|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Asthma" |
|
cohort = "GSE123088" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Asthma" |
|
in_cohort_dir = "../DATA/GEO/Asthma/GSE123088" |
|
|
|
|
|
out_data_file = "./output/preprocess/1/Asthma/GSE123088.csv" |
|
out_gene_data_file = "./output/preprocess/1/Asthma/gene_data/GSE123088.csv" |
|
out_clinical_data_file = "./output/preprocess/1/Asthma/clinical_data/GSE123088.csv" |
|
json_path = "./output/preprocess/1/Asthma/cohort_info.json" |
|
|
|
|
|
from tools.preprocess import * |
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] |
|
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] |
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) |
|
|
|
|
|
sample_characteristics_dict = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("Background Information:") |
|
print(background_info) |
|
print("Sample Characteristics Dictionary:") |
|
print(sample_characteristics_dict) |
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
|
|
trait_row = 1 |
|
age_row = 3 |
|
gender_row = 2 |
|
|
|
|
|
def convert_trait(x: str): |
|
""" |
|
Convert trait to binary: |
|
1 -> Asthma |
|
0 -> Non-Asthma |
|
If cannot parse, return None. |
|
""" |
|
parts = x.split(":") |
|
if len(parts) < 2: |
|
return None |
|
value = parts[1].strip().lower() |
|
|
|
return 1 if "asthma" in value else 0 |
|
|
|
def convert_age(x: str): |
|
""" |
|
Convert age to a float (continuous). |
|
Unknown or unparsable -> None |
|
""" |
|
parts = x.split(":") |
|
if len(parts) < 2: |
|
return None |
|
value = parts[1].strip() |
|
try: |
|
return float(value) |
|
except: |
|
return None |
|
|
|
def convert_gender(x: str): |
|
""" |
|
Convert gender to binary: |
|
0 -> Female |
|
1 -> Male |
|
Unknown -> None |
|
""" |
|
parts = x.split(":") |
|
if len(parts) < 2: |
|
return None |
|
value = parts[1].strip().lower() |
|
if value == "male": |
|
return 1 |
|
elif value == "female": |
|
return 0 |
|
else: |
|
return None |
|
|
|
|
|
is_trait_available = (trait_row is not None) |
|
is_usable = validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=is_trait_available |
|
) |
|
|
|
|
|
if trait_row is not None: |
|
df_clinical = geo_select_clinical_features( |
|
clinical_df=clinical_data, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait, |
|
age_row=age_row, |
|
convert_age=convert_age, |
|
gender_row=gender_row, |
|
convert_gender=convert_gender |
|
) |
|
|
|
preview_result = preview_df(df_clinical) |
|
print("Preview of extracted clinical features:\n", preview_result) |
|
|
|
|
|
df_clinical.to_csv(out_clinical_data_file, index=False) |
|
|
|
|
|
gene_data = get_genetic_data(matrix_file) |
|
|
|
|
|
print(gene_data.index[:20]) |
|
|
|
|
|
|
|
requires_gene_mapping = True |
|
|
|
|
|
gene_annotation = get_gene_annotation(soft_file) |
|
|
|
|
|
print("Gene annotation preview:") |
|
print(preview_df(gene_annotation)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
mapping_df = get_gene_mapping( |
|
annotation=gene_annotation, |
|
prob_col="ID", |
|
gene_col="ENTREZ_GENE_ID" |
|
) |
|
|
|
|
|
gene_data = apply_gene_mapping(gene_data, mapping_df) |
|
|
|
|
|
|
|
|
|
normalized_gene_data = normalize_gene_symbols_in_index(gene_data) |
|
normalized_gene_data.to_csv(out_gene_data_file) |
|
|
|
|
|
linked_data = geo_link_clinical_genetic_data(df_clinical, normalized_gene_data) |
|
|
|
|
|
linked_data = handle_missing_values(linked_data, trait) |
|
|
|
|
|
is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data, trait) |
|
|
|
|
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=True, |
|
is_biased=is_trait_biased, |
|
df=unbiased_linked_data |
|
) |
|
|
|
|
|
if is_usable: |
|
unbiased_linked_data.to_csv(out_data_file) |