Liu-Hy commited on
Commit
a5a8278
·
verified ·
1 Parent(s): 187fbda

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +30 -0
  2. p1/preprocess/Atrial_Fibrillation/GSE115574.csv +3 -0
  3. p1/preprocess/Atrial_Fibrillation/GSE235307.csv +3 -0
  4. p1/preprocess/Atrial_Fibrillation/gene_data/GSE115574.csv +3 -0
  5. p1/preprocess/Atrial_Fibrillation/gene_data/GSE235307.csv +3 -0
  6. p1/preprocess/Atrial_Fibrillation/gene_data/GSE41177.csv +0 -0
  7. p1/preprocess/Autism_spectrum_disorder_(ASD)/GSE111175.csv +3 -0
  8. p1/preprocess/Autism_spectrum_disorder_(ASD)/GSE42133.csv +3 -0
  9. p1/preprocess/Autism_spectrum_disorder_(ASD)/GSE65106.csv +3 -0
  10. p1/preprocess/Autism_spectrum_disorder_(ASD)/GSE87847.csv +3 -0
  11. p1/preprocess/Autism_spectrum_disorder_(ASD)/GSE89594.csv +3 -0
  12. p1/preprocess/Autism_spectrum_disorder_(ASD)/code/GSE42133.py +187 -0
  13. p1/preprocess/Autism_spectrum_disorder_(ASD)/gene_data/GSE111175.csv +3 -0
  14. p1/preprocess/Autism_spectrum_disorder_(ASD)/gene_data/GSE123302.csv +1 -0
  15. p1/preprocess/Autism_spectrum_disorder_(ASD)/gene_data/GSE285666.csv +3 -0
  16. p1/preprocess/Autism_spectrum_disorder_(ASD)/gene_data/GSE42133.csv +3 -0
  17. p1/preprocess/Autism_spectrum_disorder_(ASD)/gene_data/GSE57802.csv +3 -0
  18. p1/preprocess/Autism_spectrum_disorder_(ASD)/gene_data/GSE65106.csv +3 -0
  19. p1/preprocess/Autism_spectrum_disorder_(ASD)/gene_data/GSE87847.csv +3 -0
  20. p1/preprocess/Autism_spectrum_disorder_(ASD)/gene_data/GSE89594.csv +3 -0
  21. p1/preprocess/Autoinflammatory_Disorders/GSE80060.csv +3 -0
  22. p1/preprocess/Autoinflammatory_Disorders/clinical_data/GSE43553.csv +2 -0
  23. p1/preprocess/Autoinflammatory_Disorders/clinical_data/GSE80060.csv +2 -0
  24. p1/preprocess/Autoinflammatory_Disorders/code/GSE43553.py +151 -0
  25. p1/preprocess/Autoinflammatory_Disorders/code/GSE80060.py +158 -0
  26. p1/preprocess/Autoinflammatory_Disorders/code/TCGA.py +51 -0
  27. p1/preprocess/Autoinflammatory_Disorders/cohort_info.json +1 -0
  28. p1/preprocess/Autoinflammatory_Disorders/gene_data/GSE43553.csv +3 -0
  29. p1/preprocess/Autoinflammatory_Disorders/gene_data/GSE80060.csv +3 -0
  30. p1/preprocess/Bile_Duct_Cancer/GSE131027.csv +3 -0
  31. p1/preprocess/Bile_Duct_Cancer/TCGA.csv +3 -0
  32. p1/preprocess/Bile_Duct_Cancer/clinical_data/GSE107754.csv +3 -0
  33. p1/preprocess/Bile_Duct_Cancer/clinical_data/GSE131027.csv +2 -0
  34. p1/preprocess/Bile_Duct_Cancer/clinical_data/TCGA.csv +46 -0
  35. p1/preprocess/Bile_Duct_Cancer/code/GSE107754.py +169 -0
  36. p1/preprocess/Bile_Duct_Cancer/code/GSE131027.py +162 -0
  37. p1/preprocess/Bile_Duct_Cancer/code/TCGA.py +119 -0
  38. p1/preprocess/Bile_Duct_Cancer/cohort_info.json +1 -0
  39. p1/preprocess/Bile_Duct_Cancer/gene_data/GSE107754.csv +3 -0
  40. p1/preprocess/Bile_Duct_Cancer/gene_data/GSE131027.csv +3 -0
  41. p1/preprocess/Bile_Duct_Cancer/gene_data/TCGA.csv +3 -0
  42. p1/preprocess/Bipolar_disorder/GSE120340.csv +0 -0
  43. p1/preprocess/Bipolar_disorder/GSE120342.csv +0 -0
  44. p1/preprocess/Bipolar_disorder/GSE46416.csv +0 -0
  45. p1/preprocess/Bipolar_disorder/GSE46449.csv +3 -0
  46. p1/preprocess/Bipolar_disorder/GSE92538.csv +3 -0
  47. p1/preprocess/Bipolar_disorder/clinical_data/GSE120340.csv +2 -0
  48. p1/preprocess/Bipolar_disorder/clinical_data/GSE120342.csv +2 -0
  49. p1/preprocess/Bipolar_disorder/clinical_data/GSE46416.csv +2 -0
  50. p1/preprocess/Bipolar_disorder/clinical_data/GSE46449.csv +3 -0
.gitattributes CHANGED
@@ -952,3 +952,33 @@ p1/preprocess/Alzheimers_Disease/gene_data/GSE122063.csv filter=lfs diff=lfs mer
952
  p1/preprocess/Alzheimers_Disease/gene_data/GSE132903.csv filter=lfs diff=lfs merge=lfs -text
953
  p1/preprocess/Alzheimers_Disease/GSE132903.csv filter=lfs diff=lfs merge=lfs -text
954
  p1/preprocess/Von_Willebrand_Disease/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
952
  p1/preprocess/Alzheimers_Disease/gene_data/GSE132903.csv filter=lfs diff=lfs merge=lfs -text
953
  p1/preprocess/Alzheimers_Disease/GSE132903.csv filter=lfs diff=lfs merge=lfs -text
954
  p1/preprocess/Von_Willebrand_Disease/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
955
+ p1/preprocess/Atrial_Fibrillation/GSE115574.csv filter=lfs diff=lfs merge=lfs -text
956
+ p1/preprocess/Atrial_Fibrillation/gene_data/GSE115574.csv filter=lfs diff=lfs merge=lfs -text
957
+ p1/preprocess/Autism_spectrum_disorder_(ASD)/GSE87847.csv filter=lfs diff=lfs merge=lfs -text
958
+ p1/preprocess/Autism_spectrum_disorder_(ASD)/GSE65106.csv filter=lfs diff=lfs merge=lfs -text
959
+ p1/preprocess/Autism_spectrum_disorder_(ASD)/gene_data/GSE285666.csv filter=lfs diff=lfs merge=lfs -text
960
+ p1/preprocess/Atrial_Fibrillation/GSE235307.csv filter=lfs diff=lfs merge=lfs -text
961
+ p1/preprocess/Autism_spectrum_disorder_(ASD)/GSE89594.csv filter=lfs diff=lfs merge=lfs -text
962
+ p1/preprocess/Von_Willebrand_Disease/TCGA.csv filter=lfs diff=lfs merge=lfs -text
963
+ p1/preprocess/Atrial_Fibrillation/gene_data/GSE235307.csv filter=lfs diff=lfs merge=lfs -text
964
+ p1/preprocess/Autoinflammatory_Disorders/gene_data/GSE43553.csv filter=lfs diff=lfs merge=lfs -text
965
+ p1/preprocess/Autism_spectrum_disorder_(ASD)/gene_data/GSE87847.csv filter=lfs diff=lfs merge=lfs -text
966
+ p1/preprocess/Autism_spectrum_disorder_(ASD)/gene_data/GSE65106.csv filter=lfs diff=lfs merge=lfs -text
967
+ p1/preprocess/Autism_spectrum_disorder_(ASD)/gene_data/GSE57802.csv filter=lfs diff=lfs merge=lfs -text
968
+ p1/preprocess/Autism_spectrum_disorder_(ASD)/GSE111175.csv filter=lfs diff=lfs merge=lfs -text
969
+ p1/preprocess/Bile_Duct_Cancer/TCGA.csv filter=lfs diff=lfs merge=lfs -text
970
+ p1/preprocess/Autism_spectrum_disorder_(ASD)/gene_data/GSE89594.csv filter=lfs diff=lfs merge=lfs -text
971
+ p1/preprocess/Autism_spectrum_disorder_(ASD)/GSE42133.csv filter=lfs diff=lfs merge=lfs -text
972
+ p1/preprocess/Bile_Duct_Cancer/GSE131027.csv filter=lfs diff=lfs merge=lfs -text
973
+ p1/preprocess/Autism_spectrum_disorder_(ASD)/gene_data/GSE111175.csv filter=lfs diff=lfs merge=lfs -text
974
+ p1/preprocess/Bile_Duct_Cancer/gene_data/GSE107754.csv filter=lfs diff=lfs merge=lfs -text
975
+ p1/preprocess/Bile_Duct_Cancer/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
976
+ p1/preprocess/Bile_Duct_Cancer/gene_data/GSE131027.csv filter=lfs diff=lfs merge=lfs -text
977
+ p1/preprocess/Autism_spectrum_disorder_(ASD)/gene_data/GSE42133.csv filter=lfs diff=lfs merge=lfs -text
978
+ p1/preprocess/Autoinflammatory_Disorders/GSE80060.csv filter=lfs diff=lfs merge=lfs -text
979
+ p1/preprocess/Bipolar_disorder/GSE46449.csv filter=lfs diff=lfs merge=lfs -text
980
+ p1/preprocess/Bipolar_disorder/gene_data/GSE62191.csv filter=lfs diff=lfs merge=lfs -text
981
+ p1/preprocess/Autoinflammatory_Disorders/gene_data/GSE80060.csv filter=lfs diff=lfs merge=lfs -text
982
+ p1/preprocess/Bipolar_disorder/gene_data/GSE45484.csv filter=lfs diff=lfs merge=lfs -text
983
+ p1/preprocess/Bipolar_disorder/GSE92538.csv filter=lfs diff=lfs merge=lfs -text
984
+ p1/preprocess/Bipolar_disorder/gene_data/GSE46449.csv filter=lfs diff=lfs merge=lfs -text
p1/preprocess/Atrial_Fibrillation/GSE115574.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3daad640890cf0559e32fcc84a3fdb4e324a6b9efbbe24d355b043bc9baf340a
3
+ size 15534640
p1/preprocess/Atrial_Fibrillation/GSE235307.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ad0f7bf3d07aff5ac673d3e1721eaa5233fa6f9fbf4912b231aedc6f1593c391
3
+ size 30127846
p1/preprocess/Atrial_Fibrillation/gene_data/GSE115574.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:456a00d22351d374c6e573fb5f8cd9aee06d8e578a5597254ec39e90ed25195d
3
+ size 15534388
p1/preprocess/Atrial_Fibrillation/gene_data/GSE235307.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9d40bfec5aee125dd279e5a4a5b658d3b8c0ce73e2f05846a13e621756e1927e
3
+ size 30126272
p1/preprocess/Atrial_Fibrillation/gene_data/GSE41177.csv ADDED
The diff for this file is too large to render. See raw diff
 
p1/preprocess/Autism_spectrum_disorder_(ASD)/GSE111175.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b252d02a516acff5b0c923fb1de59bb71f180797456340473a8b986e2b11f2ec
3
+ size 36331282
p1/preprocess/Autism_spectrum_disorder_(ASD)/GSE42133.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0a08501bec3a2536e27659ce4e83df4d328c7e8649d8b1ae961d7329f9fe16e2
3
+ size 37924345
p1/preprocess/Autism_spectrum_disorder_(ASD)/GSE65106.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:39fd1cdbb61bc441fe1a0b41b3060ef3bf221b7392842634e6164cb9a0aab0f9
3
+ size 19282521
p1/preprocess/Autism_spectrum_disorder_(ASD)/GSE87847.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b313364d732229373da3f5569dfebca20ab5c6a325190a9d69751b1a118948f8
3
+ size 16974075
p1/preprocess/Autism_spectrum_disorder_(ASD)/GSE89594.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2f1b79a3b2737c066109d8f618ade6f457e6d5ec6145fc7f1605a0b5d029e6ef
3
+ size 23812563
p1/preprocess/Autism_spectrum_disorder_(ASD)/code/GSE42133.py ADDED
@@ -0,0 +1,187 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Autism_spectrum_disorder_(ASD)"
6
+ cohort = "GSE42133"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Autism_spectrum_disorder_(ASD)"
10
+ in_cohort_dir = "../DATA/GEO/Autism_spectrum_disorder_(ASD)/GSE42133"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Autism_spectrum_disorder_(ASD)/GSE42133.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Autism_spectrum_disorder_(ASD)/gene_data/GSE42133.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Autism_spectrum_disorder_(ASD)/clinical_data/GSE42133.csv"
16
+ json_path = "./output/preprocess/1/Autism_spectrum_disorder_(ASD)/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
27
+
28
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
29
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
30
+
31
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
32
+ print("Background Information:")
33
+ print(background_info)
34
+ print("Sample Characteristics Dictionary:")
35
+ print(sample_characteristics_dict)
36
+ # 1. Gene Expression Data Availability
37
+ is_gene_available = True # Based on the background info describing leukocyte gene expression
38
+
39
+ # 2. Variable Availability
40
+ # From the sample characteristics dictionary:
41
+ # 0 -> ['dx (diagnosis): ASD', 'dx (diagnosis): Control']
42
+ # 1 -> ['gender: male']
43
+ # 2 -> ['cell type: leukocyte']
44
+
45
+ # Trait information is in key=0 with two unique values (ASD vs Control), so it's available.
46
+ trait_row = 0
47
+
48
+ # There is no mention of an age variable, so it's unavailable.
49
+ age_row = None
50
+
51
+ # Gender has only one unique value "male", so it is a constant feature and thus considered not available.
52
+ gender_row = None
53
+
54
+ # 2.2 Data Type Conversion Functions
55
+ def convert_trait(value: str):
56
+ """
57
+ Convert the trait (diagnosis) to binary.
58
+ ASD -> 1
59
+ Control -> 0
60
+ Else -> None
61
+ """
62
+ # Extract substring after the colon
63
+ parts = value.split(':', 1)
64
+ val = parts[-1].strip().lower()
65
+ if val == 'asd':
66
+ return 1
67
+ elif val == 'control':
68
+ return 0
69
+ else:
70
+ return None
71
+
72
+ def convert_age(value: str):
73
+ """
74
+ Age data is not available, so return None.
75
+ """
76
+ return None
77
+
78
+ def convert_gender(value: str):
79
+ """
80
+ Convert gender to binary.
81
+ female -> 0
82
+ male -> 1
83
+ Else -> None
84
+ (Not used here because gender is unavailable.)
85
+ """
86
+ parts = value.split(':', 1)
87
+ val = parts[-1].strip().lower()
88
+ if val == 'female':
89
+ return 0
90
+ elif val == 'male':
91
+ return 1
92
+ else:
93
+ return None
94
+
95
+ # 3. Initial Filtering and Save Metadata
96
+ is_trait_available = (trait_row is not None)
97
+ is_usable = validate_and_save_cohort_info(
98
+ is_final=False,
99
+ cohort=cohort,
100
+ info_path=json_path,
101
+ is_gene_available=is_gene_available,
102
+ is_trait_available=is_trait_available
103
+ )
104
+
105
+ # 4. Clinical Feature Extraction if trait is available
106
+ if is_trait_available:
107
+ selected_clinical_df = geo_select_clinical_features(
108
+ clinical_data,
109
+ trait=trait,
110
+ trait_row=trait_row,
111
+ convert_trait=convert_trait,
112
+ age_row=age_row,
113
+ convert_age=convert_age,
114
+ gender_row=gender_row,
115
+ convert_gender=convert_gender
116
+ )
117
+
118
+ # Observe the extracted clinical DataFrame
119
+ preview_result = preview_df(selected_clinical_df, n=5)
120
+ print("Preview of selected clinical features:", preview_result)
121
+
122
+ # Save the clinical features
123
+ selected_clinical_df.to_csv(out_clinical_data_file, index=False)
124
+ # STEP3
125
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
126
+ gene_data = get_genetic_data(matrix_file)
127
+
128
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
129
+ print(gene_data.index[:20])
130
+ # These "ILMN_xxxxxxx" are Illumina probe IDs, not standard human gene symbols.
131
+ # Hence, they require mapping to gene symbols.
132
+
133
+ requires_gene_mapping = True
134
+ # STEP5
135
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
136
+ gene_annotation = get_gene_annotation(soft_file)
137
+
138
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
139
+ print("Gene annotation preview:")
140
+ print(preview_df(gene_annotation))
141
+ # STEP: Gene Identifier Mapping
142
+
143
+ # 1. Identify the relevant columns in the annotation dataframe:
144
+ # - The gene expression dataset has identifiers like "ILMN_xxxxxx" in its index, which matches the "ID" column.
145
+ # - The gene symbol information appears to be in the "Symbol" column.
146
+
147
+ # 2. Extract the mapping between "ID" and "Symbol" from 'gene_annotation'.
148
+ mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="Symbol")
149
+
150
+ # 3. Apply the mapping to convert probe-level data to gene-level data.
151
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
152
+
153
+ # (Optional) A quick check to see the dimension and a preview of the newly mapped gene_data.
154
+ print("Gene data shape after mapping:", gene_data.shape)
155
+ print("Gene data head after mapping:")
156
+ print(gene_data.head())
157
+ # STEP7
158
+
159
+ # 1. Normalize the obtained gene data using the NCBI Gene synonym database
160
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
161
+ normalized_gene_data.to_csv(out_gene_data_file)
162
+
163
+ # 2. Link the clinical and genetic data
164
+ # Replace the undefined 'clinical_features' with the 'selected_clinical_df' from previous steps
165
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
166
+
167
+ # 3. Handle missing values systematically
168
+ linked_data_processed = handle_missing_values(linked_data, trait_col=trait)
169
+
170
+ # 4. Check for biased trait and remove any biased demographic features
171
+ trait_biased, linked_data_final = judge_and_remove_biased_features(linked_data_processed, trait)
172
+
173
+ # 5. Final quality validation and metadata saving
174
+ is_usable = validate_and_save_cohort_info(
175
+ is_final=True,
176
+ cohort=cohort,
177
+ info_path=json_path,
178
+ is_gene_available=True,
179
+ is_trait_available=True,
180
+ is_biased=trait_biased,
181
+ df=linked_data_final,
182
+ note="Dataset processed with GEO pipeline. Checked for missing values and bias."
183
+ )
184
+
185
+ # 6. If dataset is usable, save the final linked data
186
+ if is_usable:
187
+ linked_data_final.to_csv(out_data_file)
p1/preprocess/Autism_spectrum_disorder_(ASD)/gene_data/GSE111175.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d4fd747838f3aea1a8b881de3a4d7798477ea2093688ee30f40ff841c95bcb5
3
+ size 36329712
p1/preprocess/Autism_spectrum_disorder_(ASD)/gene_data/GSE123302.csv ADDED
@@ -0,0 +1 @@
 
 
1
+ ID,GSM3499537,GSM3499538,GSM3499539,GSM3499540,GSM3499541,GSM3499542,GSM3499543,GSM3499544,GSM3499545,GSM3499546,GSM3499547,GSM3499548,GSM3499549,GSM3499550,GSM3499551,GSM3499552,GSM3499553,GSM3499554,GSM3499555,GSM3499556,GSM3499557,GSM3499558,GSM3499559,GSM3499560,GSM3499561,GSM3499562,GSM3499563,GSM3499564,GSM3499565,GSM3499566,GSM3499567,GSM3499568,GSM3499569,GSM3499570,GSM3499571,GSM3499572,GSM3499573,GSM3499574,GSM3499575,GSM3499576,GSM3499577,GSM3499578,GSM3499579,GSM3499580,GSM3499581,GSM3499582,GSM3499583,GSM3499584,GSM3499585,GSM3499586,GSM3499587,GSM3499588,GSM3499589,GSM3499590,GSM3499591,GSM3499592,GSM3499593,GSM3499594,GSM3499595,GSM3499596,GSM3499597,GSM3499598,GSM3499599,GSM3499600,GSM3499601,GSM3499602,GSM3499603,GSM3499604,GSM3499605,GSM3499606,GSM3499607,GSM3499608,GSM3499609,GSM3499610,GSM3499611,GSM3499612,GSM3499613,GSM3499614,GSM3499615,GSM3499616,GSM3499617,GSM3499618,GSM3499619,GSM3499620,GSM3499621,GSM3499622,GSM3499623,GSM3499624,GSM3499625,GSM3499626,GSM3499627,GSM3499628,GSM3499629,GSM3499630,GSM3499631,GSM3499632,GSM3499633,GSM3499634,GSM3499635,GSM3499636,GSM3499637,GSM3499638,GSM3499639,GSM3499640,GSM3499641,GSM3499642,GSM3499643,GSM3499644,GSM3499645,GSM3499646,GSM3499647,GSM3499648,GSM3499649,GSM3499650,GSM3499651,GSM3499652,GSM3499653,GSM3499654,GSM3499655,GSM3499656,GSM3499657,GSM3499658,GSM3499659,GSM3499660,GSM3499661,GSM3499662,GSM3499663,GSM3499664,GSM3499665,GSM3499666,GSM3499667,GSM3499668,GSM3499669,GSM3499670,GSM3499671,GSM3499672,GSM3499673,GSM3499674,GSM3499675,GSM3499676,GSM3499677,GSM3499678,GSM3499679,GSM3499680,GSM3499681,GSM3499682,GSM3499683,GSM3499684,GSM3499685,GSM3499686,GSM3499687,GSM3499688,GSM3499689,GSM3499690,GSM3499691,GSM3499692,GSM3499693,GSM3499694,GSM3499695,GSM3499696,GSM3499697,GSM3499698,GSM3499699,GSM3499700,GSM3499701,GSM3499702,GSM3499703,GSM3499704,GSM3499705,GSM3499706,GSM3499707,GSM3499708,GSM3499709,GSM3499710,GSM3499711,GSM3499712,GSM3499713,GSM3499714,GSM3499715,GSM3499716,GSM3499717,GSM3499718,GSM3499719,GSM3499720,GSM3499721,GSM3499722,GSM3499723,GSM3499724,GSM3499725,GSM3499726,GSM3499727,GSM3499728,GSM3499729,GSM3499730,GSM3499731,GSM3499732,GSM3499733,GSM3499734,GSM3499735,GSM3499736,GSM3499737,GSM3499738,GSM3499739,GSM3499740,GSM3499741,GSM3499742,GSM3499743,GSM3499744,GSM3499745,GSM3499746,GSM3499747,GSM3499748,GSM3499749,GSM3499750,GSM3499751,GSM3499752,GSM3499753,GSM3499754,GSM3499755,GSM3499756,GSM3499757,GSM3499758,GSM3499759,GSM3499760
p1/preprocess/Autism_spectrum_disorder_(ASD)/gene_data/GSE285666.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e1fec8c851bc39edce7b7408d61853a2a6d2a6e46991b19a804616d9896b9a17
3
+ size 12878916
p1/preprocess/Autism_spectrum_disorder_(ASD)/gene_data/GSE42133.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da49f29f71be670f8ac15b81887e3365e01d9175d7722033154f03884683d90d
3
+ size 37923730
p1/preprocess/Autism_spectrum_disorder_(ASD)/gene_data/GSE57802.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:67464965939f3be0671ede96503c02e46f652f5fcdd1a69a40a1ddc90851cd36
3
+ size 16352073
p1/preprocess/Autism_spectrum_disorder_(ASD)/gene_data/GSE65106.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ba36a56836f25c628cc7f6721d0b891f0a8f089e9041023fa41adfb38bdd2025
3
+ size 19281941
p1/preprocess/Autism_spectrum_disorder_(ASD)/gene_data/GSE87847.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7a6faf5ecfc7862999021b37b56766fd4e3dd69c77702d1bfb9a9e2dee51d4fb
3
+ size 16973297
p1/preprocess/Autism_spectrum_disorder_(ASD)/gene_data/GSE89594.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d76a3967959d50c84ec6d36a0c8c56926580b854240c2e6d194762f3630a0a5c
3
+ size 23811303
p1/preprocess/Autoinflammatory_Disorders/GSE80060.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8d4d57d05931fc6f3b2f70aeabb30ec868a7316087a64d4188a5d9452d97fc40
3
+ size 45737271
p1/preprocess/Autoinflammatory_Disorders/clinical_data/GSE43553.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ GSM1065191,GSM1065192,GSM1065193,GSM1065194,GSM1065195,GSM1065196,GSM1065197,GSM1065198,GSM1065199,GSM1065200,GSM1065201,GSM1065202,GSM1065203,GSM1065204,GSM1065205,GSM1065206,GSM1065207,GSM1065208,GSM1065209,GSM1065210,GSM1065211,GSM1065212,GSM1065213,GSM1065214,GSM1065215,GSM1065216,GSM1065217,GSM1065218,GSM1065219,GSM1065220,GSM1065221,GSM1065222,GSM1065223,GSM1065224,GSM1065225,GSM1065226,GSM1065227,GSM1065228,GSM1065229,GSM1065230,GSM1065231,GSM1065232,GSM1065233,GSM1065234,GSM1065235,GSM1065236,GSM1065237,GSM1065238,GSM1065239,GSM1065240,GSM1065241,GSM1065242,GSM1065243,GSM1065244,GSM1065245,GSM1065246,GSM1065247,GSM1065248,GSM1065249,GSM1065250,GSM1065251,GSM1065252,GSM1065253,GSM1065254,GSM1065255,GSM1065256,GSM1065257,GSM1065258,GSM1065259,GSM1065260,GSM1065261,GSM1065262,GSM1065263,GSM1065264,GSM1065265,GSM1065266,GSM1065267,GSM1065268,GSM1065269,GSM1065270,GSM1065271,GSM1065272,GSM1065273,GSM1065274,GSM1065275,GSM1065276,GSM1065277,GSM1065278,GSM1065279,GSM1065280,GSM1065281,GSM1065282,GSM1065283,GSM1065284,GSM1065285,GSM1065286,GSM1065287,GSM1065288,GSM1065289,GSM1065290
2
+ 1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,,,,,,,,,,,,,,,,,,,,,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,,,,,,,,,,,,,,,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
p1/preprocess/Autoinflammatory_Disorders/clinical_data/GSE80060.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ GSM2111993,GSM2111994,GSM2111995,GSM2111996,GSM2111997,GSM2111998,GSM2111999,GSM2112000,GSM2112001,GSM2112002,GSM2112003,GSM2112004,GSM2112005,GSM2112006,GSM2112007,GSM2112008,GSM2112009,GSM2112010,GSM2112011,GSM2112012,GSM2112013,GSM2112014,GSM2112015,GSM2112016,GSM2112017,GSM2112018,GSM2112019,GSM2112020,GSM2112021,GSM2112022,GSM2112023,GSM2112024,GSM2112025,GSM2112026,GSM2112027,GSM2112028,GSM2112029,GSM2112030,GSM2112031,GSM2112032,GSM2112033,GSM2112034,GSM2112035,GSM2112036,GSM2112037,GSM2112038,GSM2112039,GSM2112040,GSM2112041,GSM2112042,GSM2112043,GSM2112044,GSM2112045,GSM2112046,GSM2112047,GSM2112048,GSM2112049,GSM2112050,GSM2112051,GSM2112052,GSM2112053,GSM2112054,GSM2112055,GSM2112056,GSM2112057,GSM2112058,GSM2112059,GSM2112060,GSM2112061,GSM2112062,GSM2112063,GSM2112064,GSM2112065,GSM2112066,GSM2112067,GSM2112068,GSM2112069,GSM2112070,GSM2112071,GSM2112072,GSM2112073,GSM2112074,GSM2112075,GSM2112076,GSM2112077,GSM2112078,GSM2112079,GSM2112080,GSM2112081,GSM2112082,GSM2112083,GSM2112084,GSM2112085,GSM2112086,GSM2112087,GSM2112088,GSM2112089,GSM2112090,GSM2112091,GSM2112092,GSM2112093,GSM2112094,GSM2112095,GSM2112096,GSM2112097,GSM2112098,GSM2112099,GSM2112100,GSM2112101,GSM2112102,GSM2112103,GSM2112104,GSM2112105,GSM2112106,GSM2112107,GSM2112108,GSM2112109,GSM2112110,GSM2112111,GSM2112112,GSM2112113,GSM2112114,GSM2112115,GSM2112116,GSM2112117,GSM2112118,GSM2112119,GSM2112120,GSM2112121,GSM2112122,GSM2112123,GSM2112124,GSM2112125,GSM2112126,GSM2112127,GSM2112128,GSM2112129,GSM2112130,GSM2112131,GSM2112132,GSM2112133,GSM2112134,GSM2112135,GSM2112136,GSM2112137,GSM2112138,GSM2112139,GSM2112140,GSM2112141,GSM2112142,GSM2112143,GSM2112144,GSM2112145,GSM2112146,GSM2112147,GSM2112148,GSM2112149,GSM2112150,GSM2112151,GSM2112152,GSM2112153,GSM2112154,GSM2112155,GSM2112156,GSM2112157,GSM2112158,GSM2112159,GSM2112160,GSM2112161,GSM2112162,GSM2112163,GSM2112164,GSM2112165,GSM2112166,GSM2112167,GSM2112168,GSM2112169,GSM2112170,GSM2112171,GSM2112172,GSM2112173,GSM2112174,GSM2112175,GSM2112176,GSM2112177,GSM2112178,GSM2112179,GSM2112180,GSM2112181,GSM2112182,GSM2112183,GSM2112184,GSM2112185,GSM2112186,GSM2112187,GSM2112188,GSM2112189,GSM2112190,GSM2112191,GSM2112192,GSM2112193,GSM2112194,GSM2112195,GSM2112196,GSM2112197,GSM2112198
2
+ 1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0
p1/preprocess/Autoinflammatory_Disorders/code/GSE43553.py ADDED
@@ -0,0 +1,151 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Autoinflammatory_Disorders"
6
+ cohort = "GSE43553"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Autoinflammatory_Disorders"
10
+ in_cohort_dir = "../DATA/GEO/Autoinflammatory_Disorders/GSE43553"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Autoinflammatory_Disorders/GSE43553.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Autoinflammatory_Disorders/gene_data/GSE43553.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Autoinflammatory_Disorders/clinical_data/GSE43553.csv"
16
+ json_path = "./output/preprocess/1/Autoinflammatory_Disorders/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
27
+
28
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
29
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
30
+
31
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
32
+ print("Background Information:")
33
+ print(background_info)
34
+ print("Sample Characteristics Dictionary:")
35
+ print(sample_characteristics_dict)
36
+ import pandas as pd
37
+ import numpy as np
38
+
39
+ # 1. Gene Expression Data Availability
40
+ is_gene_available = True # Based on microarray-based gene expression profiling in the background info
41
+
42
+ # 2. Variable Availability and Data Type Conversion
43
+ # Examining the sample characteristics dictionary, we see "disease state: CAPS" and
44
+ # "disease state: other autoinflammatory disease" in key=3, which vary across samples
45
+ # (not a constant feature). Hence, we'll use key=3 for our trait.
46
+ trait_row = 3
47
+ age_row = None # No age information found
48
+ gender_row = None # No gender information found
49
+
50
+ # Define the conversion functions
51
+ def convert_trait(value: str) -> int:
52
+ if not isinstance(value, str) or pd.isna(value):
53
+ return None
54
+ parts = value.split(':', 1)
55
+ if len(parts) < 2:
56
+ return None
57
+ val = parts[1].strip().lower()
58
+ if 'caps' in val or 'other autoinflammatory disease' in val:
59
+ return 1
60
+ # Otherwise, assume 0 (e.g., healthy or not the target condition)
61
+ return 0
62
+
63
+ convert_age = None
64
+ convert_gender = None
65
+
66
+ # 3. Save Metadata (initial filtering)
67
+ is_trait_available = (trait_row is not None)
68
+ validate_and_save_cohort_info(
69
+ is_final=False,
70
+ cohort=cohort,
71
+ info_path=json_path,
72
+ is_gene_available=is_gene_available,
73
+ is_trait_available=is_trait_available
74
+ )
75
+
76
+ # 4. Clinical Feature Extraction
77
+ # Proceed only if trait_row is not None.
78
+ if is_trait_available:
79
+ selected_clinical_df = geo_select_clinical_features(
80
+ clinical_data,
81
+ trait=trait,
82
+ trait_row=trait_row,
83
+ convert_trait=convert_trait,
84
+ age_row=age_row,
85
+ convert_age=convert_age,
86
+ gender_row=gender_row,
87
+ convert_gender=convert_gender
88
+ )
89
+ # Preview the resulting DataFrame
90
+ print(preview_df(selected_clinical_df, n=5))
91
+ # Save to CSV
92
+ selected_clinical_df.to_csv(out_clinical_data_file, index=False)
93
+ # STEP3
94
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
95
+ gene_data = get_genetic_data(matrix_file)
96
+
97
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
98
+ print(gene_data.index[:20])
99
+ print("requires_gene_mapping = True")
100
+ # STEP5
101
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
102
+ gene_annotation = get_gene_annotation(soft_file)
103
+
104
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
105
+ print("Gene annotation preview:")
106
+ print(preview_df(gene_annotation))
107
+ # STEP: Gene Identifier Mapping
108
+ # 1. Identify the columns in the gene annotation that match the probe IDs in the gene expression data ("ID")
109
+ # and the column that stores the gene symbols ("Gene Symbol").
110
+ prob_col = 'ID'
111
+ gene_col = 'Gene Symbol'
112
+
113
+ # 2. Extract a gene mapping dataframe with the probe column and the gene symbol column.
114
+ mapping_df = get_gene_mapping(gene_annotation, prob_col=prob_col, gene_col=gene_col)
115
+
116
+ # 3. Convert probe-level measurements to gene expression data by applying the gene mapping.
117
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
118
+
119
+ # (Optional) Preview a few rows of the mapped gene expression data
120
+ print("Preview of gene_data after mapping:")
121
+ print(gene_data.head(5))
122
+ # STEP7
123
+
124
+ # 1. Normalize the obtained gene data using the NCBI Gene synonym database
125
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
126
+ normalized_gene_data.to_csv(out_gene_data_file)
127
+
128
+ # 2. Link the clinical and genetic data
129
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
130
+
131
+ # 3. Handle missing values systematically using the actual trait name
132
+ linked_data_processed = handle_missing_values(linked_data, trait_col=trait)
133
+
134
+ # 4. Check for biased trait and remove any biased demographic features
135
+ trait_biased, linked_data_final = judge_and_remove_biased_features(linked_data_processed, trait)
136
+
137
+ # 5. Final quality validation and metadata saving
138
+ is_usable = validate_and_save_cohort_info(
139
+ is_final=True,
140
+ cohort=cohort,
141
+ info_path=json_path,
142
+ is_gene_available=True,
143
+ is_trait_available=True,
144
+ is_biased=trait_biased,
145
+ df=linked_data_final,
146
+ note="Dataset processed with GEO pipeline. Checked for missing values and bias."
147
+ )
148
+
149
+ # 6. If dataset is usable, save the final linked data
150
+ if is_usable:
151
+ linked_data_final.to_csv(out_data_file)
p1/preprocess/Autoinflammatory_Disorders/code/GSE80060.py ADDED
@@ -0,0 +1,158 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Autoinflammatory_Disorders"
6
+ cohort = "GSE80060"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Autoinflammatory_Disorders"
10
+ in_cohort_dir = "../DATA/GEO/Autoinflammatory_Disorders/GSE80060"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Autoinflammatory_Disorders/GSE80060.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Autoinflammatory_Disorders/gene_data/GSE80060.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Autoinflammatory_Disorders/clinical_data/GSE80060.csv"
16
+ json_path = "./output/preprocess/1/Autoinflammatory_Disorders/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
27
+
28
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
29
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
30
+
31
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
32
+ print("Background Information:")
33
+ print(background_info)
34
+ print("Sample Characteristics Dictionary:")
35
+ print(sample_characteristics_dict)
36
+ # Step 1: Determine whether this dataset likely contains gene expression data
37
+ is_gene_available = True # Based on the title "Gene expression data of whole blood..."
38
+
39
+ # Step 2.1: Identify data availability for trait, age, and gender
40
+ trait_row = 1 # "disease status: SJIA" vs "disease status: Healthy"
41
+ age_row = None # No age info found
42
+ gender_row = None # No gender info found
43
+
44
+ # Step 2.2: Define data type conversions
45
+ def convert_trait(value: str):
46
+ # Extract the substring after the colon
47
+ parts = value.split(':')
48
+ if len(parts) < 2:
49
+ return None
50
+ val = parts[1].strip().lower()
51
+ # Map SJIA -> 1, Healthy -> 0
52
+ if val == 'sjia':
53
+ return 1
54
+ elif val == 'healthy':
55
+ return 0
56
+ else:
57
+ return None
58
+
59
+ def convert_age(value: str):
60
+ # No age data; return None
61
+ return None
62
+
63
+ def convert_gender(value: str):
64
+ # No gender data; return None
65
+ return None
66
+
67
+ # Step 3: Conduct initial filtering and save metadata
68
+ is_trait_available = (trait_row is not None)
69
+ is_usable = validate_and_save_cohort_info(
70
+ is_final=False,
71
+ cohort=cohort,
72
+ info_path=json_path,
73
+ is_gene_available=is_gene_available,
74
+ is_trait_available=is_trait_available
75
+ )
76
+
77
+ # Step 4: Clinical feature extraction if trait_row is not None
78
+ if trait_row is not None:
79
+ selected_clinical_df = geo_select_clinical_features(
80
+ clinical_data,
81
+ trait='Disease Status',
82
+ trait_row=trait_row,
83
+ convert_trait=convert_trait,
84
+ age_row=age_row,
85
+ convert_age=convert_age,
86
+ gender_row=gender_row,
87
+ convert_gender=convert_gender
88
+ )
89
+ # Preview the selected clinical data
90
+ preview = preview_df(selected_clinical_df)
91
+ print("Selected Clinical Data Preview:", preview)
92
+
93
+ # Save extracted clinical features
94
+ selected_clinical_df.to_csv(out_clinical_data_file, index=False)
95
+ # STEP3
96
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
97
+ gene_data = get_genetic_data(matrix_file)
98
+
99
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
100
+ print(gene_data.index[:20])
101
+ # These identifiers appear to be Affymetrix probe IDs rather than standard human gene symbols.
102
+ # Therefore, they require mapping to gene symbols.
103
+
104
+ print("requires_gene_mapping = True")
105
+ # STEP5
106
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
107
+ gene_annotation = get_gene_annotation(soft_file)
108
+
109
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
110
+ print("Gene annotation preview:")
111
+ print(preview_df(gene_annotation))
112
+ # STEP: Gene Identifier Mapping
113
+
114
+ # 1. Identify the columns in gene_annotation that correspond to the probe IDs and the gene symbols.
115
+ # From the preview, the "ID" column matches the probe identifiers in the gene_data index,
116
+ # and the "Gene Symbol" column contains the gene symbols.
117
+ probe_col = "ID"
118
+ gene_symbol_col = "Gene Symbol"
119
+
120
+ # 2. Get a gene mapping dataframe from the annotation.
121
+ mapping_df = get_gene_mapping(gene_annotation, probe_col, gene_symbol_col)
122
+
123
+ # 3. Convert probe-level data to gene-level data using the mapping, dividing probe expression among multiple genes.
124
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
125
+
126
+ # For verification, print a small preview of the resulting gene expression dataframe.
127
+ print("Preview of Gene Expression Data (first few genes):")
128
+ print(preview_df(gene_data, n=5))
129
+ # STEP7
130
+
131
+ # 1. Normalize the obtained gene data using the NCBI Gene synonym database
132
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
133
+ normalized_gene_data.to_csv(out_gene_data_file)
134
+
135
+ # 2. Link the clinical and genetic data
136
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
137
+
138
+ # 3. Handle missing values systematically (note the trait column name matches the clinical data's "Disease Status")
139
+ linked_data_processed = handle_missing_values(linked_data, trait_col="Disease Status")
140
+
141
+ # 4. Check for biased trait and remove any biased demographic features
142
+ trait_biased, linked_data_final = judge_and_remove_biased_features(linked_data_processed, "Disease Status")
143
+
144
+ # 5. Final quality validation and metadata saving
145
+ is_usable = validate_and_save_cohort_info(
146
+ is_final=True,
147
+ cohort=cohort,
148
+ info_path=json_path,
149
+ is_gene_available=True,
150
+ is_trait_available=True,
151
+ is_biased=trait_biased,
152
+ df=linked_data_final,
153
+ note="Dataset processed with GEO pipeline. Checked for missing values and bias."
154
+ )
155
+
156
+ # 6. If dataset is usable, save the final linked data
157
+ if is_usable:
158
+ linked_data_final.to_csv(out_data_file)
p1/preprocess/Autoinflammatory_Disorders/code/TCGA.py ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Autoinflammatory_Disorders"
6
+
7
+ # Input paths
8
+ tcga_root_dir = "../DATA/TCGA"
9
+
10
+ # Output paths
11
+ out_data_file = "./output/preprocess/1/Autoinflammatory_Disorders/TCGA.csv"
12
+ out_gene_data_file = "./output/preprocess/1/Autoinflammatory_Disorders/gene_data/TCGA.csv"
13
+ out_clinical_data_file = "./output/preprocess/1/Autoinflammatory_Disorders/clinical_data/TCGA.csv"
14
+ json_path = "./output/preprocess/1/Autoinflammatory_Disorders/cohort_info.json"
15
+
16
+ import os
17
+ import pandas as pd
18
+
19
+ # Step 1: Check directories in tcga_root_dir for anything relevant to "Autoinflammatory_Disorders"
20
+ search_terms = ["autoinflammatory", "inflam"]
21
+ dir_list = os.listdir(tcga_root_dir)
22
+ matching_dir = None
23
+
24
+ for d in dir_list:
25
+ d_lower = d.lower()
26
+ if any(term in d_lower for term in search_terms):
27
+ # Found a match, select this directory
28
+ matching_dir = d
29
+ break
30
+
31
+ if matching_dir is None:
32
+ # No matching directory found. Mark trait as skipped.
33
+ validate_and_save_cohort_info(
34
+ is_final=False,
35
+ cohort="TCGA",
36
+ info_path=json_path,
37
+ is_gene_available=False,
38
+ is_trait_available=False
39
+ )
40
+ else:
41
+ # 2. Identify the clinicalMatrix and PANCAN files
42
+ cohort_dir = os.path.join(tcga_root_dir, matching_dir)
43
+ clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir)
44
+
45
+ # 3. Load both data files
46
+ clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t')
47
+ genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t')
48
+
49
+ # 4. Print the column names of the clinical data
50
+ print("Clinical Data Columns:")
51
+ print(clinical_df.columns.tolist())
p1/preprocess/Autoinflammatory_Disorders/cohort_info.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"GSE80060": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": false, "has_gender": false, "sample_size": 206, "note": "Dataset processed with GEO pipeline. Checked for missing values and bias."}, "GSE43553": {"is_usable": false, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": true, "has_age": false, "has_gender": false, "sample_size": 66, "note": "Dataset processed with GEO pipeline. Checked for missing values and bias."}, "TCGA": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": null}}
p1/preprocess/Autoinflammatory_Disorders/gene_data/GSE43553.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2864f40de710ee8b203131c58b5f99674e4f96b78bd94f88620825ec5665bb6e
3
+ size 12702839
p1/preprocess/Autoinflammatory_Disorders/gene_data/GSE80060.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9df5145ab13c51ae5d9a8a8d0506870eae1854951a44c7867bb8915b5e661c9a
3
+ size 45736436
p1/preprocess/Bile_Duct_Cancer/GSE131027.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:736f3631855fdd8eae6daa1dfffa37d999c36cbfd1aac2fbd0fd6f178733399d
3
+ size 24380320
p1/preprocess/Bile_Duct_Cancer/TCGA.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e2103d04521950d3b88b9565b1ce1ee6344980e6bb6d02f0109d29900e7faa53
3
+ size 13656271
p1/preprocess/Bile_Duct_Cancer/clinical_data/GSE107754.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ GSM2878070,GSM2878071,GSM2878072,GSM2878073,GSM2878074,GSM2878075,GSM2878076,GSM2878077,GSM2878078,GSM2878079,GSM2878080,GSM2878081,GSM2878082,GSM2891194,GSM2891195,GSM2891196,GSM2891197,GSM2891198,GSM2891199,GSM2891200,GSM2891201,GSM2891202,GSM2891203,GSM2891204,GSM2891205,GSM2891206,GSM2891207,GSM2891208,GSM2891209,GSM2891210,GSM2891211,GSM2891212,GSM2891213,GSM2891214,GSM2891215,GSM2891216,GSM2891217,GSM2891218,GSM2891219,GSM2891220,GSM2891221,GSM2891222,GSM2891223,GSM2891224,GSM2891225,GSM2891226,GSM2891227,GSM2891228,GSM2891229,GSM2891230,GSM2891231,GSM2891232,GSM2891233,GSM2891234,GSM2891235,GSM2891236,GSM2891237,GSM2891238,GSM2891239,GSM2891240,GSM2891241,GSM2891242,GSM2891243,GSM2891244,GSM2891245,GSM2891246,GSM2891247,GSM2891248,GSM2891249,GSM2891250,GSM2891251,GSM2891252,GSM2891253,GSM2891254,GSM2891255,GSM2891256,GSM2891257,GSM2891258,GSM2891259,GSM2891260,GSM2891261,GSM2891262,GSM2891263,GSM2891264
2
+ 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0
3
+ 1.0,0.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0
p1/preprocess/Bile_Duct_Cancer/clinical_data/GSE131027.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ GSM3759992,GSM3759993,GSM3759994,GSM3759995,GSM3759996,GSM3759997,GSM3759998,GSM3759999,GSM3760000,GSM3760001,GSM3760002,GSM3760003,GSM3760004,GSM3760005,GSM3760006,GSM3760007,GSM3760008,GSM3760009,GSM3760010,GSM3760011,GSM3760012,GSM3760013,GSM3760014,GSM3760015,GSM3760016,GSM3760017,GSM3760018,GSM3760019,GSM3760020,GSM3760021,GSM3760022,GSM3760023,GSM3760024,GSM3760025,GSM3760026,GSM3760027,GSM3760028,GSM3760029,GSM3760030,GSM3760031,GSM3760032,GSM3760033,GSM3760034,GSM3760035,GSM3760036,GSM3760037,GSM3760038,GSM3760039,GSM3760040,GSM3760041,GSM3760042,GSM3760043,GSM3760044,GSM3760045,GSM3760046,GSM3760047,GSM3760048,GSM3760049,GSM3760050,GSM3760051,GSM3760052,GSM3760053,GSM3760054,GSM3760055,GSM3760056,GSM3760057,GSM3760058,GSM3760059,GSM3760060,GSM3760061,GSM3760062,GSM3760063,GSM3760064,GSM3760065,GSM3760066,GSM3760067,GSM3760068,GSM3760069,GSM3760070,GSM3760071,GSM3760072,GSM3760073,GSM3760074,GSM3760075,GSM3760076,GSM3760077,GSM3760078,GSM3760079,GSM3760080,GSM3760081,GSM3760082,GSM3760083
2
+ 0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0
p1/preprocess/Bile_Duct_Cancer/clinical_data/TCGA.csv ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ,Bile_Duct_Cancer,Age,Gender
2
+ TCGA-3X-AAV9-01,1,72,1
3
+ TCGA-3X-AAVA-01,1,50,0
4
+ TCGA-3X-AAVB-01,1,70,0
5
+ TCGA-3X-AAVC-01,1,72,0
6
+ TCGA-3X-AAVE-01,1,60,1
7
+ TCGA-4G-AAZO-01,1,71,0
8
+ TCGA-4G-AAZT-01,1,62,1
9
+ TCGA-W5-AA2G-01,1,62,0
10
+ TCGA-W5-AA2H-01,1,70,0
11
+ TCGA-W5-AA2I-01,1,66,1
12
+ TCGA-W5-AA2I-11,0,66,1
13
+ TCGA-W5-AA2O-01,1,57,1
14
+ TCGA-W5-AA2Q-01,1,68,1
15
+ TCGA-W5-AA2Q-11,0,68,1
16
+ TCGA-W5-AA2R-01,1,77,0
17
+ TCGA-W5-AA2R-11,0,77,0
18
+ TCGA-W5-AA2T-01,1,64,0
19
+ TCGA-W5-AA2U-01,1,78,0
20
+ TCGA-W5-AA2U-11,0,78,0
21
+ TCGA-W5-AA2W-01,1,31,0
22
+ TCGA-W5-AA2X-01,1,67,1
23
+ TCGA-W5-AA2X-11,0,67,1
24
+ TCGA-W5-AA2Z-01,1,29,0
25
+ TCGA-W5-AA30-01,1,82,1
26
+ TCGA-W5-AA30-11,0,82,1
27
+ TCGA-W5-AA31-01,1,71,1
28
+ TCGA-W5-AA31-11,0,71,1
29
+ TCGA-W5-AA33-01,1,60,1
30
+ TCGA-W5-AA34-01,1,75,0
31
+ TCGA-W5-AA34-11,0,75,0
32
+ TCGA-W5-AA36-01,1,51,0
33
+ TCGA-W5-AA38-01,1,55,0
34
+ TCGA-W5-AA39-01,1,81,1
35
+ TCGA-W6-AA0S-01,1,46,0
36
+ TCGA-WD-A7RX-01,1,71,0
37
+ TCGA-YR-A95A-01,1,52,1
38
+ TCGA-ZD-A8I3-01,1,73,0
39
+ TCGA-ZH-A8Y1-01,1,74,0
40
+ TCGA-ZH-A8Y2-01,1,59,0
41
+ TCGA-ZH-A8Y4-01,1,58,1
42
+ TCGA-ZH-A8Y5-01,1,69,1
43
+ TCGA-ZH-A8Y6-01,1,41,0
44
+ TCGA-ZH-A8Y8-01,1,73,1
45
+ TCGA-ZU-A8S4-01,1,52,1
46
+ TCGA-ZU-A8S4-11,0,52,1
p1/preprocess/Bile_Duct_Cancer/code/GSE107754.py ADDED
@@ -0,0 +1,169 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Bile_Duct_Cancer"
6
+ cohort = "GSE107754"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Bile_Duct_Cancer"
10
+ in_cohort_dir = "../DATA/GEO/Bile_Duct_Cancer/GSE107754"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Bile_Duct_Cancer/GSE107754.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Bile_Duct_Cancer/gene_data/GSE107754.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Bile_Duct_Cancer/clinical_data/GSE107754.csv"
16
+ json_path = "./output/preprocess/1/Bile_Duct_Cancer/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
27
+
28
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
29
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
30
+
31
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
32
+ print("Background Information:")
33
+ print(background_info)
34
+ print("Sample Characteristics Dictionary:")
35
+ print(sample_characteristics_dict)
36
+ import pandas as pd
37
+
38
+ # 1) Determine gene expression data availability
39
+ is_gene_available = True # The summary indicates "Whole human genome gene expression microarrays"
40
+
41
+ # 2) Variable Availability and Data Type Conversion
42
+ # After reviewing the sample characteristics:
43
+ # - trait_row (for Bile_Duct_Cancer) is 2, because "tissue: Bile duct cancer" appears among various tissues.
44
+ # - age_row is None, no age information found.
45
+ # - gender_row is 0, as "gender: Male" and "gender: Female" appear there.
46
+
47
+ trait_row = 2
48
+ age_row = None
49
+ gender_row = 0
50
+
51
+ # Conversion functions
52
+ def convert_trait(x: str):
53
+ parts = x.split(':', 1)
54
+ if len(parts) < 2:
55
+ return None
56
+ val = parts[1].strip().lower()
57
+ # Binary conversion: 1 if it's Bile duct cancer, 0 otherwise
58
+ return 1 if val == 'bile duct cancer' else 0
59
+
60
+ def convert_age(x: str):
61
+ # Age data not available, return None
62
+ return None
63
+
64
+ def convert_gender(x: str):
65
+ parts = x.split(':', 1)
66
+ if len(parts) < 2:
67
+ return None
68
+ val = parts[1].strip().lower()
69
+ if val == 'male':
70
+ return 1
71
+ elif val == 'female':
72
+ return 0
73
+ return None
74
+
75
+ # 3) Save Metadata (initial filtering)
76
+ # trait data is available (trait_row is not None) => is_trait_available = True
77
+ is_trait_available = (trait_row is not None)
78
+
79
+ is_usable = validate_and_save_cohort_info(
80
+ is_final=False,
81
+ cohort=cohort,
82
+ info_path=json_path,
83
+ is_gene_available=is_gene_available,
84
+ is_trait_available=is_trait_available
85
+ )
86
+
87
+ # 4) Clinical Feature Extraction (only do this step if trait_row is not None)
88
+ if trait_row is not None:
89
+ # Suppose the clinical_data dataframe is already loaded in the environment
90
+ clinical_features_df = geo_select_clinical_features(
91
+ clinical_df=clinical_data,
92
+ trait=trait,
93
+ trait_row=trait_row,
94
+ convert_trait=convert_trait,
95
+ age_row=age_row,
96
+ convert_age=convert_age,
97
+ gender_row=gender_row,
98
+ convert_gender=convert_gender
99
+ )
100
+
101
+ # Preview the extracted clinical features
102
+ preview_result = preview_df(clinical_features_df, n=5)
103
+ print("Clinical Features Preview:", preview_result)
104
+
105
+ # Save clinical data
106
+ clinical_features_df.to_csv(out_clinical_data_file, index=False)
107
+ # STEP3
108
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
109
+ gene_data = get_genetic_data(matrix_file)
110
+
111
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
112
+ print(gene_data.index[:20])
113
+ # Based on review, these identifiers (e.g., A_23_P100001) appear to be microarray probe set IDs,
114
+ # not standard human gene symbols, hence gene mapping is required.
115
+ print("\nrequires_gene_mapping = True")
116
+ # STEP5
117
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
118
+ gene_annotation = get_gene_annotation(soft_file)
119
+
120
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
121
+ print("Gene annotation preview:")
122
+ print(preview_df(gene_annotation))
123
+ # STEP: Gene Identifier Mapping
124
+
125
+ # 1) Identify the columns in the annotation dataframe that match the IDs in the gene expression data
126
+ # and which store the human gene symbols. In this case, "ID" matches "A_23_P..." probe IDs,
127
+ # and "GENE_SYMBOL" stores the actual gene symbols.
128
+
129
+ # 2) Extract the mapping between these columns into a separate dataframe
130
+ mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GENE_SYMBOL')
131
+
132
+ # 3) Convert probe-level measurements to gene-level measurements
133
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
134
+
135
+ # (Optional demonstration) Print shape or a small snippet to verify
136
+ print("Mapped gene_data shape:", gene_data.shape)
137
+ print("First few gene symbols in the mapped gene_data index:")
138
+ print(gene_data.index[:10].tolist())
139
+ # STEP7
140
+
141
+ # 1. Normalize the obtained gene data using the NCBI Gene synonym database
142
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
143
+ normalized_gene_data.to_csv(out_gene_data_file)
144
+
145
+ # 2. Link the clinical and genetic data
146
+ # Use the correct variable name from previous steps: "clinical_features_df"
147
+ linked_data = geo_link_clinical_genetic_data(clinical_features_df, normalized_gene_data)
148
+
149
+ # 3. Handle missing values systematically using the actual trait name
150
+ linked_data_processed = handle_missing_values(linked_data, trait_col=trait)
151
+
152
+ # 4. Check for biased trait and remove any biased demographic features
153
+ trait_biased, linked_data_final = judge_and_remove_biased_features(linked_data_processed, trait)
154
+
155
+ # 5. Final quality validation and metadata saving
156
+ is_usable = validate_and_save_cohort_info(
157
+ is_final=True,
158
+ cohort=cohort,
159
+ info_path=json_path,
160
+ is_gene_available=True,
161
+ is_trait_available=True,
162
+ is_biased=trait_biased,
163
+ df=linked_data_final,
164
+ note="Dataset processed with GEO pipeline. Checked for missing values and bias."
165
+ )
166
+
167
+ # 6. If dataset is usable, save the final linked data
168
+ if is_usable:
169
+ linked_data_final.to_csv(out_data_file)
p1/preprocess/Bile_Duct_Cancer/code/GSE131027.py ADDED
@@ -0,0 +1,162 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Bile_Duct_Cancer"
6
+ cohort = "GSE131027"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Bile_Duct_Cancer"
10
+ in_cohort_dir = "../DATA/GEO/Bile_Duct_Cancer/GSE131027"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Bile_Duct_Cancer/GSE131027.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Bile_Duct_Cancer/gene_data/GSE131027.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Bile_Duct_Cancer/clinical_data/GSE131027.csv"
16
+ json_path = "./output/preprocess/1/Bile_Duct_Cancer/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
27
+
28
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
29
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
30
+
31
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
32
+ print("Background Information:")
33
+ print(background_info)
34
+ print("Sample Characteristics Dictionary:")
35
+ print(sample_characteristics_dict)
36
+ # 1. Gene Expression Data Availability
37
+ is_gene_available = True # Based on the series description mentioning "expression features", we assume gene expression.
38
+
39
+ # 2. Variable Availability and Data Type Conversion
40
+
41
+ # From the sample characteristics, "Bile duct cancer" appears under key=1 alongside other cancers.
42
+ # Hence, trait data is available and not constant. So:
43
+ trait_row = 1
44
+
45
+ # Age data is not present in the dictionary.
46
+ age_row = None
47
+
48
+ # Gender data is also absent in the dictionary.
49
+ gender_row = None
50
+
51
+ # Define conversion functions
52
+ def convert_trait(value: str):
53
+ # Split by colon and take the rightmost part
54
+ val = value.split(':')[-1].strip().lower()
55
+ # Convert "bile duct cancer" to 1, everything else to 0, unknown to None
56
+ if val == "bile duct cancer":
57
+ return 1
58
+ elif val:
59
+ return 0
60
+ return None
61
+
62
+ def convert_age(value: str):
63
+ # No data available, just return None
64
+ return None
65
+
66
+ def convert_gender(value: str):
67
+ # No data available, just return None
68
+ return None
69
+
70
+ # 3. Save Metadata (initial filtering)
71
+ is_trait_available = (trait_row is not None)
72
+ is_usable = validate_and_save_cohort_info(
73
+ is_final=False,
74
+ cohort=cohort,
75
+ info_path=json_path,
76
+ is_gene_available=is_gene_available,
77
+ is_trait_available=is_trait_available
78
+ )
79
+
80
+ # 4. Clinical Feature Extraction (only if trait_row is not None)
81
+ if trait_row is not None:
82
+ selected_clinical_df = geo_select_clinical_features(
83
+ clinical_df=clinical_data,
84
+ trait=trait,
85
+ trait_row=trait_row,
86
+ convert_trait=convert_trait,
87
+ age_row=age_row,
88
+ convert_age=convert_age,
89
+ gender_row=gender_row,
90
+ convert_gender=convert_gender
91
+ )
92
+ # Preview the extracted features (just for inspection, not stored)
93
+ print(preview_df(selected_clinical_df, n=5, max_items=200))
94
+ # Save clinical data
95
+ selected_clinical_df.to_csv(out_clinical_data_file, index=False)
96
+ # STEP3
97
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
98
+ gene_data = get_genetic_data(matrix_file)
99
+
100
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
101
+ print(gene_data.index[:20])
102
+ print("requires_gene_mapping = True")
103
+ # STEP5
104
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
105
+ gene_annotation = get_gene_annotation(soft_file)
106
+
107
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
108
+ print("Gene annotation preview:")
109
+ print(preview_df(gene_annotation))
110
+ # STEP6 - Gene Identifier Mapping
111
+
112
+ # 1. Identify columns in 'gene_annotation' which correspond to the probe ID and the gene symbol.
113
+ # From the preview, the 'ID' column matches our gene_data index (e.g., '1007_s_at'),
114
+ # and the 'Gene Symbol' column stores the gene symbols.
115
+
116
+ # 2. Get the gene mapping dataframe
117
+ gene_mapping_df = get_gene_mapping(
118
+ annotation=gene_annotation,
119
+ prob_col="ID",
120
+ gene_col="Gene Symbol"
121
+ )
122
+
123
+ # 3. Convert probe-level measurements to gene expression data
124
+ gene_data = apply_gene_mapping(
125
+ expression_df=gene_data,
126
+ mapping_df=gene_mapping_df
127
+ )
128
+
129
+ # Optional: Print shape or index to verify
130
+ print("Gene expression data after mapping:")
131
+ print("Shape:", gene_data.shape)
132
+ print("First 5 genes:\n", gene_data.index[:5])
133
+ # STEP7
134
+
135
+ # 1. Normalize the obtained gene data using the NCBI Gene synonym database
136
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
137
+ normalized_gene_data.to_csv(out_gene_data_file)
138
+
139
+ # 2. Link the clinical and genetic data
140
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
141
+
142
+ # 3. Handle missing values systematically using the actual trait name
143
+ linked_data_processed = handle_missing_values(linked_data, trait_col=trait)
144
+
145
+ # 4. Check for biased trait and remove any biased demographic features
146
+ trait_biased, linked_data_final = judge_and_remove_biased_features(linked_data_processed, trait)
147
+
148
+ # 5. Final quality validation and metadata saving
149
+ is_usable = validate_and_save_cohort_info(
150
+ is_final=True,
151
+ cohort=cohort,
152
+ info_path=json_path,
153
+ is_gene_available=True,
154
+ is_trait_available=True,
155
+ is_biased=trait_biased,
156
+ df=linked_data_final,
157
+ note="Dataset processed with GEO pipeline. Checked for missing values and bias."
158
+ )
159
+
160
+ # 6. If dataset is usable, save the final linked data
161
+ if is_usable:
162
+ linked_data_final.to_csv(out_data_file)
p1/preprocess/Bile_Duct_Cancer/code/TCGA.py ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Bile_Duct_Cancer"
6
+
7
+ # Input paths
8
+ tcga_root_dir = "../DATA/TCGA"
9
+
10
+ # Output paths
11
+ out_data_file = "./output/preprocess/1/Bile_Duct_Cancer/TCGA.csv"
12
+ out_gene_data_file = "./output/preprocess/1/Bile_Duct_Cancer/gene_data/TCGA.csv"
13
+ out_clinical_data_file = "./output/preprocess/1/Bile_Duct_Cancer/clinical_data/TCGA.csv"
14
+ json_path = "./output/preprocess/1/Bile_Duct_Cancer/cohort_info.json"
15
+
16
+ import os
17
+ import pandas as pd
18
+
19
+ # Step 1: Check directories in tcga_root_dir for anything relevant to "Bile_Duct_Cancer"
20
+ search_terms = ["bile_duct", "bileduct", "chol"]
21
+ dir_list = os.listdir(tcga_root_dir)
22
+ matching_dir = None
23
+
24
+ for d in dir_list:
25
+ d_lower = d.lower()
26
+ if any(term in d_lower for term in search_terms):
27
+ # Found a match, select this directory
28
+ matching_dir = d
29
+ break
30
+
31
+ if matching_dir is None:
32
+ # No matching directory found. Mark the dataset as skipped.
33
+ validate_and_save_cohort_info(
34
+ is_final=False,
35
+ cohort="TCGA",
36
+ info_path=json_path,
37
+ is_gene_available=False,
38
+ is_trait_available=False
39
+ )
40
+ else:
41
+ # 2. Identify the clinicalMatrix and PANCAN files
42
+ cohort_dir = os.path.join(tcga_root_dir, matching_dir)
43
+ clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir)
44
+
45
+ # 3. Load both data files
46
+ clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t')
47
+ genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t')
48
+
49
+ # 4. Print the column names of the clinical data
50
+ print("Clinical Data Columns:")
51
+ print(clinical_df.columns.tolist())
52
+ # Identify candidate demographic columns
53
+ candidate_age_cols = ["age_at_initial_pathologic_diagnosis", "days_to_birth"]
54
+ candidate_gender_cols = ["gender"]
55
+
56
+ # Extract the columns and preview them
57
+ age_cols_in_data = [col for col in candidate_age_cols if col in clinical_df.columns]
58
+ gender_cols_in_data = [col for col in candidate_gender_cols if col in clinical_df.columns]
59
+
60
+ if age_cols_in_data:
61
+ age_preview_df = clinical_df[age_cols_in_data]
62
+ print("Age Data Preview:", preview_df(age_preview_df, n=5))
63
+ else:
64
+ print("Age Data Preview:", {})
65
+
66
+ if gender_cols_in_data:
67
+ gender_preview_df = clinical_df[gender_cols_in_data]
68
+ print("Gender Data Preview:", preview_df(gender_preview_df, n=5))
69
+ else:
70
+ print("Gender Data Preview:", {})
71
+ # Based on inspection of the supplied previews, we select "age_at_initial_pathologic_diagnosis" for age
72
+ # (as it directly represents age in years) and "gender" for gender.
73
+
74
+ age_col = "age_at_initial_pathologic_diagnosis"
75
+ gender_col = "gender"
76
+
77
+ print("Chosen Age Column:", age_col)
78
+ print("Chosen Gender Column:", gender_col)
79
+ # 1) Extract and standardize clinical features (trait, age, gender) from the TCGA data
80
+ selected_clinical_df = tcga_select_clinical_features(
81
+ clinical_df=clinical_df,
82
+ trait=trait,
83
+ age_col=age_col,
84
+ gender_col=gender_col
85
+ )
86
+
87
+ # 2) Normalize gene symbols in the gene expression data
88
+ genetic_df_normalized = normalize_gene_symbols_in_index(genetic_df)
89
+ genetic_df_normalized.to_csv(out_gene_data_file)
90
+
91
+ # 3) Link clinical and genetic data on sample IDs
92
+ gene_expr_t = genetic_df_normalized.T
93
+ linked_data = selected_clinical_df.join(gene_expr_t, how='inner')
94
+
95
+ # 4) Handle missing values in the linked data
96
+ linked_data = handle_missing_values(linked_data, trait)
97
+
98
+ # 5) Determine whether the trait and some demographic features are severely biased
99
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
100
+
101
+ # 6) Validate and save cohort information
102
+ is_usable = validate_and_save_cohort_info(
103
+ is_final=True,
104
+ cohort="TCGA",
105
+ info_path=json_path,
106
+ is_gene_available=True,
107
+ is_trait_available=True,
108
+ is_biased=trait_biased,
109
+ df=linked_data,
110
+ note="Prostate Cancer data from TCGA."
111
+ )
112
+
113
+ # 7) If usable, save the final linked data, including clinical and genetic features
114
+ if is_usable:
115
+ linked_data.to_csv(out_data_file)
116
+ # Save clinical subset if present
117
+ clinical_cols = [col for col in [trait, "Age", "Gender"] if col in linked_data.columns]
118
+ if clinical_cols:
119
+ linked_data[clinical_cols].to_csv(out_clinical_data_file)
p1/preprocess/Bile_Duct_Cancer/cohort_info.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"GSE131027": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": false, "has_gender": false, "sample_size": 92, "note": "Dataset processed with GEO pipeline. Checked for missing values and bias."}, "GSE107754": {"is_usable": false, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": true, "has_age": false, "has_gender": true, "sample_size": 84, "note": "Dataset processed with GEO pipeline. Checked for missing values and bias."}, "TCGA": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": true, "has_gender": true, "sample_size": 45, "note": "Prostate Cancer data from TCGA."}}
p1/preprocess/Bile_Duct_Cancer/gene_data/GSE107754.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a82da64a5edcbde2a3ccf1c07d005767e02ceeaad822b4ed6217419063405079
3
+ size 19822703
p1/preprocess/Bile_Duct_Cancer/gene_data/GSE131027.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a8582008fe6fc5b90879aea7d12ca4ea58cc0bbe03209acb333425d229be6e33
3
+ size 24379939
p1/preprocess/Bile_Duct_Cancer/gene_data/TCGA.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:487ad5b2b7321770f48f777197bb2b173d2d7bdc3c910702b5bbc9b90cd9dc77
3
+ size 13655934
p1/preprocess/Bipolar_disorder/GSE120340.csv ADDED
The diff for this file is too large to render. See raw diff
 
p1/preprocess/Bipolar_disorder/GSE120342.csv ADDED
The diff for this file is too large to render. See raw diff
 
p1/preprocess/Bipolar_disorder/GSE46416.csv ADDED
The diff for this file is too large to render. See raw diff
 
p1/preprocess/Bipolar_disorder/GSE46449.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dd9c37f1491e231f5be738c4447ac560f961bc72284a9d5d73f3596e3b13b07f
3
+ size 23289308
p1/preprocess/Bipolar_disorder/GSE92538.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b672a0b2d6064f5dfcc1a63d081c449ddb4e827649580c6072269951c5173e5c
3
+ size 32891082
p1/preprocess/Bipolar_disorder/clinical_data/GSE120340.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ GSM3398477,GSM3398478,GSM3398479,GSM3398480,GSM3398481,GSM3398482,GSM3398483,GSM3398484,GSM3398485,GSM3398486,GSM3398487,GSM3398488,GSM3398489,GSM3398490,GSM3398491,GSM3398492,GSM3398493,GSM3398494,GSM3398495,GSM3398496,GSM3398497,GSM3398498,GSM3398499,GSM3398500,GSM3398501,GSM3398502,GSM3398503,GSM3398504,GSM3398505,GSM3398506
2
+ 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
p1/preprocess/Bipolar_disorder/clinical_data/GSE120342.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ GSM3398507,GSM3398508,GSM3398509,GSM3398510,GSM3398511,GSM3398512,GSM3398513,GSM3398514,GSM3398515,GSM3398516,GSM3398517
2
+ 0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0
p1/preprocess/Bipolar_disorder/clinical_data/GSE46416.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ GSM1129903,GSM1129904,GSM1129905,GSM1129906,GSM1129907,GSM1129908,GSM1129909,GSM1129910,GSM1129911,GSM1129912,GSM1129913,GSM1129914,GSM1129915,GSM1129916,GSM1129917,GSM1129918,GSM1129919,GSM1129920,GSM1129921,GSM1129922,GSM1129923,GSM1129924,GSM1129925,GSM1129926,GSM1129927,GSM1129928,GSM1129929,GSM1129930,GSM1129931,GSM1129932,GSM1129933,GSM1129934
2
+ 1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
p1/preprocess/Bipolar_disorder/clinical_data/GSE46449.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ GSM1130402,GSM1130403,GSM1130404,GSM1130405,GSM1130406,GSM1130407,GSM1130408,GSM1130409,GSM1130410,GSM1130411,GSM1130412,GSM1130413,GSM1130414,GSM1130415,GSM1130416,GSM1130417,GSM1130418,GSM1130419,GSM1130420,GSM1130421,GSM1130422,GSM1130423,GSM1130424,GSM1130425,GSM1130426,GSM1130427,GSM1130428,GSM1130429,GSM1130430,GSM1130431,GSM1130432,GSM1130433,GSM1130434,GSM1130435,GSM1130436,GSM1130437,GSM1130438,GSM1130439,GSM1130440,GSM1130441,GSM1130442,GSM1130443,GSM1130444,GSM1130445,GSM1130446,GSM1130447,GSM1130448,GSM1130449,GSM1130450,GSM1130451,GSM1130452,GSM1130453,GSM1130454,GSM1130455,GSM1130456,GSM1130457,GSM1130458,GSM1130459,GSM1130460,GSM1130461,GSM1130462,GSM1130463,GSM1130464,GSM1130465,GSM1130466,GSM1130467,GSM1130468,GSM1130469,GSM1130470,GSM1130471,GSM1130472,GSM1130473,GSM1130474,GSM1130475,GSM1130476,GSM1130477,GSM1130478,GSM1130479,GSM1130480,GSM1130481,GSM1130482,GSM1130483,GSM1130484,GSM1130485,GSM1130486,GSM1130487,GSM1130488,GSM1130489
2
+ 1.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0
3
+ 63.0,63.0,43.0,43.0,40.0,40.0,28.0,35.0,35.0,40.0,40.0,41.0,41.0,27.0,27.0,33.0,33.0,31.0,31.0,26.0,26.0,27.0,27.0,29.0,42.0,42.0,28.0,28.0,27.0,27.0,37.0,37.0,25.0,25.0,36.0,36.0,30.0,36.0,36.0,62.0,42.0,52.0,24.0,21.0,26.0,26.0,63.0,50.0,49.0,49.0,49.0,58.0,58.0,41.0,41.0,33.0,33.0,48.0,48.0,23.0,26.0,26.0,31.0,31.0,63.0,63.0,38.0,38.0,24.0,24.0,24.0,70.0,70.0,25.0,29.0,37.0,37.0,24.0,24.0,31.0,35.0,23.0,23.0,28.0,28.0,23.0,23.0,50.0