# Path Configuration | |
from tools.preprocess import * | |
# Processing context | |
trait = "Arrhythmia" | |
cohort = "GSE41177" | |
# Input paths | |
in_trait_dir = "../DATA/GEO/Arrhythmia" | |
in_cohort_dir = "../DATA/GEO/Arrhythmia/GSE41177" | |
# Output paths | |
out_data_file = "./output/preprocess/1/Arrhythmia/GSE41177.csv" | |
out_gene_data_file = "./output/preprocess/1/Arrhythmia/gene_data/GSE41177.csv" | |
out_clinical_data_file = "./output/preprocess/1/Arrhythmia/clinical_data/GSE41177.csv" | |
json_path = "./output/preprocess/1/Arrhythmia/cohort_info.json" | |
# STEP 1 | |
from tools.preprocess import * | |
# 1. Identify the paths to the SOFT file and the matrix file | |
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) | |
# 2. Read the matrix file to obtain background information and sample characteristics data | |
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] | |
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] | |
background_info, clinical_data = get_background_and_clinical_data( | |
matrix_file, | |
background_prefixes, | |
clinical_prefixes | |
) | |
# 3. Obtain the sample characteristics dictionary from the clinical dataframe | |
sample_characteristics_dict = get_unique_values_by_row(clinical_data) | |
# 4. Explicitly print out all the background information and the sample characteristics dictionary | |
print("Background Information:") | |
print(background_info) | |
print("\nSample Characteristics Dictionary:") | |
print(sample_characteristics_dict) | |
# 1. Gene Expression Data Availability | |
# Based on the background info ("microarray analysis..."), we consider that | |
# this dataset likely contains gene expression data. | |
is_gene_available = True | |
# 2.1 Data Availability | |
# The trait (arrhythmia) appears to be constant in all samples (all have AF), | |
# hence it's not useful for association studies. | |
trait_row = None | |
# The 'age' variable is found at key=2 with multiple distinct values. | |
age_row = 2 | |
# The 'gender' variable is found at key=1 with multiple distinct values. | |
gender_row = 1 | |
# 2.2 Data Type Conversion | |
def convert_trait(value: str): | |
# The trait is not actually available (constant across all samples), | |
# so we return None here. | |
return None | |
def convert_age(value: str): | |
# Example entry: "age: 62Y" | |
# We parse the substring after ':' then remove 'Y' and convert to float. | |
try: | |
parts = value.split(':', 1) | |
age_str = parts[1].replace('Y', '').strip() if len(parts) > 1 else '' | |
return float(age_str) | |
except: | |
return None | |
def convert_gender(value: str): | |
# Example entry: "gender: male" | |
# Convert female -> 0, male -> 1 | |
parts = value.split(':', 1) | |
g_str = parts[1].strip().lower() if len(parts) > 1 else '' | |
if g_str == 'male': | |
return 1 | |
elif g_str == 'female': | |
return 0 | |
return None | |
# 3. Save Metadata (Initial Filtering) | |
# trait_row is None => trait data is not available | |
is_trait_available = (trait_row is not None) | |
is_usable = validate_and_save_cohort_info( | |
is_final=False, | |
cohort=cohort, | |
info_path=json_path, | |
is_gene_available=is_gene_available, | |
is_trait_available=is_trait_available | |
) | |
# 4. Clinical Feature Extraction | |
# Since trait_row is None, we skip the clinical feature extraction step. | |
# STEP3 | |
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. | |
gene_data = get_genetic_data(matrix_file) | |
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. | |
print(gene_data.index[:20]) | |
# Based on the given probe IDs (e.g., "1007_s_at", "1053_at"), they are Affymetrix probe set IDs and not human gene symbols. | |
# Therefore, gene mapping to human gene symbols is required. | |
print("requires_gene_mapping = True") | |
# STEP5 | |
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. | |
gene_annotation = get_gene_annotation(soft_file) | |
# 2. Use the 'preview_df' function from the library to preview the data and print out the results. | |
print("Gene annotation preview:") | |
print(preview_df(gene_annotation)) | |
# STEP: Gene Identifier Mapping | |
# 1. Identify the columns corresponding to the probe identifiers and the gene symbols | |
# From the annotation preview, the 'ID' column matches the probe identifiers in our gene_data, | |
# and the 'Gene Symbol' column stores the gene symbols. | |
probe_col = "ID" | |
symbol_col = "Gene Symbol" | |
# 2. Extract the gene mapping DataFrame using the library function | |
gene_mapping_df = get_gene_mapping(gene_annotation, probe_col, symbol_col) | |
# 3. Convert probe-level measurements to gene-level expression data | |
gene_data = apply_gene_mapping(gene_data, gene_mapping_df) | |
# STEP 7: Data Normalization and Linking | |
import pandas as pd | |
# 1. Normalize gene symbols in the obtained gene expression data | |
normalized_gene_data = normalize_gene_symbols_in_index(gene_data) | |
normalized_gene_data.to_csv(out_gene_data_file) | |
print(f"Saved normalized gene data to {out_gene_data_file}") | |
# Since trait_row is None (trait is not available), we cannot link clinical data or perform trait-based analysis. | |
# We'll skip linking and bias evaluation of the trait. | |
# We'll still perform the final validation to record that this cohort lacks trait data. | |
placeholder_df = pd.DataFrame() # Empty placeholder | |
is_usable = validate_and_save_cohort_info( | |
is_final=True, | |
cohort=cohort, | |
info_path=json_path, | |
is_gene_available=True, | |
is_trait_available=False, # trait not available | |
is_biased=False, # No trait → can't evaluate trait bias, set to False to proceed | |
df=placeholder_df, # Required argument, though empty | |
note="No trait data available in the cohort." | |
) | |
# If the dataset is usable (unlikely since trait is missing), we would save final linked data. | |
if is_usable: | |
# Normally we would have a "linked_data" DataFrame to save; | |
# however, there's no trait, so no final data is produced. | |
pass | |
else: | |
print("Trait not available; skipping final data linkage and output.") |