Liu-Hy's picture
Add files using upload-large-folder tool
a5a8278 verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Bipolar_disorder"
cohort = "GSE67311"
# Input paths
in_trait_dir = "../DATA/GEO/Bipolar_disorder"
in_cohort_dir = "../DATA/GEO/Bipolar_disorder/GSE67311"
# Output paths
out_data_file = "./output/preprocess/1/Bipolar_disorder/GSE67311.csv"
out_gene_data_file = "./output/preprocess/1/Bipolar_disorder/gene_data/GSE67311.csv"
out_clinical_data_file = "./output/preprocess/1/Bipolar_disorder/clinical_data/GSE67311.csv"
json_path = "./output/preprocess/1/Bipolar_disorder/cohort_info.json"
# STEP1
from tools.preprocess import *
# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("Sample Characteristics Dictionary:")
print(sample_characteristics_dict)
# 1. Gene Expression Data Availability
# Based on the background info, the dataset used Affymetrix Human Gene ST arrays, so it likely contains gene expression data.
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# 2.1 Identify the row keys (trait_row, age_row, gender_row)
# From the provided sample characteristics dictionary:
# Row 7: ['bipolar disorder: No', 'bipolar disorder: -', 'bipolar disorder: Yes']
# No row references age or gender.
trait_row = 7
age_row = None
gender_row = None
# 2.2 Define conversion functions for each variable
def convert_trait(value: str):
# Extract the substring after the colon.
# Map 'Yes' -> 1, 'No' -> 0. Otherwise return None.
# Example: "bipolar disorder: Yes" -> "Yes" -> 1
# "bipolar disorder: No" -> "No" -> 0
# "bipolar disorder: -" -> None
if not isinstance(value, str):
return None
parts = value.split(':', 1)
if len(parts) < 2:
return None
val = parts[1].strip().lower()
if val == 'yes':
return 1
elif val == 'no':
return 0
else:
return None
# For completeness, though they won't be used since age_row and gender_row are None:
def convert_age(value: str):
return None
def convert_gender(value: str):
return None
# 3. Save Metadata (initial filtering) using validate_and_save_cohort_info
is_trait_available = trait_row is not None
is_usable = validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# 4. Clinical Feature Extraction (only if trait_row is not None)
if trait_row is not None:
selected_clinical_df = geo_select_clinical_features(
clinical_data, # "clinical_data" is assumed to be available from previous steps
trait=trait, # "Bipolar_disorder"
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the resulting DataFrame
preview = preview_df(selected_clinical_df)
print("Preview of extracted clinical features:", preview)
# Save the clinical features to CSV
selected_clinical_df.to_csv(out_clinical_data_file, index=False)
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
# These numeric IDs are not standard human gene symbols. They likely correspond to probe identifiers
# that require mapping to gene symbols.
print("requires_gene_mapping = True")
# STEP5
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
gene_annotation = get_gene_annotation(soft_file)
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
print("Gene annotation preview:")
print(preview_df(gene_annotation))
# STEP6: Gene Identifier Mapping
# 1. Identify the columns in gene_annotation that match the expression data IDs and store gene symbol information.
# From the preview, 'ID' corresponds to the same numeric probe identifiers in gene_data,
# and 'gene_assignment' contains the gene symbol info (OR4F16, OR4F29, etc.) among other annotations.
probe_col = "ID"
symbol_col = "gene_assignment"
# 2. Get the gene mapping dataframe from the annotation dataframe.
mapping_df = get_gene_mapping(gene_annotation, prob_col=probe_col, gene_col=symbol_col)
# 3. Apply this mapping to convert the probe-level expression data into a gene-level expression dataframe.
gene_data = apply_gene_mapping(gene_data, mapping_df)
print("Gene mapping and aggregation complete. Final gene_data shape:", gene_data.shape)
# STEP7
# 1. Normalize the obtained gene data using the NCBI Gene synonym database
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file)
# 2. Link the clinical and genetic data
# Use the correct variable name from previous steps: "selected_clinical_df"
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
# 3. Handle missing values systematically using the actual trait name
linked_data_processed = handle_missing_values(linked_data, trait_col=trait)
# 4. Check for biased trait and remove any biased demographic features
trait_biased, linked_data_final = judge_and_remove_biased_features(linked_data_processed, trait)
# 5. Final quality validation and metadata saving
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data_final,
note="Dataset processed with GEO pipeline. Checked for missing values and bias."
)
# 6. If dataset is usable, save the final linked data
if is_usable:
linked_data_final.to_csv(out_data_file)