|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Bone_Density" |
|
cohort = "GSE198934" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Bone_Density" |
|
in_cohort_dir = "../DATA/GEO/Bone_Density/GSE198934" |
|
|
|
|
|
out_data_file = "./output/preprocess/1/Bone_Density/GSE198934.csv" |
|
out_gene_data_file = "./output/preprocess/1/Bone_Density/gene_data/GSE198934.csv" |
|
out_clinical_data_file = "./output/preprocess/1/Bone_Density/clinical_data/GSE198934.csv" |
|
json_path = "./output/preprocess/1/Bone_Density/cohort_info.json" |
|
|
|
|
|
from tools.preprocess import * |
|
|
|
|
|
try: |
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
except AssertionError: |
|
print("[WARNING] Could not find the expected '.soft' or '.matrix' files in the directory.") |
|
soft_file, matrix_file = None, None |
|
|
|
if soft_file is None or matrix_file is None: |
|
print("[ERROR] Required GEO files are missing. Please check file names in the cohort directory.") |
|
else: |
|
|
|
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] |
|
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] |
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file, |
|
background_prefixes, |
|
clinical_prefixes) |
|
|
|
|
|
sample_characteristics_dict = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("Background Information:") |
|
print(background_info) |
|
print("\nSample Characteristics Dictionary:") |
|
print(sample_characteristics_dict) |
|
|
|
is_gene_available = True |
|
|
|
|
|
trait_row = None |
|
age_row = 0 |
|
gender_row = None |
|
|
|
|
|
def convert_trait(x: str): |
|
""" |
|
Convert raw trait data to a continuous type. |
|
Data not actually available in the dictionary for this cohort, but function is defined for completeness. |
|
""" |
|
parts = x.split(':', 1) |
|
if len(parts) < 2: |
|
return None |
|
val_str = parts[1].strip().lower() |
|
try: |
|
return float(val_str) |
|
except ValueError: |
|
return None |
|
|
|
def convert_age(x: str): |
|
""" |
|
Convert raw age data to a continuous type. |
|
Expected format: 'age (years): <numeric_value>' |
|
""" |
|
parts = x.split(':', 1) |
|
if len(parts) < 2: |
|
return None |
|
val_str = parts[1].strip().lower() |
|
try: |
|
return float(val_str) |
|
except ValueError: |
|
return None |
|
|
|
def convert_gender(x: str): |
|
""" |
|
Convert raw gender data to binary type: female -> 0, male -> 1. |
|
""" |
|
parts = x.split(':', 1) |
|
if len(parts) < 2: |
|
return None |
|
val_str = parts[1].strip().lower() |
|
if 'female' in val_str: |
|
return 0 |
|
elif 'male' in val_str: |
|
return 1 |
|
else: |
|
return None |
|
|
|
|
|
is_trait_available = (trait_row is not None) |
|
is_usable = validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=is_trait_available |
|
) |
|
|
|
|
|
if trait_row is not None: |
|
selected_clinical_df = geo_select_clinical_features( |
|
clinical_data, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait, |
|
age_row=age_row, |
|
convert_age=convert_age, |
|
gender_row=gender_row, |
|
convert_gender=convert_gender |
|
) |
|
preview = preview_df(selected_clinical_df) |
|
selected_clinical_df.to_csv(out_clinical_data_file, index=False) |
|
|
|
|
|
gene_data = get_genetic_data(matrix_file) |
|
|
|
|
|
print(gene_data.index[:20]) |
|
|
|
|
|
print("requires_gene_mapping = True") |
|
|
|
|
|
gene_annotation = get_gene_annotation(soft_file) |
|
|
|
|
|
print("Gene annotation preview:") |
|
print(preview_df(gene_annotation)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="gene_assignment") |
|
|
|
|
|
gene_data = apply_gene_mapping(gene_data, mapping_df) |
|
|
|
|
|
print("Mapped gene_data shape:", gene_data.shape) |
|
print("First 5 genes in mapped data:", gene_data.index[:5].tolist()) |
|
import os |
|
import pandas as pd |
|
|
|
|
|
|
|
|
|
normalized_gene_data = normalize_gene_symbols_in_index(gene_data) |
|
normalized_gene_data.to_csv(out_gene_data_file) |
|
|
|
|
|
if os.path.exists(out_clinical_data_file) and os.path.getsize(out_clinical_data_file) > 0: |
|
|
|
clinical_temp = pd.read_csv(out_clinical_data_file) |
|
|
|
|
|
if clinical_temp.shape[0] == 3: |
|
clinical_temp.index = [trait, "Age", "Gender"] |
|
elif clinical_temp.shape[0] == 2: |
|
clinical_temp.index = [trait, "Gender"] |
|
elif clinical_temp.shape[0] == 1: |
|
clinical_temp.index = [trait] |
|
|
|
|
|
linked_data = geo_link_clinical_genetic_data(clinical_temp, normalized_gene_data) |
|
|
|
|
|
linked_data = handle_missing_values(linked_data, trait) |
|
|
|
|
|
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) |
|
|
|
|
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=True, |
|
is_biased=trait_biased, |
|
df=linked_data, |
|
note=f"Final check on {cohort} with {trait}." |
|
) |
|
|
|
|
|
if is_usable: |
|
linked_data.to_csv(out_data_file) |
|
else: |
|
|
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=False, |
|
is_biased=True, |
|
df=pd.DataFrame(), |
|
note=f"No trait data found for {cohort}, final metadata recorded." |
|
) |
|
|