
|
|
|
|
def convert_trait(x: str) -> int: |
|
|
|
return None |
|
|
|
def convert_age(x: str) -> float: |
|
|
|
return None |
|
|
|
def convert_gender(x: str) -> int: |
|
|
|
return None |
|
|
|
|
|
is_trait_available = (trait_row is not None) |
|
validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=is_trait_available |
|
) |
|
|
|
|
|
|
|
|
|
|
|
gene_data = get_genetic_data(matrix_file) |
|
|
|
|
|
print(gene_data.index[:20]) |
|
|
|
|
|
print("requires_gene_mapping = True") |
|
|
|
|
|
gene_annotation = get_gene_annotation(soft_file) |
|
|
|
|
|
print("Gene annotation preview:") |
|
print(preview_df(gene_annotation)) |
|
|
|
|
|
|
|
probe_col = "ID" |
|
gene_symbol_col = "Gene Symbol" |
|
|
|
|
|
mapping_df = get_gene_mapping(gene_annotation, probe_col, gene_symbol_col) |
|
|
|
|
|
gene_data = apply_gene_mapping(gene_data, mapping_df) |
|
|
|
|
|
print(gene_data.index[:20]) |
|
|
|
|
|
|
|
normalized_gene_data = normalize_gene_symbols_in_index(gene_data) |
|
normalized_gene_data.to_csv(out_gene_data_file) |
|
print(f"Saved normalized gene data to {out_gene_data_file}") |
|
|
|
|
|
if trait_row is None: |
|
|
|
|
|
validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=False |
|
) |
|
print("Trait data not available. Only gene expression data was processed. No final data to save.") |
|
|
|
else: |
|
|
|
selected_clinical_df = geo_select_clinical_features( |
|
clinical_data, |
|
trait, |
|
trait_row, |
|
convert_trait, |
|
age_row, |
|
convert_age, |
|
gender_row, |
|
convert_gender |
|
) |
|
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data) |
|
|
|
|
|
linked_data = handle_missing_values(linked_data, trait) |
|
|
|
|
|
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) |
|
|
|
|
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=True, |
|
is_biased=trait_biased, |
|
df=linked_data, |
|
note="Cohort data successfully processed with trait-based analysis." |
|
) |
|
|
|
|
|
if is_usable: |
|
linked_data.to_csv(out_data_file, index=True) |
|
print(f"Saved final linked data to {out_data_file}") |
|
else: |
|
print("The dataset is not usable for trait-based association. Skipping final output.") |