Liu-Hy's picture
Add files using upload-large-folder tool
a5a8278 verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Bone_Density"
cohort = "GSE56814"
# Input paths
in_trait_dir = "../DATA/GEO/Bone_Density"
in_cohort_dir = "../DATA/GEO/Bone_Density/GSE56814"
# Output paths
out_data_file = "./output/preprocess/1/Bone_Density/GSE56814.csv"
out_gene_data_file = "./output/preprocess/1/Bone_Density/gene_data/GSE56814.csv"
out_clinical_data_file = "./output/preprocess/1/Bone_Density/clinical_data/GSE56814.csv"
json_path = "./output/preprocess/1/Bone_Density/cohort_info.json"
# STEP1
from tools.preprocess import *
# 1. Attempt to identify the paths to the SOFT file and the matrix file
try:
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
except AssertionError:
print("[WARNING] Could not find the expected '.soft' or '.matrix' files in the directory.")
soft_file, matrix_file = None, None
if soft_file is None or matrix_file is None:
print("[ERROR] Required GEO files are missing. Please check file names in the cohort directory.")
else:
# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(matrix_file,
background_prefixes,
clinical_prefixes)
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("\nSample Characteristics Dictionary:")
print(sample_characteristics_dict)
# 1. Gene Expression Data Availability
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
trait_row = 1 # The key where "bone mineral density" data is stored
age_row = None # No numeric age data provided
gender_row = None # Only one unique gender value (female), so treat as not available
def convert_trait(value: str):
"""Convert bone mineral density info to binary: 1 for 'high BMD', 0 for 'low BMD'."""
part = value.split(':')[-1].strip().lower()
if 'high' in part:
return 1
elif 'low' in part:
return 0
return None
def convert_age(value: str):
"""No age data is available; always return None."""
return None
def convert_gender(value: str):
"""No usable gender variation (all female); always return None."""
return None
# 3. Save Metadata (Initial Filtering)
is_trait_available = (trait_row is not None)
is_usable = validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# 4. Clinical Feature Extraction (only if trait data is available)
if trait_row is not None:
clinical_features = geo_select_clinical_features(
clinical_data, # Assuming clinical_data is already in the environment
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the extracted clinical data
preview_result = preview_df(clinical_features)
print("Preview of Clinical Features:")
print(preview_result)
# Save extracted clinical features
clinical_features.to_csv(out_clinical_data_file, index=False)
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
# These numeric identifiers (e.g., "2315554") are not typical human gene symbols.
# They appear to be probe IDs and will require mapping to gene symbols.
print("requires_gene_mapping = True")
# STEP5
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
gene_annotation = get_gene_annotation(soft_file)
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
print("Gene annotation preview:")
print(preview_df(gene_annotation))
# STEP: Gene Identifier Mapping
# 1. Decide which key in the gene annotation dataframe corresponds to the probe IDs,
# and which key corresponds to the gene symbols.
# - From the preview, we see "ID" matches the probe ID (e.g., "2315100"),
# and "gene_assignment" stores gene symbol info.
# 2. Get a gene mapping dataframe using get_gene_mapping.
mapping_df = get_gene_mapping(
annotation=gene_annotation,
prob_col='ID',
gene_col='gene_assignment'
)
# 3. Convert probe-level measurements to gene-level expression by applying the mapping.
gene_data = apply_gene_mapping(gene_data, mapping_df)
import os
import pandas as pd
# STEP7: Data Normalization and Linking
# 1) Normalize the gene symbols in the previously obtained gene_data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file)
# 2) Load clinical data only if it exists and is non-empty
if os.path.exists(out_clinical_data_file) and os.path.getsize(out_clinical_data_file) > 0:
# Read the file
clinical_temp = pd.read_csv(out_clinical_data_file)
# Adjust row index to label the trait, age, and gender properly
if clinical_temp.shape[0] == 3:
clinical_temp.index = [trait, "Age", "Gender"]
elif clinical_temp.shape[0] == 2:
clinical_temp.index = [trait, "Gender"]
elif clinical_temp.shape[0] == 1:
clinical_temp.index = [trait]
# 2) Link the clinical and normalized genetic data
linked_data = geo_link_clinical_genetic_data(clinical_temp, normalized_gene_data)
# 3) Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4) Check for severe bias in the trait; remove biased demographic features if present
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5) Final quality validation and save metadata
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note=f"Final check on {cohort} with {trait}."
)
# 6) If the linked data is usable, save it
if is_usable:
linked_data.to_csv(out_data_file)
else:
# If no valid clinical data file is found, finalize metadata indicating trait unavailability
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=False,
is_biased=True, # Force a fallback so that it's flagged as unusable
df=pd.DataFrame(),
note=f"No trait data found for {cohort}, final metadata recorded."
)
# Per instructions, do not save a final linked data file when trait data is absent.